Interdisciplinary Applied Mathematics

Volume 23

Editors
S.S. Antman J.E. Marsden
L. Sirovich S. Wiggins

Geophysics and Planetary Sciences

Mathematical Biology
L. Glass, J.D. Murray

Mechanics and Materials
R.V. Kohn

Systems and Control
S.S. Sastry, P.S. Krishnaprasad

Problems in engineering, computational science, and the physical and biological
sciences are using increasingly sophisticated mathematical techniques. Thus, the
bridge between the mathematical sciences and other disciplines is heavily trav-
eled. The correspondingly increased dialog between the disciplines has led to the
establishment of the series: Interdisciplinary Applied Mathematics.

The purpose of this series is to meet the current and future needs for the interac-
tion between various science and technology areas on the one hand and mathe-
matics on the other. This is done, firstly, by encouraging the ways that mathe-
matics may be applied in traditional areas, and well as point towards new and
innovative areas of applications; and, secondly, by encouraging other scientific
disciplines to engage in a dialog with mathematicians outlining their problems to
both access new methods and suggest innovative developments within mathe-
matics itself.

The series will consist of monographs and high-level texts from researchers
working on the interplay between mathematics and other fields of science and
technology.



Interdisciplinary Applied Mathematics

Volumes published are listed at the end of this book.

Springer
New York
Berlin
Heidelberg
Hong Kong
London

Milan

Paris

Tokyo



Muhammad Sahimi

Heterogeneous Materials

Nonlinear and Breakdown Properties
and Atomistic Modeling

With 119 Illustrations

&) Springer



Muhammad Sahimi

Department of Chemical Engineering
University of Southern California
Los Angeles, CA 90089-1211

USA

moe @iran.usc.edu

Editors

J.E. Marsden

Control and Dynamical Systems
Mail Code 108-81

California Institute of Technology
Pasadena, CA 91125

USA

marsden@cds.caltech.edu

S. Wiggins

School of Mathematics
University of Bristol
Bristol, BS8 1'TW
United Kingdom
s.wiggins @bristol.ac.uk

Cover illustration:

L. Sirovich

Division of Applied Mathematics
Brown University

Providence, RI 02912

USA

chico@camelot.mssm.edu

S.S. Antman

Department of Mathematics

and

Institute of Physical Science and Technology
University of Maryland

College Park, MD 20742

USA

ssa@math.umd.edu

Mathematics Subject Classification (2000): 82-02, 65M

Library of Congress Cataloging-in-Publication Data

Sahimi, Muhammad.

Heterogeneous materials / Muhammad Sahimi.
p. cm. — (Interdisciplinary applied mathematics ; 22-23)
Includes bibliographical references and indexes.
Contents: [1] Linear transport and optical properties — [2] Nonlinear and breakdown

properties and atomistic modeling.

ISBN 0-387-00167-0 (v. 1 : alk. paper) — ISBN 0-387-00166-2 (v. 2 : alk. paper)
1. Inhomogenesou materials. 2. Composite materials. 1. Title. II. Interdisciplinary

applied mathematiccs ; v. 22-23.
TA418.9.153 S24 2003
620.1'1—dc21

2002042744

ISBN 0-387-95541-0 Printed on acid-free paper.

© 2003 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the writ-
ten permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY
10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not

they are subject to proprietary rights.

Printed in the United States of America.

987654321 SPIN 10885680

WWwWw.springer-ny.com

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH



To children of the third world
who have the talent but not the means to succeed
and to
the memory of my father, Habibollah Sahimi,

who instilled in me, a third world child, the love of reading



Preface

Disorder plays a fundamental role in many natural and man-made systems that
are of industrial and scientific importance. Of all the disordered systems, hetero-
geneous materials are perhaps the most heavily utilized in all aspects of our daily
lives, and hence have been studied for a long time. With the advent of new ex-
perimental techniques, it is now possible to study the morphology of disordered
materials and gain a much deeper understanding of their properties. Novel tech-
niques have also allowed us to design materials of morphologies with the properties
that are suitable for intended applications.

With the development of a class of powerful theoretical methods, we now have
the ability for interpreting the experimental data and predicting many properties
of disordered materials at many length scales. Included in this class are renor-
malization group theory, various versions of effective-medium approximation,
percolation theory, variational principles that lead to rigorous bounds to the ef-
fective properties, and Green function formulations and perturbation expansions.
The theoretical developments have been accompanied by a tremendous increase in
the computational power and the emergence of massively parallel computational
strategies. Hence, we are now able to model many materials at molecular scales
and predict many of their properties based on first-principle computations.

In this two-volume book we describe and discuss various theoretical and com-
putational approaches for understanding and predicting the effective macroscopic
properties of heterogeneous materials. Most of the book is devoted to comparing
and contrasting the two main classes of, and approaches to, disordered materials,
namely, the continuum models and the discrete models. Predicting the effective
properties of composite materials based on the continuum models, which are based
on solving the classical continuum equations of transport, has a long history and
goes back to at least the middle of the nineteenth century. Even a glance at the liter-
ature on the subject of heterogeneous materials will reveal the tremendous amount
of work that has been carried out in the area of continuum modeling. Rarely, how-
ever, can such continuum models provide accurate predictions of the effective
macroscopic properties of strongly disordered multiphase materials. In particular,
if the contrast between the properties of a material’s phases is large, and the phases
form large clusters, most continuum models break down. At the same time, due to
their very nature, the discrete models, which are based on a lattice representation
of a material’s morphology, have the ability for providing accurate predictions for
the effective properties of heterogeneous materials, even when the heterogeneities
are strong, while another class of discrete models, that represent a material as a
collection of its constituent atoms and molecules, provides accurate predictions of
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the material’s properties at mesoscopic scales, and thus, in this sense, the discrete
models are complementary to the continuum models. The last three decades of
the twentieth century witnessed great advances in discrete modeling of materials
and predicting their macroscopic properties, and one main goal of this book is to
describe these advances and compare their predictions with those of the continuum
models. In Volume I we consider characterization and modeling of the morphology
of disordered materials, and describe theoretical and computational approaches for
predicting their linear transport and optical properties, while Volume II focuses
on nonlinear properties, and fracture and breakdown of disordered materials, in
addition to describing their atomistic modeling. Some of the theoretical and com-
putational approaches are rather old, while others are very new, and therefore we
attempt to take the reader through a journey to see the history of the development
of the subjects that are discussed in this book. Most importantly, we always com-
pare the predictions with the relevant experimental data in order to gain a better
understanding of the strengths and/or shortcomings of the two classes of models.

A large number of people have helped me gain deeper understanding of the
topics discussed in this book, and hence have helped me to write about them.
Not being able to name them all, I limit myself to a few of them who, directly
or indirectly, influenced the style and contents of this book. Dietrich Stauffer has
greatly contributed to my understanding of percolation theory, disordered media,
and critical phenomena, some of the main themes of this book; I am deeply grateful
to him. For their tireless help in the preparation of various portions of this book, I
would like to thank two of my graduate students, Sushma Dhulipala and Alberto
Schroth. Although they may not be aware of it, Professors Pedro Ponte Castaieda
of the University of Pennsylvania and Salvatore Torquato of Princeton University
provided great help by guiding me through their excellent work, which is described
in this book; I would like to thank them both. Some of my own work described in
this book has been carried out in collaboration with many people; I am pleased to
acknowledge their great contributions, especially those of Dr. Sepehr Arbabi, my
former doctoral student. The constant encouragement and support offered by many
of my colleagues, a list of whom is too long to be given here, are also gratefully
acknowledged. I would like particularly to express my deep gratitude to my former
doctoral student Dr. Jaleh Ghassemzadeh, who provided me with critical help at
all stages of preparation of this book. Several chapters of this book have been used,
in their preliminary versions, in some of the courses that I teach, and I would like
to acknowledge the comments that I received from my students.

My wife, Mahnoush, and son, Ali, put up with the countless hours, days, weeks,
and months that I spent in preparing this book and my almost complete absence
during the time that I was writing, but never denied me their love and support
without which this book would have never been completed; I love and cherish
them both.

Muhammad Sahimi
Los Angeles, California, USA
May 2002
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