DESIGN OF VERY HIGH-FREQUENCY MULTIRATE SWITCHED-CAPACITOR CIRCUITS
THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE

ANALOG CIRCUITS AND SIGNAL PROCESSING
Consulting Editor: Mohammed Ismail. Ohio State University

Related Titles:

DESIGN OF WIRELESS AUTONOMOUS DATALOGGER IC’S
Claes and Sansen

MATCHING PROPERTIES OF DEEP SUB-MICRON MOS TRANSISTORS
Croon, Sansen, Maes

LNA-ESD CO-DESIGN FOR FULLY INTEGRATED CMOS WIRELESS RECEIVERS
Leroux and Steyaert

SYSTEMATIC MODELING AND ANALYSIS OF TELECOM FRONTENDS AND THEIR BUILDING BLOCKS
Vanassche, Gielen, Sansen

LOW-POWER DEEP SUB-MICRON CMOS LOGIC SUB-THRESHOLD CURRENT REDUCTION
van der Meer, van Staveren, van Roermund

WIDEBAND LOW NOISE AMPLIFIERS EXPLOITING THERMAL NOISE CANCELLATION
Bruccoleri, Klumperink, Nauta

SYSTEMATIC DESIGN OF SIGMA-DELTA ANALOG-TO-DIGITAL CONVERTERS
Bajdechi and Huijsing

OPERATIONAL AMPLIFIER SPEED AND ACCURACY IMPROVEMENT
Ivanov and Filanovsky

STATIC AND DYNAMIC PERFORMANCE LIMITATIONS FOR HIGH SPEED D/A CONVERTERS
van den Bosch, Steyaert and Sansen

DESIGN AND ANALYSIS OF HIGH EFFICIENCY LINE DRIVERS FOR XDSL
Piessens and Steyaert

LOW POWER ANALOG CMOS FOR CARDIAC PACEMAKERS
Silveira and Flandre

MIXED-SIGNAL LAYOUT GENERATION CONCEPTS
Lin, van Roermund, Leenaerts

HIGH-FREQUENCY OSCILLATOR DESIGN FOR INTEGRATED TRANSCEIVERS
Van der Tang, Kasperkovitz and van Roermund

CMOS INTEGRATION OF ANALOG CIRCUITS FOR HIGH DATA RATE TRANSMITTERS
DeRanter and Steyaert

SYSTEMATIC DESIGN OF ANALOG IP BLOCKS
Vandembosche and Gielen

SYSTEMATIC DESIGN OF ANALOG IP BLOCKS
Cheung and Luong

LOW-VOLTAGE CMOS LOG COMPAANDING ANALOG DESIGN
Serra-Graells, Rueda and Huertas

CIRCUIT DESIGN FOR WIRELESS COMMUNICATIONS
Pun, Franca and Leme

DESIGN OF LOW-PHASE CMOS FRACTIONAL-N SYNTHESIZERS
DeMuer and Steyaert

MODULAR LOW-POWER, HIGH SPEED CMOS ANALOG-TO-DIGITAL CONVERTER FOR EMBEDDED SYSTEMS
Lin, Kemna and Hosticka
DESIGN OF VERY HIGH-FREQUENCY MULTIRATE SWITCHED-CAPACITOR CIRCUITS
Extending the Boundaries of CMOS Analog Front-End Filtering

by

Seng-Pan U
University of Macau and Chipidea Microelectronics (Macau), Ltd., China

Rui Paulo Martins
University of Macau, China
and Technical University of Lisbon, Portugal

and

José Epifânio da Franca
Chipidea Microelectronics, S.A.
and Technical University of Lisbon, Portugal
Dedication

This book is dedicated to

Our Wives
Contents

1 INTRODUCTION

2 IMPROVED MULTIRATE POLYPHASE-BASED INTERPOLATION STRUCTURES
4.1 Canonic and Non-Canonic ADB Realizations22
 4.1.1 FIR System Response ...22
 4.1.2 IIR System Response .. 24

4.2 SC Circuit Architectures ..26

5. Low-Sensitivity Multirate IIR Structures.......................................33
 5.1 Mixed Cascade/Parallel Form ...33
 5.2 Extra-Ripple IIR Form ...37
 6. Summary ..37

3 PRACTICAL MULTIRATE SC CIRCUIT DESIGN CONSIDERATIONS 41
 1. Introduction..41
 2. Power Consumption Analysis..41
 3. Capacitor-Ratio Sensitivity Analysis ...44
 3.1 FIR Structure ..44
 3.2 IIR Structure ..46
 4. Finite Gain & Bandwidth Effects...49
 5. Input-Referred Offset Effects...49
 6. Phase Timing-Mismatch Effects ..55
 6.1 Periodic Fixed Timing-Skew Effect..55
 6.2 Random Timing-Jitter Effects...59
 7. Noise Analysis ...59
 8. Summary ..65

4 GAIN- AND OFFSET-COMPENSATION FOR MULTIRATE SC CIRCUITS 69
 1. Introduction..69
 2. Autozeroing and Correlated-Double Sampling Techniques70
 3. AZ and CDS SC Delay Blocks with Mismatch-Free Property72
 3.1 SC Delay Block Architectures ..72
 3.2 Gain and Offset Errors – Expressions and Simulation
 Verification..77
 3.3 Multi-Unit Delay Implementations...80
 4. AZ and CDS SC Accumulators..82
 4.1 SC Accumulator Architectures ...82
 4.2 Gain and Offset Errors – Expressions and Simulation
 Verification ..82
 5. Design Examples..84
 6. Speed and Power Considerations ...89
 7. Summary ..94
5 DESIGN OF A 108 MHZ MULTISTAGE SC VIDEO INTERPOLATING FILTER

1. Introduction .. 99
2. Optimum Architecture Design ... 101
 2.1 Multistage Polyphase Structure with Half-Band Filtering .. 101
 2.2 Spread-Reduction Scheme ... 102
 2.3 Coefficient-Sharing Techniques 103
3. Circuit Design .. 106
 3.1 1st-Stage ... 106
 3.2 2nd- and 3rd-Stage ... 109
 3.3 Digital Clock Phase Generation 111
4. Circuit Layout ... 113
5. Simulation Results .. 114
 5.1 Behavioral Simulations .. 114
 5.2 Circuit-Level Simulations ... 115
6. Summary .. 118

6 DESIGN OF A 320 MHZ FREQUENCY-TRANSLATED SC BANDPASS INTERPOLATING FILTER

1. Introduction .. 123
2. Prototype System-Level Design 125
 2.1 Multi-notch FIR Transfer Function 125
 2.2 Time-Interleaved Serial ADB Polyphase Structure with Autozeroing .. 127
3. Prototype Circuit-Level Design 128
 3.1 Autozeroing ADB and Accumulator 128
 3.2 High-Speed Multiplexer ... 130
 3.3 Overall SC Circuit Architecture 133
 3.4 Telescopic opamp with Wide-Swing Biasing 133
 3.5 nMOS Switches 136
 3.6 Noise Calculation .. 137
 3.7 I/O Circuitry .. 138
 3.8 Low Timing-Skew Clock Generation 138
4. Layout Considerations ... 143
 4.1 Device and Path Matching .. 143
 4.2 Substrate and Supply Noise Decoupling 147
 4.3 Shielding ... 151
 4.4 Floor Plan ... 151
5. Simulation Results ... 152
 5.1 Opamp Simulations .. 152
 5.2 Filter Behavioral Simulations 155
5.3 Filter Transistor-Level and Post-Layout Simulations 156
6. Summary .. 158

7 EXPERIMENTAL RESULTS 163
1. Introduction .. 163
2. PCB Design .. 163
 2.1 Floor Plan ... 164
 2.2 Power Supplies and Decoupling ... 167
 2.3 Biasing Currents .. 167
 2.4 Input and Output Network .. 167
3. Measurement Setup and Results .. 169
 3.1 Frequency Response ... 170
 3.2 Time-Domain Signal Waveforms ... 172
 3.3 One-Tone Signal Spectrum ... 172
 3.4 Two-Tone Intermodulation Distortion 174
 3.5 THD and IM3 vs. Input Signal Level 177
 3.6 Noise Performance ... 177
 3.7 CMRR and PSRR ... 180
4. Summary .. 181

8 CONCLUSIONS 187

APPENDIX 1 TIMING-MISMATCH ERRORS WITH NONUNIFORMLY HOLDING EFFECTS........... 191
1. Spectrum Expressions for IU-ON(SH) and IN-CON(SH) 193
 1.1 IU-ON(SH) .. 193
 1.2 IN-CON(SH) ... 197
2. Closed Form SINAD Expression for IU-ON(SH) and IN-CON(SH) ... 197
 2.1 IU-ON(SH) .. 198
 2.2 IN-CON(SH) .. 201
3. Closed Form SFDR Expression for IN-CON(SH) systems 203
4. Spectrum Correlation of IN-OU(IS) and IU-ON(SH) 205

APPENDIX 2 NOISE ANALYSIS FOR SC ADB DELAY LINE AND POLYPHASE SUBFILTERS 215
1. Output Noise of ADB Delay Line .. 215
2. Output Noise of Polyphase Subfilters .. 217
 2.1 Using TSI Input Coefficient SC Branches 217
 2.2 Using OFR Input Coefficient SC Branches 220
APPENDIX 3 GAIN, PHASE AND OFFSET ERRORS FOR GOC MF SC DELAY CIRCUIT I AND J221

1. GOC MF SC Delay Circuit I...221
2. GOC MF SC Delay Circuit J...225
Preface

Integration of high-frequency analog filtering into the system Analog Front-End (AFE) is increasingly demanded for the ever growing high-speed communications and signal processing solutions with the corresponding advances in Integrated Circuit (IC) technology. Although the AFEs represent a small portion of the total mixed-signal system chip, they usually are its speed and performance bottleneck. Especially, the design of the AFEs becomes more and more challenging due to the continuous lowering of the supply and increasing of the operation speed, as well as noisying of the working environment driven by the constant growing digital signal processing (DSP) core.

This book presents a multirate sampled-data interpolation technique and its Switched-Capacitor (SC) implementation for very high frequency filtering (over hundreds of MHz) while having also dual inherent advantages of reducing the speed of the digital-to-analog converter and the DSP core together with the simplification of the post continuous-time smoothing filter.

The book is organized in eight chapters. This chapter presents an overview of the introductory aspects of the current state-of-the-art high-frequency SC filters and multirate filtering with emphasis on the SDA interpolation techniques for explicating the motivation and the objectives of the research work in this book.

Chapter 2 will describe the mathematical characterization of the conventional sampled-data analog interpolation with its input lower-rate S/H shaping distortion and will also introduce the ideal improved analog interpolation model with its traditional bi-phase SC structure implementation. Then, the development of the efficient multirate polyphase-based SC structures suitable for high-performance optimum-class improved analog
interpolation filtering will be proposed. Different low-sensitivity circuit topologies with both Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) characteristics will be developed, respectively, for low and high selectivity filtering.

Chapter 3 will present the practical IC technology imperfections related to IC implementation of SC multirate circuits that will be comprehensively investigated with respect to the power requirement issue, capacitance ratio mismatches, finite gain and bandwidth, input-referred DC offset sensitivity effects of the opamps, timing random-jitter and fixed periodic skew in the multirate clock phase generation as well as filter overall noise performance. All those practical design considerations are very useful in high-speed sampled-data analog integrated circuit design.

Chapter 4 will present advanced circuit techniques, i.e. gain- and offset-compensations, specialized for multirate SC filters and that are necessary to alleviate the imperfections of the analog integrated circuitry. Such techniques will be explored first for the basic building blocks: mismatch-free SC delay cells and SC accumulator, and later the impacts in the compensation of the overall system response will also be addressed and demonstrated through specific examples for both multirate FIR and IIR SC interpolating filters. Furthermore, the practical design trade-offs for utilization of such techniques will also be analyzed with respect to the accuracy versus speed and power.

Chapter 5 will set forth the design and implementation of a low-power SC baseband interpolating filter for NTSC/PAL digital video restitution system with CCIR-601 standards. The filter, which employs several novel optimized structures including coefficient-sharing, spread-reduction, semi-offset-compensation, mismatch-shaping, double-sampling and analog multirate/techniques, achieves a linear-phase lowpass response with 5.5-MHz bandwidth, 108 Msample/s output from 13.5 Msample/s video input. Both behavior-, transistor- and layout-extracted level simulations will be presented for illustrating the effectiveness of the circuit in 0.35 µm CMOS technology.

Chapter 6 will describe the design and implementation of a 2.5 V, 15-tap, 57 MHz SC FIR bandpass interpolating filter with 4-fold frequency up-translation for 22-24 MHz inputs at 80 MHz to 56-58 MHz outputs at 320MHz to be used in a Direct-Digital Frequency Synthesis (DDFS) system for wireless communication also in 0.35 µm CMOS. Special design considerations in both filter transfer function, circuit architectures, circuit building blocks as well as specific layout techniques for dealing with non-ideal properties in realization of the high-speed analog and digital clock
circuits will be presented comprehensively in terms of the speed relaxation, noise and mismatching reduction.

Chapter 7 will then present the Printed-Circuit Board (PCB) design, experimental testing setup, as well as the measured results of the prototype interpolating filter chip built for the DDFS system described in Chapter 5. In addition to the measurement summary, a comparison among previously reported SC filters will also be offered.

Chapter 8 will finally draw the relevant concluding remarks.

Appendixes will be also provided for detailed mathematic derivation and analysis of the timing-skew errors in parallel sampled-data systems with S/H effects, namely, non-uniformly holding effects, and also the estimation scheme of the filter noise performance including opamp finite-gain and offset error analysis of SC building blocks.

Seng-Pan U, Ben
Rui Paulo Martins
José Epifânio da Franca
Acknowledgment

This work was developed under the support of the Research Committee of University of Macau, Integrated Circuits and Systems Group of Instituto Superior Técnico / Universidade Técnica de Lisboa, Fundação Oriente and Chipidea Microelectronics, S.A.. We also thank Terry Sai-Weng Sin for the assistance in formatting the text and figures as well as his contribution in timing-mismatch signal-to-noise mathematical analysis in Appendix 1. Finally, we would like to express enormous respect to our wives for their constant understanding and endless support.
List of Abbreviations

AAF : Anti-Aliasing Filter
AC : Alternating Current
ADB : Active Delayed-Block
ADC : Analog-to-Digital Converter
AFE : Analog Front-End
AIF : Anti-Imaging Filters
AZ : Autozeroing
BPF : Band-Pass Filter
C-DFII : Complete Direct-Form II
CAD : Computer-Aided Design
CDMA : Code Division Multiple Access
CDS : Correlated-Double Sampling
CM : Common Mode
CMOS : Complementary Metal Oxide Semiconductor
CMFB : Common-Mode Feedback
CMRR : Common-Mode Rejection Ratio
CQFP : Ceramic Quad Flat-Pack
CT : Continuous-Time
DAC : Digital-to-Analog Converter
DB : Differentiator-Based
DC : Direct Current
DDFS : Direct-Digital Frequency Synthesis
DF : Direct-Form
DFII : Direct-Form II
DR : Dynamic Range
DSP : Digital Signal Processing
DT : Discrete-Time
DUT : Device Under Test
DVD : Digital Video Disks
EC : Error-storage Capacitor
EM : Electromagnetic
EMC : Electromagnetic Compatibility
ENBW : Equivalent Noise Bandwidth
ER : Extra Ripple
FFT : Fast Fourier Transform
FIR : Finite-Impulse-Response
GBW : Gain BandWidth
GOC : Gain- and Offset-Compensation
H-CDS : Holding Correlated-Double Sampling
IC : Integrated Circuit
IF : Intermediate-Frequency
IIR : Infinite Impulse Response
IM3 : 3rd-order Intermodulation Distortion
IN-CON : Input & Output timing-correlatively, Nonuniformly sampled & played out
IN-OU : Input Nonuniformly sampled, Output Uniformly played out
IS : Impulse-Sampled
IU-ON : Input Uniformly sampled, Output Nonuniformly played out
I-V : Current-to-Voltage
LC : Inductive-Capacitive
LPF : Low-Pass Filter
LVS : Layout versus Schematic
MF : Mismatch-Free
MCP-DFII : Mixed Cascade/Parallel Direct Form II
MOS : Metal-Oxide Semiconductor
MUX : Multiplexer
NTSC : National Television Standards Committee
OFR : Open-floating Resistor
OIP3 : Output 3rd-order Intercept Point
OPAMP : operational amplifier
OTA : Operational Transconductance Amplifier
P-CDS : Predictive Correlated-Double Sampling
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-DFII</td>
<td>Parallel Direct Form II</td>
</tr>
<tr>
<td>PAL</td>
<td>Phase Alternation Line</td>
</tr>
<tr>
<td>PC</td>
<td>Parallel-Cyclic</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed-Circuit Board</td>
</tr>
<tr>
<td>PCTSC</td>
<td>Parasitic-Compensated Toggle-Switched Capacitor</td>
</tr>
<tr>
<td>PM</td>
<td>Phase Margin</td>
</tr>
<tr>
<td>POG</td>
<td>Precise Opamp Gain</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
</tr>
<tr>
<td>PSS-AC</td>
<td>Periodic Swept Steady-State AC Analysis</td>
</tr>
<tr>
<td>QFP</td>
<td>Quad Flat-Pack</td>
</tr>
<tr>
<td>R-ADB</td>
<td>Recursive-ADB</td>
</tr>
<tr>
<td>RES</td>
<td>Rising-Edge Synchronizing</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>ROM</td>
<td>Read-Only Memory</td>
</tr>
<tr>
<td>RUT</td>
<td>ROM Look-Up Table</td>
</tr>
<tr>
<td>SC</td>
<td>Switched-Capacitor</td>
</tr>
<tr>
<td>SDA</td>
<td>Sample-Data Analog</td>
</tr>
<tr>
<td>SDM</td>
<td>Sigma-Delta modulators</td>
</tr>
<tr>
<td>SDV</td>
<td>Switched Digital Video</td>
</tr>
<tr>
<td>SFDR</td>
<td>Spurious-Free Dynamic Range</td>
</tr>
<tr>
<td>S/H</td>
<td>Sample-and-Hold</td>
</tr>
<tr>
<td>SI</td>
<td>Switched-current</td>
</tr>
<tr>
<td>SMD</td>
<td>Surface-Mount Device</td>
</tr>
<tr>
<td>SINAD</td>
<td>Signal-to-Noise Plus Distortion Ratio</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SSC</td>
<td>Same Sample Correction</td>
</tr>
<tr>
<td>T/H</td>
<td>Track-and-Hold</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time Division Multiple Access</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
</tr>
<tr>
<td>TSC</td>
<td>Toggle-Switched Capacitor</td>
</tr>
<tr>
<td>TSI</td>
<td>Toggle-Switched Inverter</td>
</tr>
<tr>
<td>TV</td>
<td>Television</td>
</tr>
<tr>
<td>UC</td>
<td>UnCompensated</td>
</tr>
<tr>
<td>UGB</td>
<td>Unity-Gain Bandwidth</td>
</tr>
<tr>
<td>VCM</td>
<td>Common-Mode Voltage</td>
</tr>
<tr>
<td>VDSL</td>
<td>Video Digital Subscriber loop</td>
</tr>
<tr>
<td>V-I</td>
<td>Voltage-to-Current</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1-1	High-frequency Switched-Capacitor filters reported in CMOS	3
Figure 1-2	SDA multirate filtering for efficient analog front-end systems	4
Figure 1-3	(a) Non-optimum-class and (b) Optimum-class decimation and interpolation filtering	4
Figure 1-4	(a) Baseband (b) Frequency-translated interpolation filtering	6
Figure 2-1	Conventional analog L-fold interpolation (a) Architecture model (b) Time- and frequency-domain illustration	17
Figure 2-2	Improved Analog interpolation with reduced S/H effects (a) Architecture Model (b) Non-optimum SC implementation with a high-rate Bi-Phase filter	19
Figure 2-3	Improved analog interpolation with Optimum-class realization by Direct-Form polyphase structure (L=2)	21
Figure 2-4	(a) Canonic-form (b) Non-canonic-form ADB polyphase structures for improved 4-fold 12-tap FIR interpolator	23
Figure 2-5	Canonic-form R-ADB/C-DFII polyphase structures for improved 3-fold SC IIR video interpolator	27
Figure 2-6	SC circuit schematic for canonic-form R-ADB/C-DFII polyphase structures	28
Figure 2-7 Non-canonic-form R-ADB/C-DFII polyphase structures for improved 3-fold SC IIR video interpolator

Figure 2-8 SC circuit schematic for non-canonic-form R-ADB/C-DFII polyphase structures

Figure 2-9 Simulated amplitude response for improved 3-fold SC IIR video interpolator with Elliptic and ER transfer function

Figure 2-10 (a) R-ADB/P-DFII for Improved 3-fold SC IIR video interpolator (b) R-ADB/MCP-DFII for Improved 3-fold SC IIR video interpolator

Figure 2-11 SC circuit schematic for non-canonic-form R-ADB/MCP-DFII polyphase structures

Figure 3-1 Equivalent continuous-time model of SC circuit during charge-transfer phase

Figure 3-2 (a) Amplitude sum-sensitivity (b) Monte-Carlo simulations with respect to all capacitors of an 18-tap improved SC FIR LP interpolating filter

Figure 3-3 Group-delay sum-sensitivity with respect to all capacitors of an 18-tap improved SC FIR LP interpolating filter

Figure 3-4 Amplitude sum-sensitivity with respect to all capacitors for improved 3-fold SC IIR video interpolating filter with different architectures and with (a) 4th-Order Elliptic & ER (N=9, D=2) and (b) 6th-Order Elliptic & ER (N=9, D=4) transfer functions

Figure 3-5 Opamp finite gain & bandwidth effects for improved 3-fold SC IIR interpolator with ER (N=9, D=2) transfer function (a) Passband (b) Stopband

Figure 3-6 Output signal spectrum of 4-fold, 18-tap SC FIR interpolating filter (1Vp-p input, offset $\sigma_{OA} = 3.5$ mV)

Figure 3-7 Output phase-skew sampling for polyphase-based interpolating filters

Figure 3-8 Spectrum of a 58 MHz signal sampled at 320 MHz with timing skew ($M=8$, $\sigma=5$ ps)

Figure 3-9 Mean value of SNR and SFDR due to the output phase-skew effects vs. signal frequencies and standard deviation
Design of Very High-Frequency Multirate Switched-Capacitor Circuits – Extending the Boundaries of CMOS Analog Front-End Filtering

(sigma) of the skew-timing ratio \(r_m \) for different interpolation factors (100-time Monte Carlo calculations) (a) \(L=2 \) (b) \(L=4 \) (c) \(L=8 \) 58

Figure 3-10 Noise in the \(i \)th mismatch-free SC ADB in (a) sampling phase A and (b) output phase B 61

Figure 3-11 Noise in one of the \(L \)-path polyphase subfilter in (a) sampling phase A and (b) output phase B 63

Figure 4-1 Virtual ground error voltage compensated by AZ or CDS techniques 70

Figure 4-2 Classification of Correlated-Double Sampling SC techniques 72

Figure 4-3 Different mismatch-free SC delay blocks with UC, AZ and CDS techniques 75

Figure 4-4 Simulated gain & phase errors for SC delay circuits in Figure 4-3 without parasitics (a) & (b) and with parasitics (c) & (d) (Parasitics: 10% & 30% @ capacitor top & bottom plate, \(C_p \) @ opamp input node =\(C_F \)) 76

Figure 4-5 Different MF UC, AZ, CDS delay blocks with flexible delay implementation 81

Figure 4-6 Different SC accumulator architectures with UC, AZ and CDS techniques 83

Figure 4-7 Simulated gain & phase errors for SC accumulator circuits in Figure 4-6 without parasitics (a) & (b) and with parasitics (c) & (d) 85

Figure 4-8 (a) R-ADB polyphase structures and simplified SC schematic with CDS for a 4th-order IIR interpolating filter for DDFS 86

Figure 4-9 Simulated amplitude response of 4th-order IIR interpolating filter for DDFS 88

Figure 4-10 (a) Zero plots and (b) Simulated amplitude response of a 15-tap SC FIR interpolating filter with UC, H-CDS and P-CDS realizations (\(A=100 \)) 89

Figure 4-11 Circuit configurations for different operation phases for UC, AZ and CDS SC circuits 90
Figure 4-12 (a) Feedback factor and effective capacitive loading (b) Current consumption for SR and linear settling versus C_{PI}/C_h for CDS circuits with employment of error-storage capacitor

Figure 5-1 (a) Traditional (b) Multirate alternative for digital video restitution system

Figure 5-2 3-stage implementation of 8-fold interpolating filter for digital video restitution system

Figure 5-3 (a) One-opamp scheme (b) Double-sampling scheme (c) Autozeroing scheme for spread-reduced two-step summing technique

Figure 5-4 (a) Instantaneous-adding (b) Subsequent-adding SC subtraction branches using Coefficient-Sharing Technique

Figure 5-5 SC implementations for 3-stage video interpolating filter

Figure 5-6 (a) AZ (b) EC/P-CDS SC implementations for the 1st-stage

Figure 5-7 Simplified SC implementations for the 2nd- and 3rd-stage

Figure 5-8 Multiple phase generation block diagram for multistage SC video interpolating filter

Figure 5-9 (a) Synchronize Submaster clock generation (b) Phase-width controls circuitry

Figure 5-10 SNR and SFDR Mean vs. timing-skew errors (100-time Monte-Carlo) ($f_{in}=5.5$ MHz, $f_s=108$ MHz)

Figure 5-11 Circuit layout for 3-stage 8-fold SC interpolating filter (AC-Accumulator, PF-Polyphase Filter, MP-Multiplexer)

Figure 5-12 Monte-Carlo amplitude response simulation (500-time, $\sigma = 0.5\%$)

Figure 5-13 Periodic swept steady-state AC (PSS-AC) amplitude response from full transistor-level simulation

Figure 5-14 Spectrum of 5 MHz @ 108 MHz output signal from the worst-case transistor-level simulation
Figure 5-15 Impulse transient response from parasitic-involved layout-extracted simulation (a) 1st-stage (b) 2nd+3rd stage (c) overall 3-stage

Figure 6-1 (a) Traditional ROM-based DDFS system (b) Proposed DDFS system with frequency-translated SC bandpass interpolation filtering and its signal spectrum

Figure 6-2 Zero-plot for multi-notch FIR system function by optimum zero-placement method

Figure 6-3 Time-interleaved serial ADB polyphase structure with autozeroing

Figure 6-4 Autozeroing, Mismatch-Free SC ADB with z^6 delay

Figure 6-5 Autozeroing SC accumulator for polyphase subfilter (a) $m=0$ (b) $m=2$

Figure 6-6 High-speed mismatch-free SC multiplexer

Figure 6-7 Overall SC circuit schematic for 15-tap FIR bandpass interpolating filter

Figure 6-8 Schematic of Telescopic opamp with wide-swing biasing

Figure 6-9 (a) Single-sampling SC CMFB for filter core and (b) Double-sampling SC CMFB for multiplexer

Figure 6-10 (a) SNR and (b) SFDR Mean vs. timing-skew errors and sampling rates (100-time Monte-Carlo)

Figure 6-11 Simplified structure for low timing-skew multirate clock generator

Figure 6-12 Equal-width non-overlapping clock phase generation

Figure 6-13 Rising-edge-synchronization buffer array

Figure 6-14 Spike current assignment by individual-on-chip VDD supply scheme

Figure 6-15 Layout of Telescopic op amp

Figure 6-16 Chip microphotograph for capacitor group for (a) Polyphase subfilter $m=0$ (b) z^6 ADB (c) Multiplexer
Figure 6-17 Chip microphotograph for polyphase subfilter $m=0$

Figure 6-18 Chip microphotograph for clock generator and output multiplexer

Figure 6-19 Spike-current flows for shared ground scheme with on-chip decoupling in (a) rising (b) falling edges

Figure 6-20 Die microphotograph

Figure 6-21 Opamp layout-extracted AC open-loop frequency response from corner simulations

Figure 6-22 Opamp layout-extracted DC gain and output swing from corner simulations

Figure 6-23 Histogram of a 500-run Monte-Carlo simulation to process variation (a) Unity-gain bandwidth (b) Phase Margin (c) DC Gain (d) DC Gain @ 1.2Vp-p.

Figure 6-24 Scatter plot of a 500-run Monte-Carlo simulation to process variation (a) Unity-gain bandwidth vs. Phase Margin (b) Unity-gain bandwidth vs. DC Gain

Figure 6-25 Opamp layout-extracted loop-gain with / without switch resistance in feedback path

Figure 6-26 Monte-Carlo amplitude response simulations ($\sigma_e = 0.7\%$)

Figure 6-27 58MHz output signal with a 1V$_{pp}$ 22MHz input (f_s=320MHz) from top-view layout-extracted simulation

Figure 6-28 Spectrum of 58MHz output signal with a 1V$_{pp}$ 22MHz input (f_s=320MHz) from worst-case top-view transistor-level simulations

Figure 6-29 Impulse transient response from top-view layout-extracted worst-case simulation

Figure 6-30 Buffered 58 MHz output signal waveforms (a) 22 MHz input and differential output (b) Positive and negative outputs from top-view layout-extracted simulations

Figure 7-1 PCB block diagram and experimental test setup

Figure 7-2 (a) Top-view (b) Bottom-view of the 4-layer PCB
Figure 7-3 Characteristic impedance for conductor-backed coplanar waveguides versus track width and gap

Figure 7-4 View of laboratory testing instruments (Intermodulation distortion measurement)

Figure 7-5 Measured amplitude responses for different output sampling rates

Figure 7-6 Measured amplitude response for 10 samples with (a) 320 MHz (b) 160 MHz (c) 400 MHz output sampling rates

Figure 7-7 Measured 58 MHz output signal waveforms sampled at 320 MHz (a) 22 MHz input and differential output (b) Positive and negative outputs

Figure 7-8 Measured signal waveforms (a) 11 MHz input, 29 MHz output for 160 MHz sampling rate (b) 27.5 MHz input, 72.5 MHz output for 400 MHz sampling rate

Figure 7-9 Measured spectrum of 58 MHz output signal sampled at 320 MHz with (a) 1 V_p-p and (b) 2.1 V_p-p 22 MHz input

Figure 7-10 Measured signal spectrum (a) 29 MHz output for 160 MHz sampling rate (b) 72.5 MHz output for 400 MHz sampling rate

Figure 7-11 Measured spectrum of output signals sampled at 320 MHz with (a) 0.5 V_p-p and (b) 0.85 V_p-p two-tone inputs with 600 KHz separation

Figure 7-12 Measured output signals spectrum from 0.5 V_p-p two-tone inputs with (a) 300 KHz separation for 160 MHz sampling rate (b) 800 KHz separation for 400 MHz sampling rate

Figure 7-13 Measured THD and IM3 vs. input signal level for different output sampling rates

Figure 7-14 Measured fixed-pattern noise with zero input for (a) 160 MHz (b) 320 MHz (c) 400 MHz output sampling rates

Figure 7-15 Measured output noise spectrum density for different sampling rates

Figure 7-16 Measured CMRR versus frequency for different sampling rates
Figure 7-17 Measured off-chip digital power supplies (DVDD=2.5V)

Figure 7-18 Brief comparison of the state-of-the-art CMOS SC filters

Figure A1-1 Equivalent (a) IN-OU(IS) (b) IU-ON(SH) (c) IN-CON(SH) processes for Time-Interleaved ADC, DAC and Sampled-data Systems

Figure A1-2 FFT spectra of output sinusoid for (a) IN-OU, (b) IU-ON and (c) IN-CON processes with both IS and SH output (a=0.2, M=8, \(\sigma_{rm} = 0.1\% \))

Figure A1-3 (a) Simulated SINAD & (b) absolute error between the simulated and calculated SINAD of IU-ON(SH) systems vs. normalized frequency \(a \) and standard derivation \(\sigma_{rm} \) by \(10^4 \) times Monte Carlo Simulations (\(M=8 \))

Figure A1-4 (a) Simulated SINAD & (b) absolute error between the simulated and calculated SINAD of IN-CON(SH) systems vs. normalized frequency \(a \) and standard derivation \(\sigma_{rm} \) by \(10^3 \) times Monte Carlo simulations

Figure A1-5 Absolute error between the simulated and calculated SINAD of IN-CON(SH) systems vs. (a) path no. \(M \) and standard derivation \(\sigma_{rm} \) (\(a = 0.5 \)) and (b) normalized signal frequency \(a \) and standard derivation \(\sigma_{rm} \) (\(M = 2 \)) by \(10^3 \) times Monte Carlo simulations

Figure A1-6 A plot of variation of in-band SFDR of IN-CON(SH) system vs. timing-skew period \(M \) and \(\sigma_{rm} \)

Figure A1-7 FFT of a 58 MHz signal sampled at 320 MHz for (a) IN-OU(IS) (b) IU-ON(SH) \(M=4, \sigma=20 \) ps

Figure A1-8 (a) Mean SINAD for IU-ON(SH) and (b) Relative difference of Mean SINAD between IN-OU(IS) & IU-ON(SH) versus signal frequency, standard derivation of skew-timing ratio \(r_m \) and the path number \(M \)

Figure A3-1 EC/P-CDS GOC MF SC delay circuit (i)

Figure A3-2 Differential-input, EC/P-CDS GOC MF SC delay circuit (j)
List of Tables

Table 2-1 Transfer function coefficients of 3-Fold SC LP IIR video interpolators: original (a_i and b_i) and multirate-transformed (A_i and B_i) for Elliptic and ER C-DFII structures 27

Table 2-2 Multirate-transformed coefficients of transfer function of 3-Fold SC LP IIR video Elliptic (D=4) interpolators in P-DFII and MCP-DFII structures 36

Table 3-1 Power comparison for 3-Fold SC LP IIR with ER transfer function 43

Table 3-2 Monte-Carlo Simulations of fixed pattern noise imposed by input-referred DC offset of opamps for 4-fold, 18-tap SC FIR interpolating filter (20-time, $\sigma_{DA}=3.5$ mV) 54

Table 4-1 Gain & phase errors and offset-suppression factor for SC delay circuits in Figure 4-3 (a)-(j) 78

Table 4-2 Gain & phase errors and offset-suppression factor for SC accumulator circuits in Figure 4-6 (a)-(d) 84

Table 5-1 FIR Coefficients for 3-stage video interpolating filter 106

Table 5-2 Power comparisons for 1st-stage in AZ of Figure 5-6(a) and EC/P-CDS of Figure 5-6(b) 109

Table 5-3 Power analysis for 2nd - and 3rd-stage 110

Table 6-1 Tap-weight for multi-notch FIR system function 127
Table 6-2 Normalized capacitance value (fF) for FIR tap-weight 130
Table 6-3 Device size for Telescopic opamp and wide-swing biasing circuitry 134
Table 6-4 Noise contributions 138
Table 7-1 Signals in different layer of PCB 164
Table 7-2 Testing equipment list 165
Table 7-3 Performance summary of the prototype SC filter with also a comparison with the state-of-the-art CMOS SC filters 183