THE ARTERIAL CHEMORECEPTORS
Recent Volumes in this Series

Volume 572
RETINAL DEGENERATIVE DISEASES
Edited by Joe Hollyfield, Robert Anderson, and Matthew LaVail

Volume 573
EARLY LIFE ORIGINS OF HEALTH AND DISEASE
Edited by Marelyn Wintour-Coghlan and Julie Owens

Volume 574
LIVER AND PANCREATIC DISEASES MANAGEMENT
Edited by Nagy A. Habib and Ruben Canelo

Volume 575
DIPEPTIDYL AMINOPEPTIDASES: BASIC SCIENCE AND CLINICAL APPLICATIONS
Edited by Uwe Lendeckel, Ute Bank, and Dirk Reinhold

Volume 576
N-ACETYLASPARTATE: A UNIQUE NEURONAL MOLECULE IN THE CENTRAL NERVOUS SYSTEM
Edited by John R. Moffett, Suzannah B. Tieman, Daniel R. Weinberger, Joseph T. Coyle and Aryan M.A. Namboodiri

Volume 577
EARLY LIFE ORIGINS OF HEALTH AND DISEASE
Edited by E. Marelyn Wintour and Julie A. Owens

Volume 578
OXYGEN TRANSPORT TO TISSUE XXVII
Edited by Giuseppe Cicco, Duane Bruley, Marco Ferrari, and David K. Harrison

Volume 579
IMMUNE MECHANISMS IN INFLAMMATORY BOWEL DISEASE
Edited by Richard S. Blumberg

Volume 580
THE ARTERIAL CHEMORECEPTORS
Edited by Yoshiaki Hayashida, Constancio Gonzalez, and Hisatake Kondo
THE ARTERIAL CHEMORECEPTORS

Edited by

Yoshiaki Hayashida
International Buddhist University, Osaka, Japan

Constancio Gonzalez
University of Valladolid, Valladolid, Spain

and

Hisatake Kondo
Tohoku University, Sendai, Japan

Springer
Contents

Preface .. xiii

A Tribute to Professor Autar Singh Paintal.. 1
 Ravi K. and Vijayan V.K.

Structure of Chemoreceptors

Immunolocalization of Tandem Pore Domain K⁺ Channels
in the Rat Carotid Body... 9
 Yamamoto Y. and Taniguchi K.

Neuroglobin, a New Oxygen Binding Protein is Present in the
Carotid Body and Increases after Chronic Intermittent Hypoxia........... 15
 Di Giulio C., Bianchi G., Cacchio M., Artese L.,
 Piccirilli M., Verratti V., Valerio R., Iturriaga R.

Hypoxia-Inducible Factor (HIF)-1α and Endothelin-1 Expression
in the Rat Carotid Body during Intermittent Hypoxia............................ 21
 Lam S-Y., Tipoe G.L., Liong E.C., Fung M-L.

Expression of HIF-2α and HIF-3α in the Rat Carotid Body
in Chronic Hypoxia ... 29
 Lam S-Y., Liong E.C., Tipoe G.L., Fung M-L.

Modulation of Gene Expression in Subfamilies of TASK K⁺
Channels by Chronic Hyperoxia Exposure in Rat Carotid Body......... 37
 Kim I., Donnelly D.F., Carroll J.L.

Postnatal Changes in Gene Expression of Subfamilies
of TASK K⁺ Channels in Rat Carotid Body ... 43
 Kim I., Kim J.H., Carroll J.L.
Morphological Changes in the Rat Carotid Body in Acclimatization and Deacclimatization to Hypoxia.............................49
Matsuda H., Hirakawa H., Oikawa S., Hayashida Y., Kusakabe T

Effect of Carbon Dioxide on the Structure of the Carotid Body:
A Comparison between Normoxic and Hypoxic Conditions...........55
Kusakabe T., Hirakawa H., Oikawa S., Matsuda H., Hayashida Y.

S-Nitrosoglutathione (SNOG) Accumulates Hypoxia Inducible Factor-1α in Main Pulmonary Artery Endothelial Cells
but not in Micro Pulmonary Vessel Endothelial Cells....................63

Changes in Antioxidant Protein SP-22 of Chipmunk Carotid Bodies during the Hibernation Season ...73
Fukuhara K., Wu Y., Nanri H., Ikeda M., Hayashida Y., Yoshizaki K., Ohtomo K.

Potential Role of Mitochondria in Hypoxia Sensing by Adrenomedullary Chromaffin Cells...79
Buttigieg J., Zhang M., Thompson R., Nurse C.

Localization of Ca/Calmodulin-Dependent Protein Kinase I in the Carotid Body Chief Cells and the Ganglionic Small Intensely Fluorescent (SIF) Cells of Adult Rats ..87
Hoshi H., Sakagami H., Owada Y., Kondo H.

Developmental Aspects of Chemoreceptors

Dual Origins of the Mouse Carotid Body Revealed by Targeted Disruption of Hoxa3 and Mash1 ...93
Kameda Y.
Contents

Genetic Regulation of Chemoreceptor Development in DBA/2J
and A/J Strains of Mice ... 99
 Balbir A., Okumura M., Schofield B., Coram J.,
 Tankersley C.G., Fitzgerald R.S., O’Donnell C.P.,
 Shirahata M.

Genetic Influence on Carotid Body Structure in DBA/2J
and A/J Strains of Mice ... 105
 Yamaguchi S., Balbir A., Okumura M., Schofield B.,
 Coram J., Tankersley C.G., Fitzgerald R.S.,
 O’Donnell C.P., Shirahata M.

The Effect of Hyperoxia on Reactive Oxygen Species (ROS)
In Petrosal and Nodose Ganglion Neurons during
Development (Using Organotypic Slices) 111
 Kwak D.J., Kwak S.D., Gauda E.B.

Carotid Body Volume in Three-Weeks-Old Rats Having
an Episode of Neonatal Anoxia .. 115
 Saiki C., Makino M., Matsumoto S.

The Effect of Development on the Pattern of A1
and A2a-Adenosine Receptor Gene and Protein Expression
in Rat Peripheral Arterial Chemoreceptors 121
 Gauda E.B., Cooper R.Z., Donnelly D.F., Mason A.,
 McLemore G.L.

A Comparative Study of the Hypoxic Secretory Response
between Neonatal Adrenal Medulla and Adult Carotid Body
from the Rat .. 131
 Rico A.J., Fernandez S.P., Prieto-Lloret J., Gomez-Niño A.,
 Gonzalez C., Rigual R.
Molecular Biology of Chemoreceptors

In Search of the Acute Oxygen Sensor: Functional Proteomics and Acute Regulation of Large-Conductance, Calcium-Activated Potassium Channels by Hemeoxygenase-2137
 Kemp P.J., Peers C., Riccardi D., Iles D.E., Mason H.S., Wootton P., Williams S.E.

Does AMP-activated Protein Kinase Couple Inhibition of Mitochondrial Oxydative Phosphorylation by Hypoxia to Pulmonary Artery Constriction? ..147
 Evans A.M., Mustard K.J.W., Wyatt C.N., Dipp M., Kinnear N.P., Hardie D.G.

Function of NADPH Oxidase and Signaling by Reactive Oxygen Species in Rat Carotid Body Type I Cells155
 He L., Dinger B., Gonzalez C., Obeso A., Fidone S.

Hypoxemia and Attenuated Hypoxic Ventilatory Responses in Mice Lacking Heme Oxygenase-2: Evidence for a Novel Role of Heme Oxygenase-2 as an Oxygen Sensor161
 Zhang Y., Furuyama K., Adachi T., Ishikawa K., Matsumoto H., Masuda T., Ogawa K., Takeda K., Yoshizawa M., Ogawa H., Maruyama Y., Hida W., Shibahara S.

Regulation of a TASK-like Potassium Channel in Rat Carotid Body Type I Cells by ATP ..167
 Varas R. and Buckler K.J.

Accumulation of Radiolabeled N-Oleoyl-Dopamine in the Rat Carotid Body ...173
 Pokorski M., Zajac D., Kapuściński A., Matysiak Z., Czarnocki Z.
Profiles for ATP and Adenosine Release at the Carotid Body in Response to O2 Concentrations ..179
Conde S.V. and Monteiro E.C.

Biophysics of Ionic Channels in Chemoreceptors

Hypoxic Regulation of Ca2+ Signalling in Astrocytes and Endothelial Cells ...185
Smith I.F., Kemp P.J.

Does AMP-activated Protein Kinase Couple Hypoxic Inhibition of Oxydative Phosphorylation to Carotid Body Excitation?.......................191
Wyatt C.N., Kumar P., Aley P., Peers C., Hardie D.G., Evans A.M.

Mitochondrial ROS Production Initiates A\beta\textsubscript{1-40}-Mediated Up-Regulation of L-Type Ca2+ Channels during Chronic Hypoxia ...197
Fearon I.M., Brown S.T., Hudasek K., Scragg J.L., Boyle J.P., Peers C.

Acute Hypoxic Regulation of Recombinant THIK-1 Stably Expressed in HEK293 Cells ...203
Fearon I.M., Campanucci V.A., Brown S.T., Hudasek K., O’Kelly I.M., Nurse C.A.

Differential Expression of Oxygen Sensitivity in Voltage-Dependent K Channels in Inbred Strains of Mice...............................209
Otsubo T., Yamaguchi S., Okumura M., Shirahata M.

An Overview on the Homeostasis of Ca2+ in Chemoreceptor Cells of the Rabbit and Rat Carotid Bodies215
Conde S.V., Caceres A.I., Vicario I., Rocher A., Obeso A., Gonzalez C.
Contents

Central Integration and Systemic Effects of Chemoreflex

Midbrain Neurotransmitters in Acute Hypoxic Ventilatory Response...223
 Kazemi H.

Chronic Intermittent Hypoxia Enhances Carotid Body Chemosensory Responses to Acute Hypoxia........................227
 Iturriaga R., Rey S., Alcayaga J., Del Rio R.

The Cell-Vessel Architecture Model for the Central Respiratory Chemoreceptor ..233
 Okada Y., Kuwana S., Oyamada Y., Chen Z.

Loop Gain of Respiratory Control upon Reduced Activity of Carbonic Anhydrase or Na⁺/H⁺ Exchange................239
 Kiwull-Schöne H., Teppema L., Wiemann M., Kiwull P.

Adrenaline Increases Carotid Body CO₂ Sensitivity: An in vivo Study ...245
 Maskell P.D., Rusius C.J., Whitehead K.J., Kumar P.

Peripheral Chemoreceptor Activity on Exercise-Induced Hyperpnea in Human..251
 Osanai S., Takahashi T., Nakao S., Takahashi M., Nakano H., Kikuchi K.

Effects of Low-Dose Methazolamide on the Control of Breathing in Cats ...257
 Bijl J.H.L., Mousavi Gourabi B., Dahan A., Teppema L.J.

Stimulus Interaction between Hypoxia and Hypercapnia in the Human Peripheral Chemoreceptors......................263
 Takahashi T., Osanai S., Nakao S., Takahashi M., Nakano H., Ohsaki Y., Kikuchi K.
Gene Expression and Signaling Pathways by Extracellular Acidification ...267
 Shimokawa N., Londoño M., Koibuchi N.

Hypoxic Modulation of the Cholinergic System in the Cat Carotid Glomus Cell ..275
 Mendoza J.A., Chang I., Shirahata M.

Mechanisms of Chemoreceptions

Are There “CO₂ Sensors” in the Lung? ...281
 Lee L.Y., Lin R.L., Ho C.Y., Gu Q., Hong J.L.

Nitric Oxide in Brain Glucose Retention after Carotid Body Receptors Stimulation with Cyanide in Rats...293
 Montero S.A., Cadenas J.L., Lemus M.,
 Roces De Álvarez-Buylla E., Álvarez-Buylla R.

Pulmonary Nociceptors are Potentially Connected with Neuroepithelial Bodies ...301
 Yu J., Lin S.X., Zhang J.W., Walker J.F.

Modulators of Cat Carotid Body Chemotransduction ...307
 Fitzgerald R.S., Shirahata M., Chang I., Balbir A.

Identification and Characterization of Hypoxia Sensitive Kvα Subunits in Pulmonary Neuroepithelial Bodies ..313
 Fu X.W. and Cutz E.

Voltage-Dependent K Channels in Mouse Glomus Cells are Modulated by Acetylcholine ...319
 Otsubo T., Yamaguchi S., Shirahata M.
Contents

Modification of the Glutathione Redox Environment and
Chemoreceptor Cell Responses..325
 Gómez-Niño A., Agapito M.T., Obeso A., González C.

Carotid Body Transmitters Actions on Rabbit Petrosal
Ganglion *in Vitro* ..331
 Alcayaga J., Soto C.R., Vargas R.V., Ortiz F.C., Arroyo J.,
 Iturriaga R.

Potassium Channels in the Central Control of Breathing.......................339
 Oyamada Y., Yamaguchi K., Murai M., Ishizaka A., Okada Y.

Role of Endothelin-1 on the Enhanced Carotid Body Activity
Induced by Chronic Intermittent Hypoxia..345
 Rey S., Del Rio R., Iturriaga R.

Concluding Remarks ..351
 González C.

Index...361
Preface

In the general assembly of International Society for Arterial Chemoreception (ISAC) at the XIV Meeting of ISAC in Philadelphia (June, 1999) the membership decided that tentatively the XVI Meeting of the Society will be held in Japan. At the conclusion of the XV ISAC Meeting held in Lyon (France) in November 2002, Hisatake Kondo took of the torch as president of ISAC, and took the responsibility of organizing the XVI Meeting of the Society in Sendai (Japan).

This book contains the Proceedings of XVI ISAC Meeting held at Miyagi Zao Royal Hotel in the suburb of Sendai, Japan, from May 9 to 12, 2005. Hisatake Kondo counted with a group of colleague co-organizers from different Japanese institutions, including Yoshiaki Hayashida from Osaka, Katsuaki Yoshizaki from Akita, Yoko Kameda from Kanagawa, Tatsumi Kusakabe from Tokyo, Yuji Owada from Sendai and Hiroyuki Sakagami also from Sendai. The Scientific Committee was formed by some ISAC members from abroad. Professors Helmut Acker (Germany), Carlos Eyzaguirre (USA), Salvatore Fidone (USA), Robert Fitzgerald (USA), Constancio Gonzalez (Spain), Sukhamay Lahiri (USA), Jean Marc Pequignot (France) and Patricio Zapata (Chile) helped with their advice to take decisions on specific aspects of the scientific programme. Recommendations given by Dr. Prem Kumar (UK), acting treasurer of ISAC, were invaluable to solve last minute contingencies.

In the XVI ISAC Meeting essentially all areas on Arterial Chemoreceptors were covered in the presentations and compiled in this volume. There were presentations on the structure and developmental aspects of the carotid body chemoreceptors, on the molecular biology and biophysical aspects of the ion channels expressed in chemoreceptor cells, on the neurotransmitters and their receptors expressed in the carotid body, on the central integration of the carotid body generated activity and on the systemic effects of the chemoreceptor reflexes. Some important studies on central chemoreceptors, on neuroepithelial bodies and other lung receptors, on hypoxic pulmonary vasoconstriction and on oxygen sensing in endothelial cells widened the scope and enriched the meeting. Probably the areas generating more enthusiastic discussions dealt with the mechanisms of chemoreception. Particularly animated were the discussions on the papers dealing with significance of different potassium channels in the hypoxic activation of chemoreceptor cells and with the role of reactive oxygen species as triggers or modulators of hypoxic transduction cascade.

The Arterial Chemoreceptors meetings have a history of over half a century, and shows alteration of generations. Dr. A. S. Paintal passed away on December 21, 2004. He was an excellent sensory physiologist. His skill and patience to record from single C-fibres allowed him to describe for the first time the J-
Preface

receptors and to characterize many sensory receptors in thoracic and abdominal
viscera. He also contributed to enrich the field of Arterial Chemoreception with
his studies in the aortic and carotid bodies. A tribute to the memory of the late
Paintal was offered and presented in this volume by K. Ravi and V. K. Vijayan
at VP Chest Institute, University of Delhi.

The Heymans-De Castro-Neil Awards for young investigators were given to
C. Wyatt (Scotland), T. Otsubo (USA) and R. Varas (United Kingdom). ISAC
wishes the awardees a fruitful development of their current research projects and
successful scientific careers.

At the business meeting the next Symposium was decided to be held in
Valladolid, Spain, in 2008, with Constancio Gonzalez as the president. The
following Symposium will be held in 2011 in Ontario, Canada with Colin Nurse
as its president. During the assembly, membership discussed the future scope of
ISAC in order to attract a more biomedical scientists. A dilemma emerged: the
interest in widening the scope of the Arterial Chemoreception to get closer the
oxygen (erythropoietin, hypoxic pulmonary vasoconstriction, central nervous
system) and acid (central chemoreceptors) sensing fields, and the risk of losing
our identity as ISAC in the diversity. There was no conclusion, but an agreement
was reached to give the issue into the hand of C. Gonzalez, the president of both
ISAC and the next meeting.

The Symposium was supported by funds from Japan Society for the
Promotion of Science (JSPS) International meeting series, Sankyo Foundation
for Life Science Research Promotion, Tokyo, Japan and Asaoka Eye Clinic
Foundation, Hamamatsu, Japan. We are grateful to them all.

Finally, we are grateful to the participants who visited Sendai-Zao and
contributed to the success of the Symposium. We are particularly grateful to Mr.
Mike van den Bosch and Miss Marie Johnson of Springer for their expert
management of the production of this volume.

The Editors,
Yoshiaki Hayashida (Osaka, Japan)
Constancio Gonzalez (Valladolid, Spain)
Hisatake Kondo (Sendai Japan)