RESEARCH AND PRACTICAL ISSUES OF ENTERPRISE INFORMATION SYSTEMS
IFIP was founded in 1960 under the auspices of UNESCO, following the First World Computer Congress held in Paris the previous year. An umbrella organization for societies working in information processing, IFIP's aim is two-fold: to support information processing within its member countries and to encourage technology transfer to developing nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical organization which encourages and assists in the development, exploitation and application of information technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates through a number of technical committees, which organize events and publications. IFIP's events range from an international congress to local seminars, but the most important are:

- The IFIP World Computer Congress, held every second year;
- Open conferences;
- Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and contributed papers are presented. Contributed papers are rigorously refereed and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working group and attendance is small and by invitation only. Their purpose is to create an atmosphere conducive to innovation and development. Refereeing is less rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World Computer Congress and at open conferences are published as conference proceedings, while the results of the working conferences are often published as collections of selected and edited papers.

Any national society whose primary activity is in information may apply to become a full member of IFIP, although full membership is restricted to one society per country. Full members are entitled to vote at the annual General Assembly, National societies preferring a less committed involvement may apply for associate or corresponding membership. Associate members enjoy the same benefits as full members, but without voting rights. Corresponding members are not represented in IFIP bodies. Affiliated membership is open to non-national societies, and individual and honorary membership schemes are also offered.
RESEARCH AND PRACTICAL ISSUES OF ENTERPRISE INFORMATION SYSTEMS

IFIP TC 8 International Conference on Research and Practical Issues of Enterprise Information Systems (CONFENIS 2006) April 24-26, 2006, Vienna, Austria

Edited by

A. Min Tjoa
Vienna University of Technology, Austria

Li Xu
Old Dominion University, USA

Sohail S. Chaudhry
Villanova University, USA

Springer
Research and Practical Issues of Enterprise Information Systems

Edited by A. Tjoa, L. Xu, and S. Chaudhry

p. cm. (IFIP International Federation for Information Processing, a Springer Series in Computer Science)

ISSN: 1571-5736 / 1861-2288 (Internet)
ISBN: 10: 0-387-34345-8
Printed on acid-free paper

Copyright © 2006 by International Federation for Information Processing.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed in the United States of America.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Conference Organization</td>
<td>xv</td>
</tr>
<tr>
<td>Referee List</td>
<td>xviii</td>
</tr>
<tr>
<td>Keynote Speakers and Paper</td>
<td>xix</td>
</tr>
<tr>
<td>SELF-ORGANIZING MODEL FOR VIRTUAL ENTERPRISES</td>
<td>1</td>
</tr>
<tr>
<td>Dianxun Shuai, Qing Shuai, Liangjun Huang, and Yuzhe Liu</td>
<td></td>
</tr>
<tr>
<td>A SPATIO-TEMPORAL DATABASE SYSTEM BASED ON TIMEDB AND ORACLE SPATIAL</td>
<td>11</td>
</tr>
<tr>
<td>Alexandre Carvalho, Cristina Ribeiro, and A. Augusto Sousa</td>
<td></td>
</tr>
<tr>
<td>MAINTAINING TEMPORAL WAREHOUSE MODELS</td>
<td>21</td>
</tr>
<tr>
<td>Johann Eder, Christian Koncilia, and Karl Wiggisser</td>
<td></td>
</tr>
<tr>
<td>DATA CLUSTERING IN ENTERPRISE COMPUTING: A NEW GENERALIZED CELLULAR AUTOMATA</td>
<td>31</td>
</tr>
<tr>
<td>Dianxun Shuai, Qing Shuai, Yuming Dong, and Liangjun Huang</td>
<td></td>
</tr>
<tr>
<td>AN INFORMATION BROKER FOR INTEGRATING HETEROGENEOUS HYDROLOGIC DATA SOURCES: A WEB SERVICES APPROACH</td>
<td>41</td>
</tr>
<tr>
<td>Fabio Calefato, Attilio Colagrossi, Domenico Gendarmi, Filippo Lanubile, and Giovanni Semeraro</td>
<td></td>
</tr>
<tr>
<td>CONTEXT-AWARE UBIQUITOUS SERVICE COMPOSITION TECHNOLOGY</td>
<td>51</td>
</tr>
<tr>
<td>Yoji Yamato, Yohei Tanaka, and Hiroshi Sunaga</td>
<td></td>
</tr>
<tr>
<td>A MODELING APPROACH FOR SERVICE-ORIENTED ARCHITECTURE</td>
<td>63</td>
</tr>
<tr>
<td>Tao Zhang, Shing Ying, Sheng Cao, Jiankeng Zhang, and Jun Wei</td>
<td></td>
</tr>
<tr>
<td>XML-BASED EIS - A META SCHEMA FOR MAPPING XML SCHEMA TO RELATIONAL DBS</td>
<td>73</td>
</tr>
<tr>
<td>Elisabeth Kapsammer</td>
<td></td>
</tr>
<tr>
<td>CONTINUAL BUSINESS TRANSFORMATION TECHNOLOGY</td>
<td>85</td>
</tr>
<tr>
<td>Thomas Li, Wei Ding, Chunhua Tian, Rongzeng Cao, Shunxiang Yang, and Jun Zhu</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BUSINESS COMPONENTIZATION: A GUIDANCE TO APPLICATION SERVICE DESIGN</td>
<td>Chunhua Tian, Wei Ding, Rongzeng Cao, and Juhnyoung Lee</td>
</tr>
<tr>
<td>PARTICLE MODEL TO OPTIMIZE ENTERPRISE COMPUTING</td>
<td>Dianxun Shuai, Qing Shuai, Yuzhe Liu, and Liangjun Huang</td>
</tr>
<tr>
<td>INTELLIGENT ENTERPRISES FOR CONSTRUCTION: BRIDGING THE TECHNOLOGY AND KNOWLEDGE</td>
<td>Gaps through Innovation and Education - Bee Hua Goh</td>
</tr>
<tr>
<td>GRID COMPUTING SIMULATION AND VERIFICATION BASED ON PI CALCULUS</td>
<td>Tao Hu, Shaofan Chen and Weibo Lin</td>
</tr>
<tr>
<td>FORMALIZATION OF MINING ASSOCIATION RULES BASED ON RELATIONAL DATABASE IN EIS</td>
<td>Hong Zhang and Bo Zhang</td>
</tr>
<tr>
<td>ARCHITECTURAL DESIGN OF DISTRIBUTED OPERATION MONITORING SYSTEMS</td>
<td>Chengen Wang</td>
</tr>
<tr>
<td>A UML 2 PROFILE FOR EVENT DRIVEN PROCESS CHAINS</td>
<td>Birgit Korherr and Beate List</td>
</tr>
<tr>
<td>TRANSFORMING THE IT ORGANIZATION FOR E-BUSINESS: A PERSPECTIVE OF INTEGRATION</td>
<td>Huang Jie, and Guo Shuojia</td>
</tr>
<tr>
<td>USAGE OF ENTERPRISE MODELING PROCESSES AND INFORMATION SYSTEMS DESIGN TO FORECAST DEMAND</td>
<td>Luciana Rocha dos Santos, Simone Vasconcelos Silva, and Renato de Campos</td>
</tr>
<tr>
<td>J2EE DEVELOPMENT BASED ON THE JSED TEMPLATE</td>
<td>Hui Li, Hong Zhang, Yan Li, and Tiefeng Jin</td>
</tr>
<tr>
<td>ENTERPRISE KNOWLEDGE INTEGRATION BY SEMANTIC WEB</td>
<td>Wendong Gu, Guoping Xia, and Weijia You</td>
</tr>
<tr>
<td>ENTERPRISE INFORMATION INTEGRATION</td>
<td>Nacira Ghoualmi-Zine</td>
</tr>
<tr>
<td>VALUE-ORIENTED IT PROJECT PORTFOLIO MANAGEMENT</td>
<td>Rongzeng Cao, Wei Ding, Chunhua Tian, and Juhnyoung Lee</td>
</tr>
</tbody>
</table>
ENTERPRISE MATURITY MODEL - THE TECHNOLOGY ALIGNED BUSINESS STRATEGY MODEL FOR INDIAN BANKS
Hemalatha Diwakar and Asish Saha 231

ERP - CHANGE AGENT OR A LEGACY SYSTEM IN DISGUISE: A CHINESE CASE
Nasrin Rahmati and Gouyi Cao 241

ENTERPRISE INFORMATION SYSTEMS FOR LARGE-SCALE ENGINEERING PROJECTS
Tianshe Yang, Hong Wang, Sohail S. Chaudhry, and Huijing Huang 247

ISRUP E-SERVICE FRAMEWORK BALANCED SCORECARD TO MEASURE THE CAPABILITIES FROM THE METHODOLOGIES, PROCESSES, NOTATIONS, LIFE CYCLES, AND STANDARDS
Seyyed Mohsen Hashemi, Mohamadreza Razzazi, and Mohamad Teshnehlab 255

ENTERPRISE ARCHITECTURE DEFINITION FRAMEWORK FOR IT SERVICE PROVIDERS
Shankar Kambhampaty and Satish Chandra 261

STUDIES OF ENTERPRISES’ MODULARIZATION DECOMPOSITION
Tao Wu, Wenjin Wu, ShuoJia Guo, and Ronqiu Chen 273

A MULTI-LAYER FRAMEWORK FOR ENTERPRISE APPLICATION DEVELOPMENT
Rodrigo Soares Manhães, Alexandre Gomes da Silva, Luiz Batista de Almeida, and Rogério Atem de Carvalho 285

REUSE SOFTWARE ARCHITECTURE THROUGH DYNAMIC COMPOSITION
Liang ZaoQing, Ying Shi, Cao Rongzeng, Jia XiangYang, and Zhang Tao 297

ON MANAGING THE ENTERPRISE INFORMATION SYSTEMS TRANSFORMATION
Charles Møller 307

CRITICAL SUCCESS FACTORS FOR ERP DEPLOYMENTS
Ildemaro Araujo 319

IMPROVING THE ACCURACY OF EXECUTION DATA OF ERP SYSTEMS: A CASE STUDY IN THE ZONGXIN TELECOM CORPORATION
F. Wu, H. Z. Li, L K Chu, D. Sculli, and Y. Wu 325

DEVELOPING A PRACTICAL FRAMEWORK FOR ERP PROJECT IMPLEMENTATION: A PROPOSED RESEARCH DESIGN
John J. Sullivan, Mela Wyeth, and Wade M. Chumney 341
RENOVATING INFORMATION TECHNOLOGY INFRASTRUCTURE TO EFFECTIVELY PROVIDE E-SERVICES
M. Nikolaidou, G. Laskaridis, A. Panayiotaki, and D. Anagnostopoulos 353

THE TIMELESS WAY OF BUILDING REA ENTERPRISE SYSTEMS
Guido L. Geerts 359

DEVELOPMENT OF ENTERPRISE INFORMATION SYSTEM USING BUSINESS COMPONENT-BASED APPROACH
Xueping Wang, Chenghu Zhang, Xinqin Gao, and Zongbin Li 361

RECONFIGURING BUSINESS PROCESS FOR ENTERPRISE INFORMATION SYSTEM BASED ON UML AND POLYCHROMATIC SETS
Xinqin Gao, Zongbin Li, Liping Zhao, and Yiyong Yao 371

EXTENDING THE ENTERPRISE: AN EVALUATION OF ERP AND EAI TECHNOLOGIES WITHIN A CASE STUDY ORGANISATION
Amir M. Sharif and Zahir Irani 383

MAPPINGS FROM OWL-S TO UML FOR SEMANTIC WEB SERVICES
Chong Wang, Keqing He, Yangfan He, and Wei Qian 397

A TOURISM RESOURCES INTEGRATION MECHANISM BASED ON XML AND WEB SERVICE
Tao Hu, Weicai Du, and Linfeng Dong 407

EXPLOITATION OF SEMANTIC WEB TECHNOLOGY IN ERP SYSTEMS
Amin Anjomshoaa, Shuaib Karim, Ferial Shayeganfar, and A Min Tjoa 417

AN EXTENDED TAM FOR SUBSCRIBERS’ ADOPTION OF MOBILE DATA SERVICES PROVIDED BY WIRELESS COMMUNICATION SYSTEMS
Jiayin Qi, Huaying Shu, and Jianqiu Zeng 429

SKELETON OF A SUPERVISOR FOR ENTERPRISE INFORMATION SYSTEMS
James D. Jones, Steve Reames, and George Pandzik 431

STUDY OF PERSONALIZED TRUST MODEL IN ENTERPRISE COMPUTING ENVIRONMENT
Liu Lu and Zhu Yanchun 443

AN INTEGRATED INFORMATION SYSTEM FOR FINANCIAL INVESTMENT
Xiaotian Zhu and Hong Wang 449

OSS AND ERP SYSTEMS: LIKENESS, DIFFERENCE AND REFERENCE
Jiayin Qi, Huaying Shu, and Kaili Kan 457
AN E-ACTIVITIES PLATFORM TO SUPPORT SMES
Athanasios Drigas, Leyteris Koukianakis, and Yannis Papagerasimou 467

AN INTEGRATED INFORMATION SYSTEM FOR ROUTE INSPECTION IN MANUFACTURING
Zhang Qing, Xu Guanghua, Wang Jing, and Liu Dan 479

A DATA COLLECTOR FOR ROUTE INSPECTION BASED ON PALM HANDHELD IN INDUSTRY
Wang Jing, Zhang Qing, Zhang Sicong, Liu Dan, and Xu Guanghua 489

STUDY ON INFORMATION INTEGRATION OF CONDITION MONITORING AND FAULT DIAGNOSIS SYSTEM IN MANUFACTURING
Liu Dan, Xu Guanghua, Liang Lin, and Luo Ailing 499

METADATA AND SEMANTICS: A CASE STUDY ON SEMANTIC SEARCHING IN WEB SYSTEM
Marut Buranarach and Michael B. Spring 507

A DSS BASED ON ENTROPY METHOD IN EIS IN CHINESE FINANCIAL SECTORS
Renqian Zhang and Hongxun Jiang 519

KNOWLEDGE PORTAL CONSTRUCTION AND RESOURCES INTEGRATION FOR HYDROPOWER CORPORATION
Li Wang, Lu Liu, and Wei-jia You 531

A METHOD FOR ENTERPRISE KNOWLEDGE MAP CONSTRUCTION BASED ON SOCIAL CLASSIFICATION
Lu Liu, Jing Li, and Chenggong Lv 541

CRITICAL SUCCESS FACTORS FOR ERP LIFE CYCLE IMPLEMENTATION
Chen Guang-hui, Li Chun-qing, and Sai Yun-xiu 553

THE STUDY OF INFORMATION INTEGRATION IN EIS BASED ON GRID
Renjing Liu and Jing Tian 563

CRITICAL SUCCESS FACTORS IN ERP UPGRADE PROJECTS
David L. Olson and Fan Zhao 569

THE INFLUENCE OF KNOWLEDGE TRANSFERS ON THE IMPLEMENTATION OF ENTERPRISE INFORMATION SYSTEM
Radhika Santhanam, Sharath Sasidharan, Dan Brass, and V. Sambamurthy 579

MOBILE CUSTOMER DEMAND DISCRIMINATION MODELING IN ENTERPRISE INFORMATION SYSTEMS
Yajing Si, Jiayin Qi, Huaying Shu, and Hua Ai 583
PREDICTING CHURN PROBABILITY OF FIXED-LINE SUBSCRIBER WITH LIMITED INFORMATION: A DATA MINING PARADIGM FOR ENTERPRISE COMPUTING
Yingying Zhang, Jiayin Qi, Huaying Shu, and Yuanquan Li 589

A CASE OF INDIVIDUALIZED INFORMATION MONITORING AND CUSTOMIZING SYSTEM FOR A NEWS GROUP
Guoping Xia, Jiangang Shen, and Feng Lu 591

A STUDY ON KNOWLEDGE MANAGEMENT IN ENTERPRISE INFORMATION SYSTEMS
Shuojia Guo, Chengen Wang, and Xiaochuan Luo 597

AN OPEN WEB SERVICE-BASED DSS
Si Yaqing, Chen Yonggang, and Zhang Shaofeng 609

THE THEORETICAL UNDERPINNINGS OF THE INFLUENCE OF CUSTOMER REWARD PROGRAMS ON CUSTOMER RETENTION: A FRAMEWORK AND PROPOSITIONS FOR FUTURE RESEARCH
Chunqing Li, Ping Zhao, and Junping Ma 615

THE NEW COGNITION OF SUPPLY CHAIN INTEGRATION: MANAGEMENT INTERFACE INTEGRATION
Tao Wu, Shuojia Guo, and Rong-qiu Chen 623

A HIDDEN MARKOV MODEL OF CUSTOMER RELATIONSHIP DYNAMICS IN RETAILING INDUSTRY
Gang Li, Chunqing Li, and WeiFeng Jia 633

EXTENDED ENTERPRISE INFORMATION SHARING IN A SUPPLY CHAIN ENVIRONMENT BASED ON SYMBIOSIS THEORY
Renjing Liu and Honghong He 635

STUDY ON PURCHASE PROBABILITY MODEL IN CRM SYSTEMS
Jiayin Qi, Huaying Shu, and Huaizu Li 643

A STUDY ON THE EIS MARKET OF CHINESE SMES
Lei Zhang, Zhanhong Xin, and Jiantong Cao 649

STUDY OF SYSTEMS METHODOLOGY IN ERP IMPLEMENTATION IN CHINA
Li Zhang, Shuojia Guo, Yanping Liu, and Jung Choi 655

ISSUES ON EVALUATING FREE/OPEN SOURCE ERP SYSTEMS
Rogerio Atem de Carvalho 667
MODELING ARCHITECTURE AND REFERENCE MODELS FOR THE ERP5 PROJECT
Renato de Campos, Rogério Atem de Carvalho, and Ailton Ferreira 677

OPEN SOURCE SOFTWARE MIGRATION IN INTEGRATED INFORMATION SYSTEMS IN PUBLIC SECTOR
Bruno Rossi, Barbara Russo, and Giancarlo Succi 683

ANALYSIS OF M-COMMERCE IN CHINA
Jian Tong Cao, Yi Xiang Tong, Zhi Ke Che, and Xiao Li 691

FREE/OPEN SOURCE ERP AND TRANSLATION PROCESSES: FOUR EMPIRICAL CASES
Elena Erbizzoni, Maurizio Teli, Gianmarco Campagnolo, Stefano De Paoli, and Vincenzo D'Andrea 695

THE IMPLICATION OF DISSIPATIVE STRUCTURE THEORY TO ENTERPRISE INFORMATION SYSTEM
Jinling Li, Renjing Liu, and Shanshan Sheng 705

FEASIBILITY IDENTIFICATION FOR NETWORKS WITH GENERALIZED PRECEDENCE RELATIONS (GPRS)
Wanan Cui, Bin Song, Xin Xie, Chaoyuan Yue, and Zheng Yin 711

POLYCHROMATIC SETS THEORY AND ITS APPLICATION IN ENTERPRISE INFORMATION SYSTEMS
Zongbin Li, Lida Xu, and Shanshan Zhao 721

THE MOVING COMPETITIVE ADVANTAGE OF ENTERPRISES: SITUATION ADVANTAGE
Jinling Li and Renjing Liu 729

STUDY ON THE GAME OF PAYMENT DISTRIBUTION MODE ABOUT AVES
Jinling Li, Renjing Liu, and Jiuhong Chen 735

SYSTEM DYNAMICS REPORT OF TELECOM INDUSTRY IN CHINA
Jiayin Qi, Hua (Jones) Ai, Huaying Shu, and Zhanhong Xin 739

AN EMPIRICAL RESEARCH ON SMC IN AN EXTENDED ENTERPRISE ENVIRONMENT
Jiayin Qi, Huaying Shu, and Huaiizu Li 749

MODELING THE PRODUCT DEVELOPMENT PROCESS AS A DYNAMIC SYSTEM WITH FEEDBACK
Ying-Kui Gu, Jung Y. Choi, and Hong-Zhong Huang 755
A DISASSEMBLY MODEL BASED ON POLychromatic Sets Theory FOR MANUFACTURING SYSTEMs
Lijun Yan, Lili Jiang, and Zongbin Li 765

MULTICRITERIA MODEL FOR SELECTION OF AUTOMATED SYSTEM TESTS
Márícia Sampaio, Paula Donegan, Ana Karoline Castro, Plácido Rogério Pinheiro, Adriano de Carvalho, and Arnaldo Dias Belchior 777
Preface

The idea for this conference came from a meeting of the IFIP (International Federation for Information Processing) Technical Committee for Information Systems (TC8) in Guimares, Portugal in June 2005. Our goal is to build an IFIP forum among the different Information Systems Communities of TC8 dealing with the increasing important area of Enterprise Information Systems. In this particular meeting the committee members intensively discussed the innovative and unique characteristics of Enterprise Information Systems as scientific sub-discipline.

Hence, in this meeting it was decided by the TC8 members that the IFIP TC8 First International Conference on Research and Practical Issues of Enterprise Information Systems (CONFENIS 2006) would be held in April 2006 in Vienna, Austria. Dr. Li Xu (USA) and Dr. A Min Tjoa (IFIP TC8) were assigned to propose a concept for this conference in order to establish an IFIP platform for EIS researchers and practitioners in the field to share experience, and discussing opportunities and challenges.

We are very pleased therefore to have this conference organised by the help of the Austrian Computer Society (OCG). OCG supports the idea of this conference due to the urgent need of research and dissemination of new techniques in this key area.

We received 180 papers from more than 30 countries for CONFENIS and the Program Committee eventually selected xx papers or extended abstracts, making an acceptance rate of xx% of submitted papers. Each paper was thoroughly reviewed by at least two qualified reviewers.

As an additional feature of CONFENIS we have invited distinguished scholars to present and discuss special aspects relevant for future applications and research. Dr. Prof Gottfried Vossen (University of Münster, Germany), the Director of the European Research Center for Information Systems will give a presentation on service-oriented architecture. Dr. Thomas Li, Director of IBM China Research Laboratory has a keynote speech on continual business transformation technology.

We would like to express our gratitude to all program committee members, workshop organisers and committee members and all the external referees who reviewed the papers very thoroughly and in a timely manner. Due to the high number of submissions and the quality of the submitted papers, the reviewing, and discussion process was an extraordinarily challenging task. We are therefore deeply grateful to many individual reviewers who worked with us so diligently (see list of referees). Without their time and efforts, CONFENIS 2006 and the proceedings would never have come to be.

We would specially like to thank the Chair of IFIP TC8, Professor J. Dewald Roode (South Africa), Vice-Chair Professor David Avison (France), Secretary Professor
Isabel Ramos (Portugal), and former Secretary Professor Jan Pries-Heje (Denmark), for their encouragement and guidance throughout this endeavor. We are very grateful to have the sponsorship of the Vienna University of Technology.

Special thanks are given to Dr. Sohail S. Chaudhry (USA), for his time and efforts in editing the CONFENIS proceeding, as the Managing Editor.

Special thanks must also be given to Dr. Tho Manh Nguyen (Austria) for all his enthusiastic support in the organizing tasks of CONFENIS 2006.

We would also like to thank all the authors who submitted their papers to CONFENIS 2006.

Many thanks go to Ms. Christine Tronigger for providing a great deal of supporting administering the registrations.

Finally we hope that the conference will have a real benefit for innovative approaches, which have to consider the various issues of Enterprise Information Systems, and furthermore will build a platform for further in-depth discussions between researchers in the different EIS-areas.

Professors A Min Tjoa, Prof. Lida Xu (Conference Chairs)
Conference Chairs

A Min Tjoa (Austria) and Lida Xu (USA)

Program Chairs

A Min Tjoa (Austria), Sohail S. Chaudhry (USA), and Kaoliang Wang (China)

International Program Committee

Dimosthenis Anagnostopoulos, Harokopio University of Athens, Greece
Alexander Andreichicov, Volgograd State Technical University, Russia
Olga Andreichicova, Moscow State University of Printing Art, Russia
David Avison, ESSEC Business School, France
Jean Bezivin, University of Nantes, France
Valerie Botta-Genoulaz, National Institute of Applied Science, France
Rongzeng Cao, IBM China Research Laboratory, USA
Jorge Cardoso, University of Madeira, Portugal
Rogério Atem de Carvalho, Federal Center for Technology Education of Campos (CEFET Campos), Brazil
Sohail Chaudhry, Villanova University, USA
David Chen, University Bordeaux 1, France
Jian Chen, Tsinghua University, China
Philip Chen, University of Texas at San Antonio, USA
L. K. Chu, University of Hong Kong, China
Michael A. Cusumano, Sloan School, MIT, USA
Wei Ding, IBM China Research Laboratory, USA
Dov Dori, Technion, Israel Institute of Technology, Israel and Massachusetts Institute of Technology, USA
Yushun Fan, Tsinghua University, China
Maria Pia Fanti, Polytechnic of Bari, Italy

Guido Geerts, University of Delaware, USA

Bee Hua Goh, National University of Singapore, Singapore

Jon Atle Gulla, Norwegian University of Science and Technology, Norway

Hongzhong Huang, Northwestern University, USA and University of Electronic Science and Technology, China

Zahir Irani, Brunel University, UK

M. Jansen-Vullers, Eindhoven University of Technology, Netherlands

Dimitris Karagiannis, University of Vienna, Austria

Okyay Kaynak, Bogazici University, Turkey and UNESCO, Paris

Lenny Koh, University of Sheffield, UK

Andrew Kusiak, University of Iowa, USA

Juhnyoung Lee, IBM T.J. Watson Research Center, USA

Huaizu Li, University of Alberta, Canada and Xian Jiaotong University, China

Jinlin Li, Beijing Institute of Technology, China

Ling Li, Old Dominion University, USA

Yuan Li, Xian Jiaotong University, China

Zong Bin Li, State Key Laboratory of Manufacturing Systems Engineering, China

Jianxun Liu, Hunan University of Science and Technology, China

Yanping Liu, Beijing Jiaotong University, China

Claudia Loebbecke, University of Cologne, Germany

Vladimir Marik, Czech Technical University in Prague, Czech Republic

Kai Mertins, Fraunhofer Institute for Production Systems and Design Technology, Germany

Mara Nikolaidou, Harokopio University of Athens, Greece

Hubert Oesterle, University of St. Gallen, Switzerland

David L. Olson, University of Nebraska at Lincoln, USA

Daniel O'Leary, University of Southern California, USA

Shan L. Pan, National University of Singapore, Singapore
Yue Pan, IBM China Research Laboratory, USA
Maria Raffai, Szechenyi Istvan University, Hungary
Ram Ramesh, State University of New York at Buffalo, USA
Isabel Ramos, University of Minho, Portugal
Rami Rifaieh, University of California at San Diego, USA
Dewald Roode, Inbekon Management Institute, South Africa
Michael Rosemann, Queensland University of Technology, Australia
Yuriko Sawatani, Tokyo Research Laboratory, IBM Research, Japan
Walter Schwaiger, Vienna University of Technology, Austria
Huaying Shu, Beijing University of Posts and Telecommunications, Beijing, China
Pnina Soffer, University of Haifa, Israel
Hongjian Sui, Graduate University, Chinese Academy of Sciences, China
Alfred Taudes, Vienna University for Economics and Business Administration, Austria
A. Tjoa, Vienna University of Technology, Austria
Marten J. van Sinderen, University of Twente, Netherlands
Gottfried Vossen, University of Muenster, Germany
Chengen Wang, Key Laboratory of Process Industry Automation, Northeastern University, China
Kanliang Wang, Xian Jiaotong University, China
Tao Wang, Beijing Institute of Technology, China
Yingluo Wang, Chinese Academy of Engineering, China
Helen Xie, Integrated Manufacturing Technologies Institute, National Research Council, Canada
Li Xu, Old Dominion University, USA
Y. Yusuf, University of Hull, UK
Jinlong Zhang, Huazhong University of Science and Technology, China
Li Zhang, Beijing Jiaotong University, China
Zhe Zhang, Shanghai Jiaotong University, China
Zongyang Zhang, Chong Qing University, China
Mengchu Zhou, New Jersey Institute of Technology, USA
Zhichang Zhu, University of Hull, UK

Referee List Page

Valerie Botta-Genoulaz, National Institute of Applied Science, France
Rongzeng Cao, IBM China Research Laboratory, China
Jorge Cardoso, University of Madeira, Portugal
Rogério Atem de Carvalho, Federal Center for Technology Education of Campos
(CEFET Campos), Brazil
Sohail Chaudhry, Villanova University, USA
David Chen, University Bordeaux 1, France
L. K. Chu, University of Hong Kong, China
Shalom Cohen, Technion, Israel Institute of Technology, Israel
Wei Ding, IBM China Research Laboratory, China
Dov Dori, Technion, Israel Institute of Technology, Israel and Massachusetts
Institute of Technology, USA
Yushun Fan, Tsinghua University, China
Maria Pia Fanti, Polytechnic of Bari, Italy
Bee Hua Goh, National University of Singapore, Singapore
Jon Atle Gulla, Norwegian University of Science and Technology, Norway
Hongzhong Huang, Northwestern University, USA
M. Jansen-Vullers, Eindhoven University of Technology, Netherlands
Lenny Koh, University of Sheffield, UK
Juhnyoung Lee, IBM T.J. Watson Research Center, USA
Huaizu Li, University of Alberta, Canada and Xian Jiaotong University, China
Ling Li, Old Dominion University, USA
Zong Bin Li, State Key Laboratory of Manufacturing Systems Engineering, China
Jianxun Liu, Hunan University of Science and Technology, China
Mara Nikolaidou, Harokopio University of Athens, Greece
David L. Olson, University of Nebraska at Lincoln, USA
Daniel O'Leary, University of Southern California, USA
Shan L. Pan, National University of Singapore, Singapore
Maria Raffai, Szechenyi Istvan University, Hungary
Isabel Ramos, University of Minho, Portugal
Rami Rifaich, University of California at San Diego, USA
Michael Rosemann, Queensland University of Technology, Australia
Yuriko Sawatani, IBM Tokyo Research Laboratory, Japan
Avi Soffer, Technion, Israel Institute of Technology, Israel
Pnina Soffer, University of Haifa, Israel
Eran Toch, Technion, Israel Institute of Technology, Israel
Zhe Zhang, Shanghai Jiaotong University, China
Zhichang Zhu, University of Hull, UK
Keynote Speaker: Dr. Dewald Roode, Chair, IFIP TC8

Dewald Roode obtained a masters degree in theoretical physics and a master's degree in mathematics at the University of Potchefstroom in South Africa. He completed his education by obtaining a PhD at the University of Leiden in The Netherlands. He took early retirement at the end of 2001 from the University of Pretoria, where he was Director of the School of Information Technology, but is still an extraordinary professor in the Department of Informatics. Since 2003 he is also a visiting professor in the Department of Information Systems at the University of Cape Town, and as from 2004, an honorary professor in the Faculty of Business Informatics at the Cape Peninsula University of Technology. At these institutions he continues to work with and supervise PhD students, and conducts his research work mainly in co-operation with his students. He serves on the Editorial Boards of a number of Journals in the field of Information Systems, is chairman of Technical Committee 8 on Information Systems of IFIP, a member of the Steering Committee of the World Information Technology Forum (WITFOR) and was Programme Chair of WITFOR 2005, which was held in Botswana in August 2005.
Keynote Speaker: Dr. Thomas Li, Director of IBM China Research Laboratory

Dr. Thomas Li is the Director of IBM China Research Laboratory. He received his PhD degree in Management Information System from the University of Texas, Austin, USA, in 1991. In addition to his many years of service with IT industry such as IBM, he is very experienced in managing startup companies, manufacturing facilities, as well as consulting practices. He is also very active in both research and higher education. He is an Adjunct Professor at top Chinese research universities such as prestigious Peking University and Tsinghua University where he offers courses "On Demand Transformation Technology". Dr. Li's technical expertise and innovative thinking has led to thirty-nine patents in object technology, digital communication, visualization tools, and database systems. In addition to publications in refereed journals, proceedings, and technical reports, he has been one of the key contributors in delivering eight commercial software products, three hardware systems, and a number of architectural designs and technical specifications.

Speech Title: Continual Business Transformation Technology

The IBM China Research Laboratory (CRL) was established in September 1995 and is one of the eight worldwide IBM Research laboratories. Located in Beijing, CRL has been growing steadily and currently employs over 150 technical staff members. The majority research staffs there hold PhD or master's degrees, and join IBM from leading research universities.

IBM Research's mission is vital to IBM's future success and the IBM China Research Laboratory plays a large role in meeting that goal. CRL continually strives to create world-class information technologies and the underlying science that propels the world's advances. CRL carries out joint research projects with universities and research institutes.
Keynote Speaker: Prof. Dr. Gottfried Vossen, Director of European Research Center for Information Systems

Gottfried Vossen is a Professor of Computer Science in the Department of Information Systems at the University of Muenster in Germany. He received his master's and Ph.D. degrees as well as the German habilitation in 1981, 1986, and 1990, respectively, all from the Technical University of Aachen in Germany. He has held visiting positions at the University of California at San Diego, at several German universities including the Hasso-Plattner-Institute for Software Systems Engineering in Potsdam near Berlin, at Karlstad University in Sweden and at the University of Waikato in Hamilton, New Zealand. In 2004 he became the European Editor-in-Chief of Elsevier's Information Systems An International Journal, and a Director of the European Research Center for Information Systems (ERCIS) in Muenster. He currently also serves as the Vice Dean of the Business School at the University of Muenster. His research interests include conceptual as well as application-oriented problems concerning databases, information systems, electronic learning, and the Web. Dr. Vossen has been a member in numerous program committees of international conferences and workshops. He is an author or co-author of more than 120 publications, and an author, co-author, or co-editor of 20 books on databases, business process modeling, the Web, e-commerce, and computer architecture.

Speech Title: Have Service-Oriented Architectures Taken a Wrong Turn Already?

Information Systems: Information systems are the software and hardware systems that support data-intensive applications. Information Systems publishes articles concerning the design and implementation of languages, data models, algorithms, software and hardware for information systems. Subject areas include data management issues as presented in the principal international database conferences as well as data-related issues from the fields of data mining, information retrieval, natural language processing, internet data management, visual and audio information systems, scientific computing, and organizational behavior. The Editors-in-Chief are Dennis Shasha, New York, and Gottfried Vossen, Muenster.

ERCIS: The ERCIS – European Research Center for Information Systems – is a network of scientists that conduct cooperative research in the field of integrated information systems development and organizational design. For the first time, core competencies in the discipline of information systems are interrelated with issues in the field of computer science, business administration and specific legal issues within an institutional framework. Thus, a holistic view of information system development and organizational design issues can be ensured. Due to its outstanding reputation in both research and teaching within the field of information systems and
business administration, the University of Muenster has been selected by the federal state of North Rhine-Westphalia to establish the European Research Center for Information Systems. Its objective is to undertake joint research projects that span different disciplines and countries, thus fostering research at a level that cannot be achieved by individual go-it-alone projects. The exchange of researchers, such as PhD students, lecturers or (associate) professors, is encouraged and cooperative masters and doctoral programs are also part of the overall objective. http://www.ercis.org
Have Service-Oriented Architectures Taken a Wrong Turn Already?

Gottfried Vossen
European Research Center for Information Systems
University of Muenster
Leonardo-Campus 3, 48149 Muenster, Germany
vossen@uni-muenster.de
WWW home page: http://dbms.uni-muenster.de

Abstract. Service-oriented architectures (SOAs) are the latest industry answer to the quest for functioning software and manageable application landscapes, a quest that has been around for more than 30 years. Although basically a step in the right direction, the fact that SOAs typically proceed "bottom-up," by abstracting step-wise from the basic bit level to higher levels of service coordination and composition, appears questionable. It is argued here that a combined bottom-up/top-down strategy is needed for properly developing SOAs, in which business goals and processes are taken into account right from the beginning. Otherwise, SOAs would have taken a wrong path already.

1 Introduction

Service-oriented architectures (SOAs) are the latest industry answer to the quest for functioning software and manageable application landscapes, a quest and challenge that has been around for more than 30 years. Previous answers have included remote procedure call (RPC), object orientation, the Common Request Broker Architecture (CORBA), and remote method invocation (RMI). A general agreement on what a SOA actually is has not yet been reached, but several features are commonly attributed to a SOA, among them distribution, loose coupling, a directory service, sometime even process-orientation [2]. When it comes to realization, SOAs commonly rely on Web services [1, 4, 8], and here is where the dilemma begins: Although basically a step in the right direction, the fact that SOAs built on Web services proceed strictly "bottom-up," by abstracting step-wise from the basic bit level to higher levels of service coordination and composition, appears questionable. Indeed, Web services typically follow the standards stack shown in Figure 1.
In this stack, a new layer of abstraction is added whenever it is detected that the existing ones are not sufficient anymore. Single messages of the network need SOAP encoding; services should have a description that is written in WSDL; service descriptions need to be published by employing UDDI so that they can indeed be discovered; single services are often not enough, so that several services need to be composed though languages like WSFL, BPEL4WS or, more recently, OWL-S; finally, several services in action need some form of coordination or transactional guarantees. In each case, there is one or more "standard" readily available for describing the intended feature, but it is not clear that this standard will still be around in a year or two, since it may happen that it is either "overruled" by a new standard; furthermore, new features may be identified, most likely again higher in abstraction, that require something else.

What we conclude from this brief consideration is that this is not a good approach. In particular, there is no end of this continued abstraction-building in sight, while at the same time the stack as it now stands is not even mature enough for wide usage (just think of the few UDDI repositories that are actually available today, in spite of the fact that the recognition that adding a "public" directory service to an otherwise RPC-style communication is very desirable is several years old by now). Moreover, studies such as [5] have shown that it is difficult to come up with
conceptual underpinnings or theoretical studies of Web service fundamentals as long as industry seems to be stuck at the details of message exchanges.

It is argued in the remainder of this short paper that a combined bottom-up/top-down strategy, in which business goals and processes are taken into account right from the beginning, is more reasonable for developing SOAs than a pure bottom-up approach. Otherwise, SOAs would have taken a wrong path already and would be doomed to end in an IT nirvana, just like other developments before. We begin by looking at services in general (Section 2), then take a top-down view on SOAs (Section 3) and derive at a conclusion in Section 4.

2 The Service Idea is not new

Service orientation [2, 6, and 7] is a fundamental paradigm of computer science based on the idea that complex functionality can typically be decomposed into a collection of more elementary ones, as indicated in Figure 2.

![Fig. 2: Service-orientation fundamental view](image)

Under this perception, a single service can always be seen as some functionality with specific properties. In a top-down view, the decomposition is important, i.e., the idea that a service as seen from above is typically composed of more fundamental functionality and hence, can be broken down into components. In a bottom-up view, lower-level services are considered to join forces in order to provide more comprehensive functionality to the next higher level.

Web services are perfectly in line with the view just described, which can be found in a number of typical computer science scenarios (e.g., computer hardware, application architectures, computer networks, to name just a few). The important addition that Web services bring along is the fact that they are now linked to a central (and ultimately public) repository, i.e., a "lookup" facility. The repository is a place where a service provider can publish a description of the service(s) he or she is
willing or able to provide, and which service users or clients can query and search for appropriate services. Moreover, providers and clients are no longer tightly, but loosely coupled, since each Web service, which essentially is an individual software component, has a uniform resource identifier (URI) through which it can be placed and located anywhere in the Web.

The provider of a service “builds” the service and simultaneously creates a specification that can be published in a service repository. To this end, established standards (cf. Figure 1) include WSDL, the Web Service Description Language, which provides a format for service specifications. WSDL documents are typically placed in a UDDI (Universal Description, Discovery, and Integration) repository, which clients can search using the respective query language. A search will often look for one or more services in the repository, and, once the search has been successful, the client can directly talk to the provider for a service binding followed by an execution of the chosen service(s). Thereafter, service request and reply calls are exchanged between provider and client in terms of the SOAP (Simple Object Access Protocol) format. This general “setup” is shown in Figure 3; for details, see [1, 6, and 7].

Fig. 3: Basic Web service setup

3 A Top-Down Counter Vision

A typical service-oriented architecture will have to answer the question of which services are available (within, say, a given enterprise) already, which ones need to be newly implemented, and which ones need to be obtained from a suitable provider. To this end, it is reasonable to assume that the enterprise under consideration is aware of its business processes, describing its core competences and its core operations. Thus,
from a top-down development perspective, it makes sense to first come up with one or more process models that together clarify and fix the goals and procedures a client (or a collection of clients in an enterprise) wants to support by appropriately chosen services. Such models will typically be tied to a particular application domain, such as commerce, banking, the travel industry, etc. and will refer to organizational structures and also incorporate objects as well as resources occurring in processes. The next step would be to determine which portions of the overall "process map" can be grouped together in such a way that they can jointly be supported by a service. This step could involve negotiations with potential service providers on the exact amount of service or on the price [3]. The result will then be a SOA which fixes the composition and integration details at a conceptual level and beyond service and departmental borders. In essence, this approach is similar to what has led to area-specific reference models which capture the core processes of an entire branch, and which can be customized to fit the specifics of a particular enterprise. These considerations are summarized in Figure 4.

![Fig. 4. Top-down approach to service-orientation](image-url)
systems, abstracted into enterprise components at the lower end, a portal presentation layer atop a business process choreography at the higher end, and a service layer in the middle, as indicated in Figure 5.

![Layered organization for a SOA](image)

Fig. 5: Layered organization for a SOA

4 Towards SOAs That Can Work

We believe that SOAs can fly if the business process aspect that is always present is appropriately taken into account. From all that has been learned about business process modeling and reengineering as well as about workflow management and process automation, it has become clear over the last 15 years of research that process views are important, and that a process view of an enterprise is the way of capturing what the enterprise is or should be doing. Thus, it is by no means clear why this should be given up just to make room for a collection of standards that is emerging bottom-up.

On the other hand, it is also clear that a SOA will hardly ever be introduced into an environment where there has been no IT before. In other words, it makes perfectly sense to assume the presence and availability of a number of operational systems that will prevail, and that will still be around even after the SOA has been introduced. So the most reasonable way at the moment seems to be a combination of Figures 2 and 5, which is what we have tried to capture in Figure 6: Enterprise components are masked into individual services, which can be composed in order to yield more comprehensive functionality. The latter, in turn, can be referred to by business process choreography, which is the result of business process modeling, optimization, and reengineering.

True success stories of service-oriented architectures are yet to be seen; nevertheless they represent a promising paradigm for developing future enterprise integration architectures, and it is not too late for driving them in the right direction!
Fig. 6: Extended layered SOA organization

References