Ecological Studies, Vol. 196
Analysis and Synthesis

Edited by

M.M. Caldwell, Washington, USA
G. Heldmaier, Marburg, Germany
R.B. Jackson, Durham, USA
O.L. Lange, Würzburg, Germany
H.A. Mooney, Stanford, USA
E.-D. Schulze, Jena, Germany
U. Sommer, Kiel, Germany
Volumes published since 2001 are listed at the end of this book.
Western North American
Juniperus Communities

A Dynamic Vegetation Type

Edited by

O.W. Van Auken
The University of Texas, San Antonio, TX, USA
Preface

Juniperus woodlands and savannas in western North America are both extensive and dynamic. They are influenced and perhaps controlled by fire and anthropogenic factors, specifically herbivory. Their recent expansion into many grasslands has been carefully documented (Norris et al. 2001). Some of these Juniperus communities have shown dramatic changes in response to very recent global-change-type droughts (Breshears et al. 2005). However, the future community response to these global-change-type conditions is unknown. These Juniperus communities seem to be very sensitive and possibly pivotal in understanding global-change-type phenomena, including droughts.

This volume has grown out of a symposium held in San Antonio, Texas, in April 2004. The symposium was associated with the annual meeting of the Southwestern Association of Naturalists. Much of the material included has been published in the open literature and in reports by state and national agencies, although it has not appeared in one place in one document. A synthesis of past, current, and proposed future research on Juniperus woodland and savanna ecosystems is presented.

It has been difficult to develop a comprehensive understanding of Juniperus communities because they are quite diverse. They occur on shallow limestone soils in the eastern United States, on steep slopes in the Great Plains, and at low to mid-altitudes in the western United States, Texas, and Mexico (McPherson 1997). They occur in areas with very low rainfall bordering arid grasslands and deserts, as well as early-successional woodlands embedded in deciduous forest communities and most communities in between. Juniperus communities appear to occur along an elevation gradient as well as a spatial rainfall gradient in western North America. The Juniperus communities change dramatically along these gradients. On one end, a few scattered Juniperus plants are embedded in a grassland matrix. On the other end, grassland is found as small patches that are embedded in a Juniperus woodland matrix. If succession is involved in determining community structure along this grassland–forest continuum, the Juniperus woodland patches may end up within a forest matrix, or they may be replaced by forest species from within or below the canopy. However, neither the mechanism nor the dynamics of the process is well understood.
Although *Juniperus* woodlands are intermediate successional communities in the development of deciduous forests in relatively mesic areas, the successional sequence in more arid regions is unclear (Howard and Lee 2002). In addition, the dynamics of woody plant replacement in many of these *Juniperus* woodlands and savannas has only been partially investigated (McKinley and Van Auken 2005). The future structure of these communities is unknown, especially as it relates to global change.

There are four general sections in this volume. The first section concerns the ecology of these western North American *Juniperus* communities and includes six chapters. Chapter 1 covers the distribution of the various *Juniperus* species and where the different communities are found. It also covers Pleistocene community distributions and long-term changes in community locations. Chapter 2 is concerned with the composition and structure of western North American *Juniperus* communities and the factors that seem to control the structure, composition, and location of these communities. Chapter 3 compares the various landforms where communities are found. Chapter 4 examines changes in the environment between canopy and intercanopy positions and how those abiotic changes alter the community structure. The herbaceous understory of various *Juniperus* communities is examined in Chapter 5, and the importance of mycorrhizae to *Juniperus* seedlings is examined in Chapter 6.

Community changes associated with *Juniperus* encroachment are included in the second section, and there are five chapters. The ecological importance of encroachment of *Juniperus* plants into grasslands is examined in Chapters 7 and 8; alterations in ecosystem processes are examined in Chapter 9. Modifications in water budgets and the water cycle are examined in Chapters 10 and 11. The third section concerns human impact on *Juniperus* ecosystems and includes four chapters: Chapters 12 through 15 cover effects of herbivory, fire, physical treatments, and combinations thereof on various *Juniperus* communities and their potential degradation, restoration, and recovery. The fourth and last section contains one chapter, Chapter 16, which covers future research needs and possible directions.

Finally, this volume represents a significant effort and represents many years of effort by the various authors. This specific project was started more than 3 years ago. These efforts came from all my co-authors, friends, and others. I appreciate all their help and patience.

San Antonio
November 2006

O.W. Van Auken
References

Contents

Section 1: Ecology

1. **Western North American Juniperus Communities: Patterns and Causes of Distribution and Abundance** ... 3
 O.W. Van Auken and Fred Smeins
 Introduction.. 3
 Late Pleistocene *Juniperus* Distribution.. 6
 Recent Changes in *Juniperus* Distribution and Abundance 8
 Gradients .. 11
 Summary .. 12
 References.. 13

2. **Structure and Composition of Juniperus Communities and Factors That Control Them** .. 19
 O.W. Van Auken and D.C. McKinley
 Introduction.. 19
 Woodland Community Structure... 20
 Gaps or Patches .. 22
 Embedded Deciduous Forest Structure ... 26
 Riparian Forest Structure ... 28
 Succession in *Juniperus* Woodlands... 29
 Seedling Emergence and Survival ... 33
 Factors Important for Seedling Growth ... 37
 Summary .. 41
 References.. 43
3 Distribution of Juniperus Woodlands in Central Texas in Relation to General Abiotic Site Type .. 48
 David D. Diamond and C. Diane True
 Introduction .. 48
 Methods ... 49
 Results .. 50
 Discussion ... 54
 Summary .. 56
 References .. 56

4 Structure and Function of Woodland Mosaics: Consequences of Patch-Scale Heterogeneity and Connectivity Along the Grassland–Forest Continuum .. 58
 David D. Breshears
 Introduction .. 58
 The Mesita del Buey Study Site .. 60
 Patterns and Implications of Patch-Scale Heterogeneity and Connectivity .. 65
 General Hypotheses for Gradients ... 86
 Summary .. 88
 References .. 89

5 Comparison of the Understory Vegetation of Juniperus Woodlands .. 93
 E.R. Wayne and O.W. Van Auken
 Introduction .. 93
 Methods ... 97
 Results .. 100
 Discussion ... 103
 Summary .. 106
 References .. 107

6 The Potential Role of Mycorrhizae in the Growth and Establishment of Juniperus Seedlings 111
 J.K. Bush
 Introduction .. 111
 Materials and Methods .. 113
 Results ... 115
 Discussion ... 123
 Summary .. 125
 References .. 126
Contents

Section 2: Encroachment: Community Changes

7 Ecological Impacts of Ashe Juniper on Subtropical Savanna Parklands and Woodlands .. 133
Paul W. Barnes, Suh-Yuen Liang, Kirk E. Jessup, Patricia A. Ramirez, Lana E. D’Souza, Kristine G. Elliott, and Patricia L. Phillips
Introduction .. 133
Study Site ... 135
Contemporary Vegetation Patterns ... 136
Historical Changes in Woody Patches .. 141
Effects of Live Oaks and Junipers on Soils ... 144
Live Oak–Juniper Interactions ... 147
Summary .. 149
References.. 152

8 Ecological Consequences of the Replacement of Native Grassland by Juniperus virginiana and Other Woody Plants 156
Introduction .. 156
Methods ... 158
Patterns and Controls of Photosynthetic Activity 161
How Will Global Change Affect C₄ Grasslands Versus Juniper Forest? .. 165
Conclusions .. 166
Summary .. 167
References.. 167

9 Altered Ecosystem Processes as a Consequence of Juniperus virginiana L. Encroachment into North American Tallgrass Prairie .. 170
Duncan C. McKinley, Mark D. Norris, John M. Blair, and Loretta C. Johnson
Introduction .. 170
Site Description ... 171
Potential Drivers of Altered Ecosystem Processes 172
Altered Ecosystem Processes ... 176
Altered Plant Resource Use ... 181
Conclusions .. 182
Summary .. 184
References.. 184
Section 3: Management

12 The Combined Influence of Grazing, Fire, and Herbaceous Productivity on Tree–Grass Interactions

Samuel D. Fuhlendorf, Steven A. Archer, Fred E. Smeins, David M. Engle, and Charles A. Taylor, Jr.

Introduction ... 219
Study Sites ... 221
Model Overview .. 221
Fire and Woody Plant Abundance 221
Grazing and Fire .. 223
Parameterization .. 224
Results .. 226
Discussion .. 232
Conclusions .. 234
Summary ... 235
References ... 236

13 Ecological Consequences of Using Prescribed Fire and Herbivory to Manage *Juniperus* Encroachment

C.A. Taylor, Jr.

Introduction ... 239
Original Vegetation and Climate 239
Impact of Euro-American Settlement of the Edwards Plateau 240

10 *Juniper Tree Impacts on Local Water Budgets*

M. Keith Owens

Introduction ... 188
Physical Impact .. 189
Physiological Impacts .. 191
Importance of Stemflow ... 194
Summary ... 199
References ... 200

11 *Juniperus* Woodlands and the Water Cycle on Karst Rangelands

Bradford P. Wilcox

Introduction ... 202
Setting .. 203
Influence of Ashe Juniper on Water 204
Analysis of Streamflow .. 210
Modeling Studies .. 211
Role of Large Events .. 212
Summary ... 212
References ... 213

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Juniper Tree Impacts on Local Water Budgets</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>M. Keith Owens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Physical Impact</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Physiological Impacts</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Importance of Stemflow</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>200</td>
</tr>
<tr>
<td>11</td>
<td>Juniperus Woodlands and the Water Cycle on Karst Rangelands</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Bradford P. Wilcox</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Setting</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Influence of Ashe Juniper on Water</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Analysis of Streamflow</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Modeling Studies</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Role of Large Events</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>213</td>
</tr>
<tr>
<td>12</td>
<td>The Combined Influence of Grazing, Fire, and Herbaceous Productivity</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>on Tree–Grass Interactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samuel D. Fuhlendorf, Steven A. Archer, Fred E. Smeins,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>David M. Engle, and Charles A. Taylor, Jr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Study Sites</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Model Overview</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Fire and Woody Plant Abundance</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Grazing and Fire</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Parameterization</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Results</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>236</td>
</tr>
<tr>
<td>13</td>
<td>Ecological Consequences of Using Prescribed Fire and Herbivory</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>to Manage Juniperus Encroachment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.A. Taylor, Jr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>Original Vegetation and Climate</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>Impact of Euro-American Settlement of the Edwards Plateau</td>
<td>240</td>
</tr>
</tbody>
</table>
Dense Stands of Juniper: Area Problem .. 241
Ecological Influence of Goats ... 242
Targeting Juniper Seedlings with Goats: A Case Study......................... 243
Improving Goats for Juniper Management: Super
Juniper-Eating Goat Project ... 247
Prescribed Fire and Its Effects on Juniper and Herbaceous
Vegetation: A Case Study ... 247
Management Implications .. 248
Summary .. 250
References .. 250

14 From the Dust Bowl to the Green Glacier: Human Activity
and Environmental Change in Great Plains Grasslands 253
David M. Engle, Bryan R. Coppedge, and Samuel D. Fuhlendorf
Introduction .. 253
Environmental History and Development of Great Plains
Grassland Fauna: The Great Change Events ... 254
Glaciers and Aboriginal Activity ... 254
Drought, Sodbreaking by Europeans, and the Dust Bowl 255
Eastern Redcedar: The Green Glacier ... 256
Eastern Redcedar Invasion and Grassland Avifauna 259
Summary .. 265
References .. 266

15 Reversing the Woodland Steady State: Vegetation Responses
During Restoration of Juniperus-Dominated Grasslands
with Chaining and Fire ... 272
R. James Ansley and H.T. Wiedemann
Introduction .. 272
Summary .. 287
References .. 287

Section 4: The Future

16 Conclusions: Present Understanding and Future Research
in Juniperus Communities .. 293
O.W. Van Auken

Index ... 297
Contributors

Ansley, R. James
Texas Agricultural Experiment Station, Vernon, P.O. 1658, Vernon, TX 78801-6205, USA,
e-mail: r-ansley@tamu.edu.

Archer, Steven A.
School of Renewable Natural Resources, 325 Biological Sciences East, Arizona State University, Tucson, AZ 85721-0043, USA,
e-mail: sarcher@Ag.arizona.edu.

Barnes, Paul W.
Department of Biological Sciences, Loyola University New Orleans,
6363 St. Charles Ave., Campus Box 169, New Orleans, LA 70118, USA,
e-mail: pwbarnes@loyno.edu.

Blair, John M.
Division of Biology, Kansas State University, Manhattan,
KA 66506, USA,
e-mail: jblair@ksu.edu.

Breshears, David D.
School of Natural Resources and Institute for the Study of Planet Earth, The University of Arizona, Tucson AZ 85721-0043, USA,
e-mail: daveb@ag.arizona.edu.
Briggs, J.M.
School of Life Science, Arizona State University, Tempe, AZ 85287, USA, John.Briggs@asu.edu.

Bush, J.K.
Department of Earth and Environmental Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA, e-mail: janis.bush@utsa.edu.

Coppedge, Bryan R.
Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078-6028, USA.

Diamond, David D.
Missouri Resource Assessment Partnership, 4200 New Haven Road, Columbia, MO 65211, USA, e-mail:ddiamond@usgs.gov.

D’Souza, Lana E.
Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA, e-mail: lana.dsouza@weyerhaeuser.com.

Elliott, Kristine G.
Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.

Engle, David M.
Department of Natural Resource Ecology and Management, 339 Science II, Iowa State University, Ames, IA 50011-3221, USA, e-mail: dme@iastate.edu.

Fuhlendorf, Samuel D.
Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078-6028, USA, e-mail: fuhlend@mail.pss.okstate.edu.

Hoch, G.A.
Department of Biology, Concordia College, Moorhead, MN 56562, USA.
J.C. Heisler
Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA.

Jessup, Kirk E.
Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.

Johnson, Loretta C.
Division of Biology, Ackert Hall Room 232, Kansas State University, Manhattan, KS 66506, USA,
e-mail: johnson@ksu.edu.

Knapp, Alan K.
Department of Biology, Colorado State University, Fort Collins, CO 80523, USA,
e-mail: aknapp@lamar.colostate.edu.

Lett, M.S.
Division of Biology, Ackert Hall Room 232, Kansas State University, Manhattan, KA 66506, USA.

Liang, Suh-Yuen
Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.

McCarron, J.K.
Division of Biology, Ackert Hall Room 232, Kansas State University, Manhattan, KS 66506, USA.

McKinley, Duncan C.
Division of Biology, Ackert Hall Room 232, Kansas State University, Manhattan, KA 66506, USA,
e-mail: duncanmc40@hotmail.com.

Norris, Mark D.
Department of Environmental Science and Biology,
Suny College at Brockport,
350 New Campus Drive,
Brockport, NY 14420, USA.
Owens, M. Keith
Texas Agricultural Experiment Station, 1619 Garner Field Road, Uvalde, TX 78801-6205, USA,
e-mail: m-owens@tamu.edu.

Phillips, Patricia L.
Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.

Ramirez, Patricia A.
Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.

Silletti, A.M.
Southern Research Station, U.S. Department of Agriculture, Forest Service, Department of Forest Resources, Clemson University, Clemson, SC 29634, USA.

Smeins, Fred E.
Department of Rangeland Ecology and Management, 225 Animal Industries Building, 2126 TAMU, Texas A&M University, College Station, TX 77843-2126, USA,
e-mail: f-smeins@tamu.edu.

Smith, M.D.
Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.

Taylor, Charles A.
Texas A&M University Agricultural Research Station, P.O. Box 918, Sonora, TX 76950, USA,
e-mail: angora@sonoratx.net.

True, C. Diane
Missouri Resource Assessment Partnership, 4200 New Haven Road, Columbia, MO 65211, USA.
Contributors

Van Auken, O.W.
Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249-0663, USA,
e-mail: oscar.vanauken@utsa.edu.

Wayne, Rob
Department of Earth and Environmental Science, The University of Texas at San Antonio, San Antonio, TX 78249-0663, USA,
e-mail: ewayne@grandecom.net.

Wiedemann, Harold T.
Professor, Agricultural Engineering (retired)
Texas Agricultural Experiment Station
Vernon, TX 76384, USA,
e-mail: h.wiedemann@verizon.net.

Wilcox, Bradford P.
Department of Rangeland Ecology and Management, 225 Animal Industries Building, 2126, Texas A&M University, College Station,