DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS
Abstract

Over the last decade, a vast evolution of communication systems was observed. The enormous popularity and expansion of the internet was a driving force for the development of broadband internet access in every home to cope with the increasing bandwidth requirements for multimedia applications. At the same time, wireless communication evolved from an analog network with large devices, to small and cheap handsets which are based on digital communication standards. The core of all these complex electronic systems consists of digital circuits which have a huge computational power and are implemented in CMOS technologies. The development of ever faster and more powerful digital cores opens the way to more complex systems with increasing demands for the analog part which has to provide an interfacing layer to the outside world. One of the crucial building blocks in the analog part is the Analog to Digital converter.

The goal of this work is to present an architecture study of ΔΣ AD converters and to provide insight into a wide range of analog circuit imperfections which can limit the performance. The emphasis is put on high-speed high-resolution converters in CMOS, although the material can also be applied for other specification goals and technologies.

The first part of this work takes a closer look at various architectures of ΔΣ AD converters. These range from single-loop to cascaded and various multi-bit topologies. The operation and several stability issues of the converters are discussed. The various topologies are optimized to obtain stable converters with a high accuracy and a clear overview is provided of the maximum achievable performance of each topology. Finally, the linearity problem of the DA converter in the feedback loop of multi-bit converters is discussed, together with possible solutions.

The second part studies several design aspects of ΔΣ converters, with a special focus on multi-bit implementations. Various models are provided for a wide range of linear and non-linear circuit non-idealities which can degrade the performance of the converter. These models allow the designer to determine the required specifications for the different building blocks. A power estimation is presented and used to derive several design considerations.

The last part discusses the systematic design and measurement results of two implementations. The first is a cascaded 2-1-1 converter, implemented in a 3.3V 0.5μm standard CMOS technology. It achieves a dynamic range of 92dB for a Nyquist-rate of 2.2MHz. The second converter is a multi-bit third-order topology with Dynamic Element Matching to relax the linearity requirements for the DAC. It is implemented in a standard 0.65μm CMOS technology, achieves a dynamic range of 97dB and a Nyquist-rate of 2.5MHz.
List of Symbols and Abbreviations

Abbreviations

AD Analog-to-Digital
ADC Analog-to-Digital Converter
ADSL Asymmetric Digital Subscriber Line
BiCMOS Bipolar Complementary Metal Oxide Semiconductor
biDWA Bi-Directional Data Weighted Averaging
C21 Cascaded Topology 2-1
C211 Cascaded Topology 2-1-1
C22 Cascaded Topology 2-2
CAD Computer Aided Design
CLA Clocked Averaging
CMOS Complementary Metal Oxide Semiconductor
DA Digital-to-Analog
DAC Digital-to-Analog Converter
DC Direct Current
DDS Data Directed Scrambling
DEM Dynamic Element Matching
DMT Discrete Multi Tone
DR Dynamic Range
DR_i Input Dynamic Range
DR_o Output Dynamic Range
DWA Data Weighted Averaging
DWA O2 Second-Order Data Weighted Averaging
DWArand Randomized Data Weighted Averaging
ENOB Effective Number Of Bits
FDM Frequency Division Multiplexing
FFT Fast Fourier Transform
FM Figure of Merit
FSM Finite State Machine
HPF High-Pass Filter
IC Integrated Circuit
ILA Individual Level Averaging
List of Symbols and Abbreviations

ISI Inter Symbol Interference
LPF Low-Pass Filter
LSB Least Significant Bit
MSB Most Significant Bit
MTPR Multi Tone Power Ratio
NMOS n-channel MOSFET
NRZ Non-Return-to-Zero code
OL Overload level
OTA Operational Transconductance Amplifier
pdf Probability Density Function
PDWA Partitioned Data Weighted Averaging
PMOS p-channel MOSFET
POTS Plain Old Telephony System
PROM Programmable Read Only Memory
psd Power Spectral Density
QAM Quadrature Amplitude Modulation
RZ Return-to-Zero code
SDR Signal-to-Distortion Ratio
SFDR Spurious Free Dynamic Range
SNR Signal-to-Noise Ratio
SNR\textsubscript{p} Peak Signal-to-Noise Ratio
SNDR Signal-to-Noise-and-Distortion Ratio
SNDR\textsubscript{p} Peak Signal-to-Noise-and-Distortion Ratio
SR Slew Rate
VLSI Very Large Scale of Integration
VGA Variable Gain Amplifier

Symbols

Physical

\(k \) Boltzmann's constant \((1.38 \times 10^{-23} \text{ J/K})\)
\(q \) Elementary charge \((1.60 \times 10^{-19} \text{ C})\)
\(T \) Absolute temperature

Definitions

\(\Delta \) Quantizer step size
\(\delta_1, \delta_2 \) Settling error during the sampling or integration phase
\(\gamma \) Excess noise factor
\(\phi_i \) \(i^{th}\) phase of a two phase non overlapping clocking scheme
\(\rho_1, \rho_2 \) Static error of an integrator during sampling or integration phase

\(\sigma_{\Delta T} \) Standard deviation of the clock-jitter

\(\tau_1, \tau_2 \) Time available to settle during sampling or integration phase

\(A \) Gain of the OTA

\(A_i \) Amplitude of the input signal

\(A_0 \) Nominal OTA gain

\(A_\beta, A_{VT} \) Current factor and threshold voltage mismatch parameters

\(B \) Number of bits in the quantizer

\(C_{eq,cl1}, C_{eq,cl2} \) Equivalent closed-loop load capacitance of the OTA during sampling or integration phase

\(C_{eq,ol1}, C_{eq,ol2} \) Equivalent open-loop load capacitance of the OTA during sampling or integration phase

\(C_S, C_l \) Sampling and integration capacitance

\(C_P \) Parasitic input capacitance of the OTA

\(C_L \) Load capacitance of the OTA

\(du \) Duty-cycle of the feedback pulse in a continuous-time \(\Delta \Sigma \) converter

\(e_q \) Quantization noise error in the time domain

\(E_{q,r} \) Quantization noise error of stage \(r \) in a cascaded topology

\(f_s, f_N \) Signal bandwidth and Nyquist rate (i.e. twice the signal bandwidth)

\(f_{de1}, f_{de2} \) Dominant closed-loop pole of the OTA during the integration phase in Hz

\(f_s \) Frequency of the input signal

\(f_s \) Sampling frequency

\(g_{m1}, g_0 \) Transistor or amplifier transconductance and output conductance

\(H \) Loop filter of the \(\Delta \Sigma \) converter

\(HD_2, HD_3 \) Second and third-order harmonic distortions

\(H_e, H_z \) Noise and signal transfer functions

\(k \) Quantizer gain

\(KP_n, KP_p \) Transconductance parameter of NMOS and PMOS transistor

\(L \) Channel length of a MOS transistor

\(n \) Order of the \(\Delta \Sigma \) converter

\(N_n, N_p \) Number of unit capacitances connected to \(-V_{\text{REF}} \) and \(V_{\text{REF}} \), respectively

\(N_q \) Quantization noise power

\(N_{nc} \) Total number of unit capacitances

\(P \) Power consumption

\(p_{cl1}, p_{cl2} \) Dominant closed-loop pole of the OTA during sampling or integration phase

\(OSR \) Oversampling Ratio of a \(\Delta \Sigma \) modulator

\(R_1, R_2 \) Resistance in the signal path during sampling or integration phase

\(R_N, R_P, R_{NP} \) Resistance of nMOS, pMOS and transmission gate

\(\text{SHD}_i \) Ratio of the signal to the \(i^{th} \) harmonic distortion component

\(\text{SNR}_{0.25} \) Signal-to-Noise Ratio for a relative input signal of 0.25

\(v_D, v_G, v_S \) Drain, gate and source voltage

\(v_{DB}, v_{DS}, v_{GS} \) Drain to bulk, drain to source and gate to source voltages
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{GST}</td>
<td>Gate-source overdrive voltage, i.e. $V_{GS} - V_T$</td>
</tr>
<tr>
<td>V_{REF}</td>
<td>Reference voltage of a converter</td>
</tr>
<tr>
<td>V_T, V_{Th}, V_{Tp}</td>
<td>Threshold voltage of nMOS and pMOS</td>
</tr>
<tr>
<td>W</td>
<td>Channel width of a MOS transistor</td>
</tr>
</tbody>
</table>
Abstract

List of Symbols and Abbreviations

1 Introduction
 1.1 Motivation and Applications .. 1
 1.1.1 Asymmetric Digital Subscriber Line (ADSL) 2
 1.1.2 Wideband Receiver ... 4
 1.2 The Presented Work ... 4

2 Architecture Study of Delta-Sigma Converters
 2.1 Introduction ... 7
 2.2 Operation Principle of Delta-Sigma Converters 8
 2.2.1 Nyquist-Rate ADC ... 8
 2.2.2 Oversampled ADC ... 14
 2.2.3 Oversampling Combined with Noise-Shaping: a ΔΣ ADC 18
 2.2.4 Definition of Performance Metrics for a ΔΣ ADC 22
 2.2.5 Ideal Performance of a ΔΣ ADC 25
 2.3 Optimal Coefficients for ΔΣ Converters 29
 2.3.1 Single-Loop Topologies .. 30
 2.3.1.1 First-Order ΔΣ Converters 33
 2.3.1.2 Second-Order ΔΣ Converters 35
 2.3.1.3 Third-order ΔΣ Converters 38
 2.3.1.4 Fourth and Higher-Order ΔΣ Converters 42
 2.3.1.5 Other Single-Loop Topologies 42
 2.3.2 Cascaded Topologies .. 43
 2.4 Performance Comparison of ΔΣ Topologies 53
 2.5 Continuous-Time Implementations 56
 2.6 Linearity Issues of Multi-Bit ΔΣ Converters 61
 2.6.1 Trimming and Analog Calibration Techniques 67
 2.6.2 Digital Calibration Techniques 68
 2.6.3 Dual-Quantization Techniques 68
 2.6.3.1 Leslie-Singh Architecture 69
2.6.3.2 Single-Loop Dual-Quantization Architecture 71
2.6.3.3 Cascaded Dual-Quantization Architecture 73
2.6.4 Dynamic Element Matching Techniques 74
 2.6.4.1 Randomization ... 77
 2.6.4.2 Clocked Averaging (CLA) 79
 2.6.4.3 Individual Level Averaging (ILA) 81
 2.6.4.4 Data Weighted Averaging (DWA) 81
 2.6.4.5 Bi-directional Data Weighted Averaging (biDWA) 86
 2.6.4.6 Partitioned Data Weighted Averaging (PDWA) 88
 2.6.4.7 Data Directed Scrambling (DDS) 88
 2.6.4.8 Second-Order Data Weighted Averaging (DWA 02) 91
 2.6.4.9 Vector-Quantizer Structures 92
2.6.4.10 Noise-Shaped DEM with Tree-Structures 94
2.6.4.11 Comparison ... 96

2.7 Conclusion ... 96

3 Design Considerations for Multi-Bit ΔΣ Converters 99
 3.1 Introduction ... 99
 3.2 Clock-Jitter ... 100
 3.2.1 Nyquist-Rate AD Converters 100
 3.2.2 Discrete-Time ΔΣ Converters 100
 3.2.3 Continuous-Time ΔΣ converters 101
 3.2.4 Comparison ... 104
 3.3 Discrete-Time versus Continuous-Time ΔΣ Converters 105
 3.4 System Level Considerations 108
 3.4.1 Single Ended versus Differential Implementations 108
 3.4.2 Implementations of Integrators with Single-Bit and Multi-Bit Feedback .. 109
 3.4.3 Signal Swings .. 112
 3.5 Non-Ideal Switched-Capacitor Integrator 112
 3.5.1 Finite Gain of the OTA 115
 3.5.2 Dominant Closed-Loop Pole of the OTA 117
 3.5.3 Switch Resistance and Dominant Closed-Loop Pole of the OTA . 119
 3.5.4 Slew-Rate and Dominant Closed-Loop Pole of the OTA 122
 3.5.5 Full Model Including Switch Resistance, Slew-Rate and Dominant Closed-Loop Pole .. 126
 3.6 Other Non-Idealities in a Switched-Capacitor Integrator 128
 3.6.1 Clock Feedthrough and Charge Injection 129
 3.6.2 Coefficient Mismatch .. 130
 3.6.3 Non-Linear Capacitances 130
 3.6.4 Non-Linear OTA Gain .. 133
 3.6.5 Non-Linear Switch Resistance 135
 3.7 Non-Idealities of the DAC and the Quantizer 141
 3.7.1 Non-Idealities of the DAC 141
Contents

3.7.2 Non-Idealities of the Quantizer .. 142
3.8 Noise Analysis ... 143
 3.8.1 Noise Contribution of the Different Integrators 144
 3.8.2 Equivalent Input Noise of a Switched-Capacitor Integrator 145
3.9 Power Estimation and Design Considerations 149
3.10 Conclusion .. 158

4 Implementations ... 159
 4.1 Introduction .. 159
 4.2 A 15-bit 2.2MS/s 3.3V Cascaded ΔΣ Converter 159
 4.2.1 Topology Selection and System Level Design 160
 4.2.2 Circuit Level Design .. 165
 4.2.2.1 Design of the Integrator 165
 4.2.2.2 Design of the Quantizer 169
 4.2.2.3 Design of the Clock Generator 171
 4.2.3 Layout and Measurement Results 172
 4.3 A 16-bit 2.5 MS/s 5V Multi-Bit ΔΣ Converter 176
 4.3.1 Topology Selection and System Level Design 176
 4.3.2 Circuit Level Design .. 178
 4.3.2.1 Implementation of the Data Weighted Averaging Algorithm 180
 4.3.2.2 Design of the Quantizer 182
 4.3.2.3 Design of the DAC and the Integrator 184
 4.3.3 Layout and Measurement Results 190
 4.4 Performance Comparison .. 195
 4.5 Conclusion .. 199

5 Conclusions .. 201

A A Switched-Capacitor Integrator Including Slew-Rate Effects 203
 A.1 Charges on the Capacitors .. 204
 A.2 Calculations for the Sampling Phase 205
 A.2.1 Linear Settling ... 206
 A.2.2 Slewing during an Entire Clock Phase 206
 A.2.3 Slewing followed by Linear Settling 207
 A.3 Calculations for the Integration Phase 207
 A.3.1 Linear Settling ... 208
 A.3.2 Slewing during an Entire Clock Phase 208
 A.3.3 Slewing followed by Linear Settling 209
 A.4 Conclusion .. 209

Bibliography .. 211

Index .. 223