Forecasting Mortality in Developed Countries
The book series *European Studies of Population (ESPO)* aims at disseminating population and family research, with special relevance for Europe. It may analyse past, present and/or future trends, as well as their determinants and consequences. The character of the series is multidisciplinary, including formal demographic analyses, as well as social, economic and/or historical population and family studies. The following types of studies are of primary importance: (a) internationally relevant studies, (b) European comparative studies, (c) innovative theoretical and methodological studies, and (d) policy-relevant scientific studies. The series may include monographs, edited volumes and reference works. The book series is published under the auspices of the *European Association for Population Studies (EAPS)*.

Editorial Board:

Jenny Gierveld, Netherlands Interdisciplinary Demographic Institute (NIDI), The Hague, Netherlands
Charlotte Höhn, Bundesinstitut für Bevölkerungsforschung (BiB), Wiesbaden, Germany
Therese Jacobs, Population and Family Study Centre (CBGS), Brussels, Belgium
Janina Józwiak, European Association for Population Studies (EAPS)
Nico Keilman, Statistics Norway, Oslo, Norway
Mirolav Macura, Population Activities Unit, (ECE, United Nations), Geneva, Switzerland
Maura Missiti, Istituto di Ricerche sulla Popolazione (IRP), Roma, Italy
Alain Monnier, Institut National d'Études Démographiques (INED), Paris, France
Zsolt Spéder, NKI, Budapest, Hungary

Advisory Board:

Ines Alberdi, Universidad Complutense, Madrid, Spain, Herwig Birg, (Institut für Bevölkerungsforschung, Bielefeld, Germany), Graziella Caselli, (Università degli studi di Roma “La Sapienza”, Rome, Italy), David Coleman, (Department of Applied Social Studies and Social Research, Oxford University, United Kingdom), Jack Habib, (Brookdale Institute, Jerusalem, Israel), Kalev Katus, (Estonian Interuniversity Population Research Centre, Tallinn, Estonia), Máire Ní Bhrolcháin, (Department of Social Statistics, Southampton, United Kingdom), Vita Pruza, (Danish National Institute of Social Research, Copenhagen, Denmark), Serge Scherbov, (Population Research Centre, Groningen University, Netherlands), David Sly, (Florida State University, Tallahassee, USA), Tapani Valkonen, (University of Helsinki, Finland), James Vaupel, (Max Planck Institute for Demographic Research, Rostock, Germany).

Editorial Offices:

Gijs Beets
Netherlands Interdisciplinary Demographic Institute (NIDI)
PO Box 11650
NL-2502 AR The Hague, Netherlands
Phone.: +31 70 356 5200
Fax.: +31 70 364 7187
E-mail: beets@nidi.nl

Fred Deven
Population and Family Studies Centre (CBGS)
Markiesstraat 1
B-1000 Brussels, Belgium
Phone.: +32 2 553 3588
Fax: +32 2 553 3419
E-mail: cbgs@vwc.vlaanderen.be

Technical Editors:

Joan Vrind
Anita Wouters

The titles published in this series are listed at the end of this volume.
Forecasting Mortality in Developed Countries

Insights from a Statistical, Demographic and Epidemiological Perspective

edited by

EWA TABEAU
Netherlands Interdisciplinary Demographic Institute (NIDI), The Hague, The Netherlands

ANNEKE VAN DEN BERG JETHS
National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands

and

CHRISTOPHER HEATHCOTE
Australian National University, Canberra, Australia

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW
Table of Contents

Foreword ... xi

Preface ... xv

List of Authors ... xvii

List of Figures ... xxi

List of Tables ... xxv

Part 1. Introduction

1. A Review of Demographic Forecasting Models for Mortality 1
 1.1. Most Common Classifications of Forecasting Models for Mortality ... 1
 1.2. Parameterisation Functions ... 5
 1.2.1. Predicting Mortality by Using Parameterisation Models ... 11
 1.4. Age-Period-Cohort Models ... 16
 1.5. Mortality Forecasts/Projections/Scenarios in International Agency Practice ... 20
 1.6. Forecast Errors ... 24
 1.7. Prospects for Modelling and Forecasting of Mortality 25

2. A Review of Epidemiological Approaches to Forecasting Mortality and Morbidity ... 33
 2.1. Introduction ... 34
 2.2. Statistical Regression Models ... 36
 2.3. Dynamic Multistate Models ... 42
2.3.1. Models of infectious diseases .. 43
2.3.2. Models of chronic diseases .. 46
2.4. Discussion .. 51

Part 2. Theoretical Perspectives on Forecasting Mortality

3. A Regression Model of Mortality, with Application to the Netherlands ... 59
 3.1. Introduction .. 59
 3.2. A Regression Model of Mortality 62
 3.3. Mortality in the Netherlands: Formulating a Model 69
 3.4. A Descriptive Model for Mortality in the Netherlands 76

4. Forecasting Mortality from Regression Models: the Case of the Netherlands ... 83
 4.1. Descriptive and Predictive Models 83
 4.2. Forecasting Dutch Mortality from a Descriptive Model 85
 4.3. Forecasting Dutch Mortality from a Predictive Model 90
 4.4. Discussion ... 98

5. Gompertz in Context: the Gompertz and Related Distributions, 105
 5.1. Introduction .. 106
 5.2. The Basic Gompertz Model .. 109
 5.3. The Gompertz model as a model of survival and duration data, ... 112
 5.3.1. The Gompertz Model and the Accumulation of Defects ... 112
 5.3.2. The Gompertz Model as a Generalised Logistic Distribution ... 113
 5.3.3. The Gompertz Model and the Weibull Distribution 116
 5.4. The Gompertz Distribution as an Extreme Value Distribution ... 117
 5.4.1. The Gompertz as a Truncated Extreme Value Distribution ... 117
 5.4.2. Possible Implications of the New Perspective 119
 5.5. Conclusion ... 122
6. Comparing Theoretical Age Patterns of Mortality Beyond the Age of 80

6.1. Introduction .. 127
6.2. Improved Data, New Models .. 129
6.3. Mortality at Age 80 to 109 Years in Four Countries .. 132
6.4. Fitting Models to Data for Ages 80-109 ... 137
6.5. Extrapolation of the Age Pattern seen from the Perspective of 14 Models 144
6.6. Discussion .. 151

Part 3. From Theory to Practice

7. Predicting Mortality from Period, Cohort or Cause-Specific Trends:
 a Study of Four European Countries .. 159
7.1. Introduction ... 160
7.2. The Effects of Age, Period, Cohort and Cause of Death in Forecasting Mortality ... 160
7.3. Data Types, Sources and Quality ... 164
7.4. Statistical Method used ... 165
7.5. Fitting and Forecasting: selected Issues .. 166
7.5.1. Modelling of Mortality by Cause of Death: an Example 166
7.5.2. Alternative Assumptions in Forecasting Old-Age Mortality 170
7.6. Patterns in Forecast Outcomes: Summary of the Results 173
7.6.1. Overall Cohort versus Overall Period Mortality: a Cross-National Comparison ... 174
7.6.2. Comparison of Overall Period and Cause-specific Period Mortality 180
7.7. Summary and Discussion .. 181

8. Incorporating Risk Factor Epidemiology in Mortality Projections 189
8.1. Introduction .. 190
8.2. The Chronic Diseases Model ... 191
8.2.1. General Structure .. 192
8.2.2. Model Characteristics .. 194
8.2.3. Main Model Equations .. 195
8.3. Analysis .. 196
8.3.1. Scenarios .. 197
8.3.2. Results .. 197
8.4. Discussion .. 201

 9.1. Introduction: Recent Trends in Mortality in the Netherlands ... 206
 9.2. Determinants of Mortality .. 208
 9.3. Cohort Effects in Forecasting Mortality 211
 9.4. Usefulness of Causes of Death for Forecasting Mortality 213
 9.5. Future Prospects for Dutch Mortality 215
 9.6.1. Method of Forecasting 217
 9.6.2. Forecasting Assumptions 220
 9.7. Uncertainty of Mortality Forecasts 222

10. The Latest Mortality Forecasts in the European Union 227
 10.1. The Growing Importance of Mortality in Ageing Populations .. 228
 10.2. General Features of the Latest Mortality Forecasts in the
 European Union .. 229
 10.3. Life Expectancy in the Future: the Optimistic and the
 Pessimistic Views .. 231
 10.4. A Lack of Uniformity in Mortality Assumption by Age 233
 10.5. A Moderate Use of Variants in the National Forecasts 239
 10.6. Justifications are Simple and Straightforward 240
 10.7. Various Forecasting Methodologies in Use 241
 10.8. Conclusions ... 243

Annex to Chapter 10 .. 247

 11.1. Introduction .. 261
 11.2. Physiological Ageing and Mortality 262
 11.3. Homeostasis and Stochasticity 265
 11.4. Heterogeneity in Mortality 268
 11.5. Changing Frailty Models 269
 11.6. Finite-State Heterogeneity Process 270
 11.7. Continuously Changing Heterogeneity Process 270
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8</td>
<td>The Conditional Gaussian Model</td>
<td>271</td>
</tr>
<tr>
<td>11.9</td>
<td>Repair Capacity and Mortality</td>
<td>272</td>
</tr>
<tr>
<td>11.10</td>
<td>Mortality and Evolution</td>
<td>274</td>
</tr>
<tr>
<td>11.11</td>
<td>Concluding remarks</td>
<td>275</td>
</tr>
<tr>
<td>12.</td>
<td>Towards an Integration of the Statistical, Demographic and Epidemiological Perspectives in Forecasting Mortality</td>
<td>281</td>
</tr>
<tr>
<td>12.1</td>
<td>The Need for Information on Future Levels of Mortality</td>
<td>281</td>
</tr>
<tr>
<td>12.2</td>
<td>Models of Mortality: Contemporary Practice</td>
<td>282</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Demographic Models of Overall Mortality</td>
<td>282</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Demographic Models of Old-Age Mortality</td>
<td>284</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Process-Based Demographic Models of Mortality</td>
<td>285</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Demographic Models of Mortality by Components</td>
<td>286</td>
</tr>
<tr>
<td>12.2.5</td>
<td>Epidemiological Models of Mortality and Morbidity</td>
<td>287</td>
</tr>
<tr>
<td>12.2.6</td>
<td>Models of Mortality in Population Forecasting</td>
<td>289</td>
</tr>
<tr>
<td>12.3</td>
<td>Formulating Assumptions in Mortality Forecasting</td>
<td>292</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Assumptions in Predicting Mortality by Extrapolation</td>
<td>292</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Target Selection in Predictions by Interpolation</td>
<td>293</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Assumptions in Health Forecasting: Epidemiological Scenarios</td>
<td>295</td>
</tr>
<tr>
<td>12.4</td>
<td>Data Needs in Mortality Forecasting</td>
<td>296</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Data Needs in Forecasting Old-Age Mortality</td>
<td>297</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Data Needs in Forecasting Mortality by Cause of Death</td>
<td>299</td>
</tr>
<tr>
<td>12.5</td>
<td>Concluding Remarks</td>
<td>300</td>
</tr>
</tbody>
</table>
Foreword

Forecasting is a hazardous yet essential enterprise, in demography as in other fields. This volume contains contributions to the theory and practice of forecasting of mortality in the relatively favourable circumstances in developed countries; that is, when extensive historical data are available, at least in aggregate form, and when the economic, epidemiological and social contexts are understood to the extent that current knowledge permits. In this case it is possible to focus on the central problem of first finding an apt description of the past and then combining this historical knowledge with a variety of considerations, many subjective, to make a forecast. An apt description of the past is increasingly coming to mean a quantitative summary as given by a statistical model in the form of a regression or time series. The subjective considerations are essentially judgemental factors based on more or less expert opinion.

Even though circumstances are relatively favourable in low-mortality developed countries, the advantages are only relative, and there remain serious impediments to the process of formulating a forecast. To an extent, this is due to difficulties in finding a generally acceptable methodological approach, and dilemmas in formulating assumptions for models, and partly due to deficiencies in the data such as a lack of generation and cause-of-death or longitudinal survey data on linked mortality and disability. It is therefore useful to discuss the experience collected by scientific institutes and statistical practice with a view to developing improved forecasting techniques. Considerations such as these prompted the organisation of the workshop 'Forecasting of mortality in developed countries: searching for better methods and realistic assumptions'.

The workshop was an initiative of the Netherlands Interdisciplinary Demographic Institute, and took place at its premises on 5 September 1997. The participants included representatives of several Dutch and European organisations, which have done much of the work on forecasting of mortality:
the Netherlands Interdisciplinary Demographic Institute (NIDI), the French National Demographic Institute (INED), the National Institute for Public Health and the Environment (RIVM, the Netherlands), some departments of the Erasmus University in Rotterdam, the Population Research Centre of Groningen University (PRC RUG), Statistics Netherlands (NCBS), and the Statistical Office of the European Communities (Eurostat). By inviting experts, we hoped to benefit from a range of experience in the field. Three invited speakers were present: professor Nicolas Brouard (the French National Demographic Institute (INED), Paris, France), professor Christopher Heathcote (the Australian National University, Canberra, Australia) and Harri Crujsen (Eurostat, Luxembourg). The two first guests are statisticians, both oriented theoretically in their work on mortality and health. The third guest, a mathematician, represents the statistical practice in Europe and has a deep interest in demographic projections.

The workshop was a platform where we summarised and shared relevant experience, as well as explored future directions in making forecasts of mortality in low-mortality countries in Europe, in particular in the Netherlands. Our discussions were creative and constructive, inventive and stimulating. They were also well structured and complete, meaning they were carefully prepared, so that we decided to put our thoughts on paper. The workshop was apparently a strong incentive to many of us, as today we are able to present a coherent collection of 12 papers written in response to what we talked about at that time. In this way, the reader gets a book with a state-of-the-art overview of the works done recently on mortality forecasting in developed countries of western Europe, especially in the Netherlands, and of prospects for mortality forecasting in these countries.

Our book is meant for all scientists interested in forecasting mortality and aims to bring together contributions not only from demography but also from official and mathematical statistics and epidemiology. Our belief is that an interdisciplinary approach has much to offer. Techniques from mathematical statistics and econometrics can provide useful descriptions of past mortality. The naive forecast obtained by extrapolating a fitted model may give as good a forecast as any but forecasting by extrapolation requires careful justification since it assumes the prolongation of historical conditions. That is, stationarity is assumed. On the other hand, whilst it is generally accepted that scientific and other advances will continue to impact on mortality, perhaps dramatically so, it is impossible to quantify more than the outline of future consequences.
with a strong degree of confidence. The decision to modify an extrapolation of a model fitted to historical data (or conversely choosing not to modify it) to obtain a forecast must therefore be strongly influenced by subjective and judgemental elements, with the quality of the latter dependent on demographic, epidemiological and indeed perhaps more general considerations. Thus the thread running through the book reflects the necessity of integrating demographic, epidemiological and statistical factors to obtain an improvement in the prediction of mortality. Included are the following issues: statistical models in both the descriptive and predictive senses, assumptions about changes in future mortality and making explicit judgmental and subjective considerations, and satisfying the needs of users by incorporating issues such as health and morbidity into forecasting.

There are four parts to the book: an introduction (Part 1), theoretical perspectives on the forecasting of mortality (Part 2), from theory to practice (Part 3), and issues for the future (Part 4).

Part 1 consists of two review contributions. Of these, Chapter 1 reviews demographic methods of forecasting mortality and includes a discussion of time series and other parametric models that have developed a substantial literature in recent years. Chapter 2 describes epidemiological models which incorporate consideration of disease processes and related risk factors and their use in forecasting mortality.

The material in Part 2 is more mathematical in nature. Chapters 3 and 4 deal with regression modelling of what are called mortality surfaces. These surfaces are functions of time and age that are measures of mortality and that can be estimated by known statistical methods. Chapter 5 brings together facts about the Gompertz distribution and related matters. Chapter 6 treats the problems of modelling mortality at the oldest old ages, again using regression techniques, and including a comparison of demographic models for mortality over age 80.

The focus of the contributions in Part 3 is on practical matters. Chapter 7 discusses the role of period, cohort and cause-of-death effects in the forecasting of mortality. Chapter 8 adopts an epidemiological approach in which mortality is considered from the point of view of combining risk factor prevalence and related disease risks. Models used for official forecasts of Dutch mortality are presented in Chapter 9, and Chapter 10 is a critical review
of the methods and assumptions used in obtaining the latest mortality forecasts in the countries of the European Union.

Chapter 11 in Part 4, Issues for the future, reviews mortality models formulated using concepts belonging to various theories of human ageing. Hopefully, some of the models representing this new line of research will be used in forecasting mortality in the years to come. Finally, Chapter 12 in Part 4 summarises the content of this book and focuses on the requirements of mortality forecasting from the perspective of assumptions, models and data. The discussion is influenced by keeping in mind various forms of the demand for information on future levels of mortality, that is, demand due to population forecasting, health forecasting and scientific analyses. This chapter ends by stressing the necessity of integrating the tools and perspectives of the disciplines of demography, epidemiology, and statistics in order to achieve improved forecasts of mortality.

The editors
Preface

This book is the result of several activities related to forecasting mortality and health in low mortality countries of Europe in the 1990s. Many of these activities were completed with the financial support of the European Commissions’ Directorate-General V (Employment, Industrial Relations and Social Affairs), the Netherlands Interdisciplinary Demographic Institute (NIDI), and the Dutch Institute of Public Health and the Environment (RIVM).

Several people helped us at different stages of this project contributing to the completion of this book. First of all, thanks are due to all those whose views and ideas inspired a great deal of the works completed in this project and who also enabled us to gather the necessary data for the analyses presented here: France Mesle, Jacques Vallin and Nicolas Brouard in France, Graziella Caselli and Valerio Terra Abrami in Italy, Jens-Kristian Borgan in Norway, James Vaupel in Germany, and Harri Cruijsen in the Netherlands (previously at Eurostat in Luxembourg). We thank Kirill Andreev (Germany) who prepared the oldest-old data and Jeroen Berkien (the Netherlands) who helped us restructure certain data. Our greatest debt is to an anonymous referee who reviewed the manuscript on behalf of ESPO and in a handful of priceless remarks and suggestions guided the authors in their revisions and the editors in editing this volume. We received invaluable support from Evert van Imhoff (the Netherlands) who read and commented on several chapters. Leo van Wissen (the Netherlands) helped us with the organisational aspects of this project. Many thanks are due to Willemien Kneppelhout and Anne Mark for their professional approach and creativity in editing our English. We thank Tonny Nieuwstraten who with devotion and passion prepared the final lay-out of this volume, Leon Vermeulen who invented the electronic procedures for this publication, and Jacqueline van der Helm who had the final responsibility for the ESPO style of this volume.
List of Authors

Joop de Beer is an economist and chief of the Population Forecasting Unit at the Population Division of Statistics Netherlands.

Anneke van den Berg Jeths is a sociologist working as a senior researcher on the future of health and health care in the Netherlands. She is one of the project leaders in the project “Public Health Status and Forecasts” at the National Institute of Public Health and the Environment (RIVM).

Lech Boleslawski is a statistician and demographer, and chief of the Population Forecasting Section at the Population Division of Statistics Poland. He is responsible for the official mortality forecasts for Poland.

Alinda Bosch is a demographer working in the field of mortality, migration and reproductive health at the Netherlands Interdisciplinary Demographic Institute.

Harri Cruijsen is a mathematician and project leader in the field of demographic projections for the Statistical Office of the European Commission (Eurostat). He is currently attached to Statistics Netherlands.

Harold Eding is a demographer and works as a researcher in projects on European demographic projections at the Netherlands Interdisciplinary Demographic Institute.

Peter Ekamper is a demographer and economist, working as a senior researcher in the field of demographic forecasting at the Netherlands Interdisciplinary Demographic Institute.

Marianne van Genugten is a mathematician and senior researcher working on public health forecasting at the National Institute of Public Health and Environment, the Netherlands.
Christopher Heathcote (Ph.D.) retired as a professor of mathematical statistics at the Faculty of Economics and Commerce, Australian National University, in 1996. He still works at the university as a visiting fellow and emeritus professor.

Tim Higgins is a statistician working on mortality forecasting in the Australian Government Actuary's Office, Canberra, and as a research student at the Australian National University.

Guus de Hollander was trained in biology, environmental epidemiology, toxicology and science philosophy. He has been working in the field of environmental health impact assessment, risk assessment and management, both as a researcher at RIVM and as a scientific secretary to the Health Council of the Netherlands.

Rudolf Hoogenveen studied applied mathematics, specializing in operations research and system theory. He has been working on the development and use of life table-based models in epidemiology and public health at the National Institute of Public Health and the Environment (RIVM), the Netherlands.

Wim van Hoorn is a statistician and senior associate working at the Population Forecasting Unit of the Population Division of Statistics Netherlands. He prepares official mortality forecasts in the Netherlands.

Corina Huisman is a demographer working on mortality forecasting and other demographic processes in the Demographic Forecasting Research Cluster at the Netherlands Interdisciplinary Demographic Institute.

Ewa Tabeau (Ph.D.) is a demographer and statistician working as a project leader in the field of quantitative and qualitative research on mortality, health and longevity in the Demographic Forecasting Research Cluster at the Netherlands Interdisciplinary Demographic Institute.

Frans Willekens (Ph.D.) is a professor of mathematical demography and head of the Population Research Centre at the University of Groningen in the Netherlands.
Anatoli Yashin (Ph.D.) is a professor of mathematical demography and head of the Laboratory of Advanced Statistical Methods at the Max-Planck Institute for Demographic Research in Germany.
List of Figures

2.1. Classes of determinants of health status .. 35
2.2. Global burden of disease: model used in modelling mortality and morbidity ... 40
2.4. Effectivity ratios of interventions on chlamydia 45
2.5. Basic structure of a model for cancer screening 50
3.1. Lexis diagram. Historical data shown as a rectangle t(0) < t < t(1), x(0) < x < x(1). The cohort born at time c lies on the diagonal commencing at (c,0) .. 60
3.2. Lexis diagram of population data along a cohort 70
3.3. Dutch male observed log (odds), ages 1-100, years 1850-1990 71
3.4. Dutch male and female log(odds) for various ages, 1890-1990 (males bold, females dashed) .. 73
3.5. Plot of the fitted mortality surface of Dutch males (see Table 3.1) ... 79
4.1. Observed and extrapolated post-war log(odds) of Dutch males. Ages 40-94, years 1946-2030 .. 86
4.2. Period and cohort life expectancy from fitted and extrapolated mortality surfaces. Dutch males and females at ages 60 and 80 87
4.3. Observed, fitted and extrapolated log (odds) based on descriptive models. Dutch males and females at ages 60 and 80 88
4.4. Observed and predicted log (odds) based on predictive models. Dutch males and females at ages 60 and 80 95
4.5. Period and cohort life expectancy from fitted and predicted mortality surfaces. Dutch males and females at ages 60 and 80 98
4.6. Period life expectancy calculated from descriptive and predicted mortality surfaces. Dutch males and females at ages 40, 60 and 80 .. 99
4.7. Probability of survival to age x given age 40 in 1970 (1930 birth cohort) based on descriptive and predictive models. Dutch males and females .. 99
6.1. Old-age mortality in four countries 1950-1994 .. 134
6.2a. Old-age mortality by countries and decades, countries (pooled data from 1950-1994) ... 135
6.2b. Old-age mortality by countries and decades, decades (pooled data from four countries) ... 135
6.3. Exponential rate of change of mortality with age (three countries, 1950-1994) .. 136
6.5. Extrapolation of mortality beyond age 85 resulting from selected models. Pooled data from three countries, 1950-1994. Fit interval 60-84 years, weights method 2 .. 149
7.1. Forecast of mortality from lung cancer: age patterns for Dutch men ... 167
7.2. Empirical and forecasted SMRs Lung cancer, Dutch men, age 40+ .. 168
7.3. Static and dynamic estimates of base parameters. Mortality from lung cancer, Dutch men ... 169
7.4a. Empirical and forecasted age-standardised mortality rates. Overall period, cause-specific period forecasts 176
7.4b. Empirical and forecasted age-standardised mortality rates. Overall period, overall cohort, cause-specific forecasts 177
8.1. Basic structure of the chronic diseases model .. 193
8.2a. Smoking prevalence in different scenarios ... 198
8.2b. Smoking prevalence in different scenarios ... 198
8.3a. Standardized lung cancer mortality in different scenarios 199
8.3b. Standardized lung cancer mortality in different scenarios 199
8.4a. Standardized coronary heart disease mortality in different scenarios .. 200
8.4b. Standardized coronary heart disease mortality in different scenarios .. 200
9.1. Life expectancy at birth in the Netherlands .. 207
9.2. Sex differences in life expectancy (F-M) .. 207
9.4. Mortality rates in 2050 (1995=100) .. 220
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5.</td>
<td>Life expectancy at birth, 1998 Netherlands Population Forecasts... 221</td>
</tr>
<tr>
<td>10.1.</td>
<td>Number of projection variants... 229</td>
</tr>
<tr>
<td>10.3.</td>
<td>Length of projection period (in years)... 230</td>
</tr>
<tr>
<td>10.5a.</td>
<td>Increase in life expectancy – males (years).................................. 232</td>
</tr>
<tr>
<td>10.3b.</td>
<td>Increase in life expectancy – females (years)................................ 232</td>
</tr>
<tr>
<td>10.4.</td>
<td>Variance in life expectancy between the EU countries (years)............ 233</td>
</tr>
<tr>
<td>10.6a.</td>
<td>Male life expectancy for 2000 – differences between the latest national forecasts and those made around 1985 (years).............. 234</td>
</tr>
<tr>
<td>10.5b.</td>
<td>Female life expectancy for 2000 – differences between the latest national forecasts and those made around 1985 (years).............. 234</td>
</tr>
<tr>
<td>10.6a.</td>
<td>Male life expectancy – differences between national forecasts and UN projections, 1995-2020 (years)................................. 235</td>
</tr>
<tr>
<td>10.6b.</td>
<td>Female life expectancy – differences between national forecasts and UN projections, 1995-2020 (years)................................. 235</td>
</tr>
<tr>
<td>10.7a.</td>
<td>Male life expectancy – differences between national forecasts and Eurostat's baseline scenario, 1995-2020 (years)..................... 236</td>
</tr>
<tr>
<td>10.7b.</td>
<td>Female life expectancy – differences between national forecasts and Eurostat's baseline scenario, 1995-2020 (years)..................... 236</td>
</tr>
<tr>
<td>10.10c.</td>
<td>Variance of mortality changes between EU countries, 1995-2020........... 238</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Main parameterization functions for mortality</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Actual and projected mortality from lung cancer by age and sex, England and Wales, 1951-2025 (rates per million)</td>
<td>40</td>
</tr>
<tr>
<td>2.2</td>
<td>Estimates of life expectancy with risk factor interventions</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Dutch males. Results for the fit to $\delta(\beta; t, x) = \beta_0 + \sum_{i=1}^{24} \beta_i X_i$ for (t, x) in (3.5)</td>
<td>77</td>
</tr>
<tr>
<td>3.2</td>
<td>Dutch females. Results for the fit to $\delta(\beta; t, x) = \beta_0 + \sum_{i=1}^{24} \beta_i X_i$ for (t, x) in (3.5)</td>
<td>78</td>
</tr>
<tr>
<td>4.1</td>
<td>Observed (1990) and predicted ($t \geq 1991$) period life expectancies for Dutch males and females. Extrapolations of the descriptive models (3.9) and (3.10). Standard errors shown in brackets.</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>Cohort life expectancies of Dutch males and females predicted from the descriptive models (3.9) and (3.10). Standard errors are shown in brackets.</td>
<td>92</td>
</tr>
<tr>
<td>4.3</td>
<td>Observed (1990) and predicted ($t \geq 1991$) period life expectancies for Dutch males and females. Extrapolation of the predictive models (4.1) and (4.2). Standard errors similar to those in 4.1.</td>
<td>96</td>
</tr>
<tr>
<td>4.4</td>
<td>Cohort life expectancies for Dutch males and females obtained from extrapolation of the predictive models (4.1) and (4.2). Standard errors similar to those in 4.2.</td>
<td>98</td>
</tr>
<tr>
<td>6.1</td>
<td>Mortality models employed in the survey</td>
<td>140</td>
</tr>
<tr>
<td>6.3a</td>
<td>Sum of squared residuals in 11 models for old-age mortality, by countries, 1950-94. Fit interval 80-104 years.</td>
<td>147</td>
</tr>
<tr>
<td>6.3b</td>
<td>Sum of squared residuals in 11 models for old-age mortality, by countries, 1950-94. Fit interval 80-104 years.</td>
<td>148</td>
</tr>
</tbody>
</table>
6.4a. Fit and extrapolation goodness of 14 models for old-age mortality, three countries, 1950-1994. Fit interval 60-84 years… 147
6.4b. Fit and extrapolation goodness of 14 models for old-age mortality, three countries, 1950-1994. Fit interval 60-84 years… 148
7.1. Alternative models for mortality of Dutch men 172
7.2. Overview of trends in the Gompertz parameters used for our projections ... 172
7.3. Life expectancy in France, Italy, the Netherlands and Norway in 2020 according to the period, cause-of-death and cohort projection approaches .. 175
7.4. Observed and projected average annual rates of change in SMRs by forecasting approach .. 178