Handbook of Neurochemistry and Molecular Neurobiology

Development and Aging Changes in the Nervous System
Abel Lajtha (Ed.)

Handbook of Neurochemistry and Molecular Neurobiology
Development and Aging Changes in the Nervous System

Volume Editors: J. Regino Perez-Polo and Steffen Rossner

With 48 Figures and 12 Tables
Animals share the challenge of maintaining an internal environment that is restricted to fairly low ranges of temperature, pH, and water content within a well-protected envelope while engaged in continuous exchanges with the environment in terms of gases, liquids, energy, even as movement of body parts and the entire organism itself is necessary for survival. This dynamic spectrum of changes is further amplified during developmental events or more acutely during responses to pernicious environmental factors in due to trauma and disease. In addition, persistent incidents associated with aging can result in irreversible changes to the allostasis that characterizes the living condition.

In the nervous system, a very high metabolic turnover, fragile but steep ionic gradients, and morphological and structural constraints dictated by the necessity for prompt neuronal transmission of electrical impulses and necessary plasticity result in a highly fragile organ system.

Here we address a small sampling of major constituents of neural function at the cellular and molecular level that play important roles in development and aging, two endogenous processes that embody features of allostasis or the dynamic shifts in set points for specific homeostatic mechanisms associated with development and aging.

The opening chapters discuss the major players in the neurotrophic hypothesis, the neurotrophins. These growth factors have been shown to play a significant role during development and in the maintenance of the adult cholinergic system in CNS as well as in the development of the sensory and sympathetic nervous system. That they are also involved in plasticity events associated with memory and behavior points to the degenerate nature of signaling molecules that achieve specificity by acting in concert as part of ensembles of molecules rather than solitary regulators.

It is widely known that oligodendroglia and myelination events are late arrivals in the developmental scheme of the brain and are also prime targets in early development of ischemic insults. Thus, a chapter on oligodendroglia and myelination in development and aging serves to introduce these nonneuronal partners vital to proper neuronal transmission. Molecular participants in stress responses to both acute and chronic stressors are discussed from different perspectives in following chapters with varying degrees of emphasis on injury versus normal aging and neurodegenerative disease.

The study of neural responses to stress of various kinds has led to a realization of the importance of plasticity and the complexity of the mechanism allowing plasticity in the nervous system. The chapters addressing the topic are followed by an introduction to the amyloid hypothesis, and what may be its central character the enzyme held mostly responsible for the generation of beta amyloid. This is followed by a broader discussion of misfolding proteins in the nervous system and its possible interventions to counteract aging-associated deficits.

Limited in scope but offering a broad sampling, these chapters stress the dynamic features of neuronal responses to internal (developmental) cues or the more harmful external events (injury and disease) in a modern perspective.
Contributors

K. Abid
George and Cynthia Mitchell Center for Neurodegenerative Diseases, Departments of Neurology, Neuroscience and Cell Biology and Biochemistry and Molecular Biology, University of Texas Medical Branch 301 University Blvd, Galveston, TX 77555, USA

J. M. Angelastro
Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York NY 10032, USA

T. Arendt
Paul Flechsig Institute for Brain Research, Department of Neuroanatomy, 04109 Leipzig, Germany

C. S. Atwood
School of Medicine, University of Wisconsin and William S. Middleton Memorial Veterans Administration, Madison, Wisconsin 53705, USA

R. L. Bowen
Voyager Pharmaceutical Corporation, Raleigh, North Carolina 27615, USA

D. A. Butterfield
Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA

V. Calabrese
Section of Biochemistry and Molecular Biology, Department of Chemistry, Faculty of Medicine, University of Catania, Catania, Italy

G. Casadesus
Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA

M. V. Chao
Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Departments of Cell Biology; Physiology and Neurosciences, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA

J. de Vellis
Department of Neurobiology, Mental Retardation Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, USA

L. A. Greene
Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York NY 10032, USA

X. Hu
Department of Biochemistry and Molecular Biology and the Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Texas 77555-1072, USA

J. A. Joseph
Human Nutrition Research Center on Aging, Tufts University, 711 Washington St., Boston, MA 02111, USA

I. König
AG Molecular Mechanisms of Plasticity, Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany

M. R. Kreutz
AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
Contributors

S. F. Lichtenthaler
Adolf-Butenandt-Institut, Ludwig-Maximilians University Munich, 80336 Munich, Germany

E. Meshorer
Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel 91904

M. Mikhaylova
AG Molecular Mechanisms of Plasticity, Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany

J. Neman
Department of Neurobiology, Mental Retardation Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, USA

D. B. Pereira
Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Departments of Cell Biology; Physiology and Neuroscience, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA

J. R. Perez-Polo
Department of Biochemistry and Molecular Biology and the Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Texas 77555-1072, USA

G. Perry
Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA

D. K. Rassin
Department of Pediatrics, The University of Texas Medical Branch at Galveston, Texas 77555-0344, USA

S. Roßner
Paul Flechsig Institute for Brain Research, Department of Neurochemistry, 04109 Leipzig, Germany

M. A. Smith
Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA

H. Soreq
Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel 91904

C. Soto
George and Cynthia Mitchell Center for Neurodegenerative Diseases, Departments of Neurology, Neuroscience and Cell Biology and Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA

C. Spilker
AG Molecular Mechanisms of Plasticity, Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany

A. M. G. Stella
Section of Biochemistry and Molecular Biology, Department of Chemistry, Faculty of Medicine, University of Catania, Catania, Italy

L. Vergara
George and Cynthia Mitchell Center for Neurodegenerative Diseases, Departments of Neurology, Neuroscience and Cell Biology and Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA

K. M. Webber
Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA

X. Zhu
Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA

W. Zuschratter
AG Molecular Mechanisms of Plasticity, Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Contributors</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>Neurotrophins and Central Nervous System Development</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>D. B. Pereira · M. V. Chao</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Nerve Growth Factor Regulated Gene Expression</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>L. A. Greene · J. M. Angelastro</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Myelinating Cells in the Central Nervous System—Development,</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Aging, and Disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. Neman · J. de Vellis</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sulfur-Containing Amino Acids in the CNS: Homocysteine</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>D. K. Rassin</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Stress Response Signal Transduction</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Xiaoming Hu · J. R. Perez-Polo</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Aging and Oxidative Stress Response in the CNS</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>V. Calabrese · D. A. Butterfield · A. M. Giuffrida Stella</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Parallels Between Neurodevelopment and Neurodegeneration:</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>A Case Study of Alzheimer’s Disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X. Zhu · G. Casadesus · K. M. Webber · C. S. Atwood · R. L. Bowen ·</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Perry · M. A. Smith</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Differentiation and De-Differentiation—Neuronal Cell-Cycle Regulation</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>During Development and Age-Related Neurodegenerative Disorders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T. Arendt</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>mRNA Modulations in Stress and Aging</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>E. Meshorer · H. Soreq</td>
<td></td>
</tr>
</tbody>
</table>

© 2008 Springer Science+Business Media, LLC.
10 Molecular Mechanisms of Dendritic Spine Plasticity in Development and Aging .. 245
M. R. Kreutz · I. König · M. Mikhaylova · C. Spilker · W. Zuschratter

11 Alzheimer’s Disease BACE Proteases .. 261
S. Roßner · S. F. Lichtenthaler

12 Protein Misfolding, a Common Mechanism in the Pathogenesis of Neurodegenerative Diseases .. 285
L. Vergara · K. Abid · C. Soto

13 Anti-Aging Strategies ... 305
J. A. Joseph · J. R. Perez-Polo

Index ... 319