Psychopharmacogenetics
Psychopharmacogenetics

Edited by

Philip Gorwood
Louis Mourier Hospital
Colombes, France

Michel Hamon
Faculty of Medicine Pitié-Salpêtrière
Paris, France
FOREWORD

Michel HAMON, and Philip GORWOOD

Considerable progress has been made for the last fifty years in the treatment of psychiatric disorders thanks to the empirical discovery of the psychotrophic properties of a few drugs. Actually, antipsychotics first, then antidepressants, anxiolytics and mood stabilising agents have all been discovered at the beginning of the second half of the last century, causing a true revolution in the clinical practice of psychiatrists, and the definitive recognition of psychiatry as an actual clinical discipline, with the use of effective drugs in addition to other medical interventions, as for cardiology, internal medicine, etc.

However, serious limitations in this progress have been the relatively low proportions of patients responding to the drugs, the unpredictability of the response, and the deleterious side effects of the first antipsychotics and antidepressants which sometimes considerably deteriorate the quality of life of patients, and explain the poor compliance to treatments. A second breakthrough in the clinical practice of psychiatrists has then been achieved from the seventies, i.e. 30 years ago, when novel drugs were developed on the basis of the extensive neuropharmacological investigations that followed the empirical discovery of the first psychotrophic drugs. Indeed, because clear-cut data showed that tricyclic antidepressants act through the blockade of monoamine reuptake, chemists synthesized selective monoamine uptake inhibitors which then revealed to share with tricyclics potent antidepressive properties. Similarly, the demonstration that phenothiazine and butyrophenone antipsychotics actually act through the blockade of dopamine receptors led to the development of selective dopamine receptor antagonists, such as the benzamide compounds sulpiride and amisulpride, which are endowed with clear-cut antipsychotic properties. Such achievement was a clear breakthrough because these novel drugs, specifically designed to act selectively at clinically relevant molecular targets, are consequently endowed with much less secondary, deleterious, effects of the first psychotropes. Indeed, the quality of life of patients treated with this second generation drugs is markedly improved compared to that degraded by earlier drugs, which contributes to higher compliance, and, in turn, better efficacy. However, better does not mean optimum because a large proportion of

Michel Hamon, INSERM U677, Faculty Pitié-Salpêtrière, 91 Bd de l’hôpital, 75634 Paris, France.
Philip Gorwood, INSERM U675, Faculty Bichat, 16 rue Henri Huchard, 75018 Paris, France.
depressed or psychotic patients still do not respond to these second generation drugs. Indeed, at least 30% of depressed patients are not responsive to potent antidepressants, but the reasons why they do not respond are not known.

A third step in the development of better treatments is therefore needed, and neuroscientists and clinicians are strongly determined to make it fully successful. This step actually involves two complementary approaches. The first one consists of improving the design and synthesis of pharmacologically active molecules in order to increase the effectiveness and safety of drugs aimed at alleviating psychiatric disorders. Chemists already produced multi-target drugs acting at several receptors, enzymes, transporters, relevant to these diseases, but still (mostly) devoid of undesirable side effects. These third generation drugs (such as atypical antipsychotics acting at both dopamine and serotonin receptors, or anti-depressants acting simultaneously at serotonin reuptake site and presynaptic auto- or hetero-receptors) are clearly a further progress toward better treatments. However, even much more can be expected from the second approach of this third step, which consists of considering the genotype as a possible reason for good, poor or no responding to drugs. This field of research is the domain of Psychopharmacogenetics.

The objective of this book is to present all aspects of this novel discipline which aims at identifying the possible genetic reasons causing a given patient to respond, or not respond, to a psychotropic drug, and to suffer, or not suffer, from side effects caused by this drug. For this purpose, we asked the best experts in the world to contribute to this enterprise, and all accepted with great enthusiasm. We are very grateful to all of them, for their remarkable and comprehensive contributions. The book is organized in three main parts. The first one, with the first 9 chapters, is devoted to the various major psychiatric disorders for which one can expect so much from Psychopharmacogenetics, as definition of patient’s genotype should be of great help to design the best drug treatment specifically for this patient, with maximal chance of positive response and minimal risk of side effects. For instance, polymorphism in the promoter region of the gene coding the transporter responsible for serotonin reuptake seems to be critical in the response to second generation antidepressants. The second part aims at providing detailed knowledge on major molecular targets of psychotropic drugs, with particular focus on polymorphisms of relevant genes which play key roles in both the neurobiological mechanisms underlying the diseases and the mechanisms of actions of these drugs. In the last part of the book, possible genetic reasons accounting for side effects of psychotropic drugs are reviewed, concerning cardiac, motor and sexual functions, notably because of marked individual differences in the metabolism of drugs.

Clearly, drug treatment of psychiatric disease is a real challenge, and also a bet as it is extremely difficult to predict the quality of individual response. Psychopharmacogenetics is undoubtedly a potent approach toward better treatment by identifying responders based on genotype profile. We do hope this book will contribute to open this novel discipline in the field of psychiatry, and to promote a novel method of great potential for the design of more effective and surer treatment adapted to a given patient.
CONTENTS

FOREWORD
Michel Hamon and Philip Gorwood

1. INTRODUCTION ON PSYCHOPHARMACOGENETICS
Philip Gorwood and Elizabeth Foot

2. GENETICS OF ANXIETY AND RELATED DISORDERS: IMPLICATIONS FOR PHARMACOGENETICS
Klaus-Peter Lesch

REFERENCES...
3. MAJOR DEPRESSIVE DISORDERS: DEPRESSIVE DISORDERS45

Alessandro Serretti and Paola Artioli

1. INTRODUCTION .. 45
2. THE HISTORY .. 47
3. CLASSIFICATION .. 48
4. PHARMACOGENETICS ... 49
5. CANDIDATES GENES .. 50
 5.1. Tryptophan Hydroxylase .. 50
 5.2. Mono Amino Oxidase ... 51
 5.3. Alpha 1 adrenergic receptor ... 52
 5.4. Dopaminergic receptors .. 53
 5.5. Serotonergic receptors ... 54
 5.6. Serotonin transporter .. 56
 5.7. Nitric Oxide Synthase ... 58
 5.8. G-protein Beta 3 Subunit ... 58
 5.9. Angiotensin Converting Enzyme ... 59
 5.10 Interleukin 1-Beta ... 60
6. PERSPECTIVES ... 61
 6.1. New approaches in molecular studies 61
 6.2. Research strategies ... 62
 6.3. Genetics counseling ... 62
 6.4. Ethical issues ... 63
7. TABLE .. 64
8. REFERENCES ... 65

4. PHARMACOGENETICS OF BIPOLAR DISORDERS75

Pierre Oswald, Daniel Souery, and Julien Mendlewicz

1. INTRODUCTION .. 75
2. THE CLASSIFICATIONS OF BIPOLAR ISORDERS 76
3. BURDEN AND OUTCOME OF BIPOLAR DISORDER 77
4. TREATMENT OF BIPOLAR DISORDERS 78
 4.1. Acute episode : manic and mixed states 79
 4.2. Acute episode : bipolar depression 79
 4.3. Maintenance treatment ... 80
CONTENTS

5. RESPONSE TO MOOD STABILIZERS IN FAMILY STUDIES 82
 5.1. Family studies of lithium response and non response 83
 5.2. Lithium response as phenotype ... 84
 5.3. Other mood stabilizers .. 84
6. BIOCHEMICAL MECHANISM OF ACTION OF MOOD STABILIZERS:
 SEARCH FOR SUSCEPTIBILITY GENES ... 84
 6.1. Mechanisms of action of lithium, Carbamazepine and Valproate 84
 6.2. Mechanisms of action of Lamotrigine 88
7. MOLECULAR GENETIC STUDIES .. 88
 7.1. Association studies ... 88
 7.2. Linkage studies .. 92
 7.3. Genome-wide scans .. 92
8. CONCLUSION AND PERSPECTIVES FOR FUTURE RESEARCH 93
9. REFERENCES .. 94

5. PSYCHOPHARMACOGENETICS OF SCHIZOPHRENIA AND
 PSYCHOSIS .. 101

 Joachim Scharfetter

1. INTRODUCTION .. 101
2. METHODOLOGY ... 102
3. PHENOTYPE .. 103
4. GENOTYPES ... 104
 4.1. Overview with respect to specific phenotypes 104
 4.2. Specific genotypes .. 111
5. FINDINGS ... 116
 5.1. Response .. 116
 5.2. Agranulozytosis ... 133
 5.3. Weight Gain ... 136
 5.4. NMS ... 138
 5.5. Various side effects .. 138
6. DISCUSSION .. 139
7. REFERENCES .. 140

6. ALZHEIMER’S DISEASE AND OTHER DEMENTIAS 149

 Lucie Maréchal, Isabelle Le Ber, Didier Hannequin, Dominique Campion and Alexis
 Brice

1. INTRODUCTION .. 149
2. CLINIC .. 150
3. COMPLEMENTARY EXAMINATIONS ... 150
4. NEUROPATHOLOGY ... 151
5. DOMINANTLY INHERITED FAMILIAL ALZHEIMER DISEASE 151
 5.1. APP gene ... 151
 5.2. Presenilin 1 (PS1) gene and Presenilin 2 (PS2) 152
 5.3. Clinical characteristic of dominantly inherited alzheimer disease 154
7. PHARMACOGENETICS OF ALCOHOL-DEPENDENCE 177

Philip Gorwood, Gunter Schumann, Jens Treutlein, and Jean Adès

1. PHENOTYPE DEFINITION.. 177
2. ALCOHOL METABOLISM.. 179
 2.1. Minor metabolism pathways... 180
 2.2. Alcohol dehydrogenase enzyme.. 181
 2.3. Acetaldehyde dehydrogenase... 182
 2.4. Genetics of the flushing reaction to alcohol.. 183
3. NEUROTRANSMITTER SYSTEMS INVOLVED IN ALCOHOL CENTRAL
 EFFECTS.. 184
 3.1. Glutamate.. 185
 3.2. GABA.. 186
 3.3. Dopamine.. 186
 3.4. Serotonin .. 188
 3.5. Noradrenaline... 188
 3.6. Opioids .. 189
 3.7. Cannabinoids... 189
4. TREATMENTS OF ALCOHOL-DEPENDENCE.. 190
5. REFERENCES... 195

8. EATING DISORDERS AND OBESITY... 203

Mariken de Krom, Annemarie van Elburg, Pierre M. Zelissen, and Roger A.H. Adan

1. INTRODUCTION... 203
2. THE NEURAL CIRCUITRY OF REGULATION OF ENERGY BALANCE........ 204
 2.1. The discovery of Leptin.. 204
 2.2. The neural circuitry mediating Leptin’s effect..................................... 204
 2.3. Modifiers of the Leptin neural circuitry.. 207
 2.4. Mouse mutants with anorexia.. 208
3. EATING DISORDERS AND OBESITY... 209
 3.1. The obesity phenotype... 209
 3.2. Eating disorder phenotypes... 210
4. GENETIC STUDIES IN HUMANS WITH OBESITY OR EATING
 DISORDERS.. 212
 4.1. Association studies and obesity.. 212
 4.2. Association studies and anorexia.. 216
 4.3. Linkage studies... 218
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. PERSPECTIVES FOR PHARMACOGENETICS RESEARCH INTO EATING DISORDERS AND OBESITY .. 222</td>
</tr>
<tr>
<td>5.1. Obesity drugs .. 222</td>
</tr>
<tr>
<td>5.2. Eating disorder drugs .. 223</td>
</tr>
<tr>
<td>6. CONCLUDING REMARKS .. 224</td>
</tr>
<tr>
<td>7. REFERENCES ... 224</td>
</tr>
<tr>
<td>9. NEUROPSYCHOPHARMACOGENETICS : ‘STIMULATING’ RATIONALE THERAPY IN ATTENTION-DEFICIT/HYPERACTIVITY DISORDER (ADHD): PHARMACOGENETICS OF PSYCHOSTIMULANTS IN ADHD 231</td>
</tr>
<tr>
<td>Mario Maselli, Vincenzo S. Basile, and James L. Kennedy</td>
</tr>
<tr>
<td>1. INTRODUCTION .. 231</td>
</tr>
<tr>
<td>1.1. Pharmacokinetics of methylphenidate 232</td>
</tr>
<tr>
<td>1.2. Pharmacodynamics of methylphenidate 233</td>
</tr>
<tr>
<td>2. NEUROPSYCHOPHARMACOGENETICS : ASYNOPSIS 234</td>
</tr>
<tr>
<td>3. NEUROPSYCHOPHARMACOGENETICS APPLIED TO ADHD 237</td>
</tr>
<tr>
<td>4. DEFINING RESPONSE : THE CHALLENGES 240</td>
</tr>
<tr>
<td>5. FUTURE DIRECTIONS .. 242</td>
</tr>
<tr>
<td>6. ACKNOWLEDGEMENTS ... 244</td>
</tr>
<tr>
<td>7. REFERENCES ... 244</td>
</tr>
<tr>
<td>10. AUTISM AND AUTISTICS DISORDERS 249</td>
</tr>
<tr>
<td>Stéphane Jamain, and Marion Leboyer</td>
</tr>
<tr>
<td>1. INTRODUCTION .. 249</td>
</tr>
<tr>
<td>2. DRUG TREATMENTS FOR AUTISM .. 250</td>
</tr>
<tr>
<td>3. AUTISM IS A GENETIC SYNDROME .. 250</td>
</tr>
<tr>
<td>4. SUSCEPTIBILITY GENES TO IDIOPATHIC AUTISM 252</td>
</tr>
<tr>
<td>4.1. Functional candidate genes ... 252</td>
</tr>
<tr>
<td>4.2. Linkage analyses .. 253</td>
</tr>
<tr>
<td>4.3. Chromosomal abnormalities .. 256</td>
</tr>
<tr>
<td>5. CONCLUSION ... 259</td>
</tr>
<tr>
<td>6. REFERENCES ... 259</td>
</tr>
<tr>
<td>11. GENETICS OF MONOAMINE METABOLIZING ENZYMES : PSYCHOPHARMACOGENETICS .. 265</td>
</tr>
<tr>
<td>Rolando Meloni, Olfa Khalfallah, and Nicole Faucon Biguet</td>
</tr>
<tr>
<td>1. INTRODUCTION .. 265</td>
</tr>
<tr>
<td>1.1. Monoamine brain distribution and pathways 265</td>
</tr>
<tr>
<td>1.2. Monoamine pre-synaptic neurotransmission (synthesis, storage, release, uptake and degradation). 266</td>
</tr>
</tbody>
</table>
2. GENETIC ASPECTS OF MONOAMINE METABOLISM AND NEUROPSYCHIATRIC DISEASES .. 268
 2.1. Tyrosine hydroxylase ... 268
 2.2. Tryptophan hydroxylase .. 270
 2.3. Aromatic amino acid decarboxylase 270
 2.4. Dopamine Beta hydroxylase 271
 2.5. Mono-amino-oxydase ... 272
 2.6. Catechol-o-methyl-transferase 273
3. CONCLUSIONS ... 276
4. ACKNOWLEDGEMENTS ... 276
5. REFERENCES ... 277

12. TRANSDUCTION MECHANISMS : G PROTEINS 289

Katerina J. Damjanoska, and Louis D. Van de Kar

1. INTRODUCTION .. 289
2. TYPES OF HETEROTRIMETIC G PROTEINS 290
 2.1. Regulation of G Protein Signaling 294
 2.2. Gα Protein Subunits .. 296
 2.3. Gβγ Protein Subunits ... 298
3. RGS PROTEINS .. 299
4. TRANSCRIPTIONAL REGULATION OF RECEPTOR SIGNALING 301
 4.1. Transcriptional regulation of receptor signaling 301
 4.2. Post-transcriptional regulation of receptor signaling 302
5. POST-TRANSLATIONAL REGULATION OF SIGNALING 302
 5.1. Prenylation ... 303
 5.2. Myristoylation ... 305
 5.3. Palmitoylation ... 305
 5.4. Phosphorylation ... 307
6. G PROTEIN-ASSOCIATED CNS DISEASES 308
 6.1. Anxiety and neuroticism ... 308
 6.2. Autism and autistic disorders 309
 6.3. Bipolar disorder .. 310
 6.4. Depression ... 310
 6.5. Neurodegenerative diseases 312
 6.6. Schizophrenia ... 313
7. CONCLUSION ... 314
8. REFERENCES ... 314

13. MONOAMINE TRANSPORTERS ... 333

Mohamed Jaber

1. INTRODUCTION .. 333
2. HISTORICAL BACKGROUND ... 334
3. GENE STRUCTURE AND FUNCTION 336
CONTENTS

4. DISTRIBUTION WITHIN THE CNS...339
5. REGULATION OF MONOAMINE TRANSPORT............................340
6. CELLULAR MOLECULAR AND BEHAVIOURAL CONSEQUENCES OF
 KNOCK-OUT OF THE MONOAMINE TRANSPORTER GENES............342
7. MONOAMINE TRANSPORTERS AND NEUROTOXICITY..................344
8. POLYMORPHISMS, PHARMACOGENETICS AND BRAIN DISORDERS.....346
9. CONCLUSION...348
10. ACKNOWLEDGMENTS...349
11. REFERENCES...349

14. Dopamine Receptors: Structure, Function and
 Implication in Psychiatric Disorders..............................357

 Pierre Sokoloff, Ludovic Leriche, and Bernard Le Foll

 1. INTRODUCTION...357
 2. STRUCTURE OF DOPAMINE RECEPTORS................................358
 2.1. Gene structure and variants...................................358
 2.2. Receptor structure and receptor complexes...............360
 3. DOPAMINE RECEPTOR EXPRESSION IN THE BRAIN AND ITS
 REGULATION..361
 4. SIGNAL TRANSDUCTION OF DOPAMINE RECEPTORS..................365
 5. PHARMACOLOGY OF DOPAMINE RECEPTORS..........................368
 6. D2 AND D3 RECEPTORS AS AUTORECEPTORS..........................371
 7. DOPAMINE RECEPTORS AND ANIMAL BEHAVIORS......................373
 7.1. Locomotor spontaneous activity and locomotor responses..373
 7.2. Effects of drug of abuse and related behaviors...........375
 7.3. Anxiety-like behaviors...376
 7.4. Depression-like behaviors.....................................377
 7.5. Schizophrenia-like behaviors................................377
 8. DOPAMINE RECEPTOR GENES AND PSYCHIATRIC DISORDERS.........378
 8.1. Schizophrenia..378
 8.2. Mood disorders..384
 8.3. Attention-deficit hyperactivity disorder...................385
 8.4. Alcohol dependence and drug addiction......................388
 8.5. Other neuropsychiatric disorders: Tourette’s syndrome, obsessive compulsive
 disorders, etc..391
 9. CONCLUSIONS..392
10. REFERENCES...393

15. The Neurobiology of GABA Receptors..................................421

 Enrico Sanna, Paolo Follesa, and Giovanni Biggio

 1. GABA_A RECEPTORS..421
 1.1. Molecular structure, assembly and distribution...............422
 1.2. Physiological considerations....................................423
 1.3. Pharmacological aspects...424
1.4. Animal models (transgenic mice) .. 425
1.5. GABA_A receptor plasticity 425
1.6. GABA_A receptor and neurological disorders............ 428
2. GABA_A RECEPTORS .. 434
 2.1. Structure and function ... 434
 2.2. Pharmacological modulation 435
2.3. Drug addiction .. 436
3. REFERENCES .. 437

16. CYTOCHROMES P450 ... 443
Marja-Liisa Dahl and Maria Gabriella Scordo

1. INTRODUCTION ... 443
2. CYTOCHROME P450 ENZYMES 445
 2.1. CYP2D6 ... 445
 2.2. CYP2C9 ... 446
 2.3. CYP2C19 ... 446
 2.4. CYP1A2 ... 449
 2.5. CYP3A4 ... 449
3. PSYCHOTROPIC DRUGS AND CYTOCHROMES P450.............. 450
 3.1. Antidepressants ... 450
 3.2. Antipsychotic drugs ... 456
4. PHENOTYPE/GENOTYPE AND CLINICAL EFFECTS OF PSYCHOTROPIC DRUGS 463
 4.1. Therapeutic effects 463
 4.2. Side effects ... 464
 4.3. Genotype-based dosage recommendations 466
5. CONCLUSION ... 467
6. REFERENCES .. 467

17. SEXUAL DYSFUNCTION : NEUROBIOLOGICAL, PHARMACOLOGICAL, AND GENETIC CONSIDERATION 579
Brian Mustanski and John Bancroft

1. INTRODUCTION ... 479
2. SEXUAL NEUROBIOLOGY ... 480
3. SEXUAL PHARMACOLOGY ... 483
 3.1. Antidepressants .. 483
 3.2. Antipsychotics .. 485
4. SEXUAL PHARMACOGENETICS 487
 4.1. Pharmacodynamics 488
 4.2. Pharmacokinetics 490
5. CONCLUSION ... 491
6. ACKNOWLEDGMENTS .. 491
7. REFERENCES .. 492
CONTENTS

8. SUDDEN UNEXPLAINED DEATH AND ANTIPSYCHOTICS.................527
9. SUMMARY & CONCLUSIONS..528
10. REFERENCES...529

20. GLOSSARY: GENETICS AND PARMOCOGENETICS RELATED TERMS ..533

Philip Gorwood and Michel Haman

INDEX...545