CANCER GENE THERAPY
Past Achievements and Future Challenges
Recent Volumes in this Series

Volume 465
CANCER GENE THERAPY: Past Achievements and Future Challenges
Edited by Nagy A. Habib

Volume 466
CURRENT VIEWS OF FATTY ACID OXIDATION AND KETOGENESIS:
From Organelles to Point Mutations
Edited by Patti A. Quant and Simon Eaton

Volume 467
TRYPTOPHAN, SEROTONIN, AND MELATONIN: Basic Aspects and Applications
Edited by Gerald Huether, Walter Kochen, Thomas J. Simat, and Hans Steinhart

Volume 468
THE FUNCTIONAL ROLES OF GLIAL CELLS IN HEALTH AND DISEASE:
Dialogue between Glia and Neurons
Edited by Rebecca Matsas and Marco Tsacopoulos

Volume 469
EICOSANOIDs AND OTHER BIOACTIVE LIPIDS IN CANCER, INFLAMMATION,
AND RADIATION INJURY, 4
Edited by Kenneth V. Honn, Lawrence J. Marnett, and Santosh Nigam

Volume 470
COLON CANCER PREVENTION;
Dietary Modulation of Cellular and Molecular Mechanisms
Edited under the Auspices of the American Institute for Cancer Research

Volume 471
OXYGEN TRANSPORT TO TISSUE XXI
Edited by Andras Eke and David T. Delpy

Volume 472
ADVANCES IN NUTRITION AND CANCER 2
Edited by Vincenzo Zappia, Fulvio Delia Ragione, Alfonso Barbarisi,
Gian Luigi Russo, and Rossano Dello Iacovo

Volume 473
MECHANISMS IN THE PATHOGENESIS OF ENTERIC DISEASES 2
Edited by Prem S. Paul and David H. Francis

Volume 474
HYPOXIA: INTO THE NEXT MILLENNIUM
Edited by Robert C. Roach, Peter D. Wagner, and Peter H. Hackett

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher.
To all the clinicians, scientists, and various other people who are passionate about cancer research and have dedicated their lives to the advancement of knowledge and the discovery of a cancer cure
PREFACE

With the coming of the new millennium we are witnessing a revolution in our understanding of cancer genetics. These are very exciting times. Today we have at our disposal the technology to diagnose abnormalities in our cancer genes and the means to correct the deficit and very soon we will have the complete sequence of the human genome.

With the use of gene chip technology the way doctors will be able to assess patients will change completely. Today we can diagnose abnormalities in ten thousand genes and within a short period of time we will be able to screen through our genome and discover potential abnormalities in our proto-oncogenes, tumour suppressor genes, differentiating genes, apoptotic genes and pro-inflammatory genes. In this book various authors have highlighted specific genes that could be expressed, overexpressed, neutralised or harnessed to achieve cancer control.

The problem of transferring the therapeutic gene into the cancer cell has been partly addressed with major developments in the field of naked plasmid DNA, adenovirus, retrovirus and adeno-associated viruses. However, further improvements are yet to be made to achieve significant gene transfer. Gene expression, in particular specificity of gene transfer, is obviously an important issue and one which is highlighted in this book by the use of specific promoter.

There are many potentially promising avenues to pursue to achieve cancer cell apoptosis or necrosis and some pre-clinical and clinical data are promising. Various clinical studies, including the use of Ad p53 and Ad E1B deleted, are progressing from phase II into phase III studies and are showing promise when their use is combined with chemotherapy.

Although progress in this field has been relatively slow, gene therapy has come of age. Already the first gene therapy drug has FDA approval for use in patients with CMV retinitis to save eyesight. Cancer is a more problematic disorder to solve as it involves many overexpressed oncogenes and several deleted or mutated tumour suppressor genes. Although cure is unlikely to happen tomorrow, cancer gene therapy is undoubtedly here to stay.
I would like to acknowledge Sandra Doherty for putting this book together and for charming various authors for their manuscripts.
CONTENTS

I. The Clinical Problem

1. Management Problems in Oncology ... 3
 Susan J. Cleator and Pat Price

II. Vectors

2. Adenoviral Vectors ... 13
 Prem Seth

3. Retrovirus Vectors ... 23
 Yasuhiro Takeuchi and Massimo Pizzato

4. Targetable Gene Delivery Vectors ... 37
 Paul L. Hallenbeck and Susan C. Stevenson

5. Human α-fetoprotein Transcriptional Regulatory Sequences:
 Application to Gene Therapy .. 47
 Taiki Tamaoki

6. Tumor-Targeted Salmonella: Highly Selective Delivery Vectors 57
 David Bermudes, Brooks Low, and John Pawelek

7. Mutant Adenoviruses Selectively Replication-Competent in Tumor Cells ...
 Makoto Sunamura

8. Polyoma and Papilloma Virus Vectors for Cancer Gene Therapy 73
 Nina Krauzewicz and Beverly E. Griffin

9. Cochleates: Lipid-Based Vehicles for Gene Delivery—Concept,
 Achievements and Future Development ... 83
 Leila Zarif and Raphael J. Mannino

10. The Use of Skeletal Muscle to Express Genes for the Treatment of
 Cancer .. 95
 Stephen Coe, Michael Harron, Marc Winslet, and Geoffrey Goldspink
III. Cell Cycle Control

11. Adhesion Molecules in Cancer Biology 115
 Yaw Ohene-Abuakwa and Massimo Pignatelli

12. Cell Cycle Control ... 127
 Vivien J. Tannoch, Phil W. Hinds and Li-Huei Tsai

IV. Apoptosis

13. Killer/DR5, A Novel DNA-Damage Inducible Death Receptor Gene,
 Links the p53-Tumor Suppressor to Caspase Activation and
 Apoptotic Death .. 143
 Gen Sheng Wu, Kunghong Kim, and Wafik S. El-Deiry

14. Apoptin® ... 153
 Alexandra Pietersen and Mathieu H. M. Noteborn

15. Adenovirus-Mediated Herpes Simplex Thymidine Kinase Gene
 Therapy For Brain Tumors .. 163
 Anu-Maaria Sandmair, Matti Vapalahti, and Seppo Ylä-Herttuala

16. Development of Clinical Trial of E1A Gene Therapy Targeting
 HER-2/neu-overexpressing Breast and Ovarian Cancer 171
 M-C. Hung, G. N. Hortobagyi, and N. T. Ueno

V. Tumour Suppressor Genes

17. Pre-clinical Studies with Tumor Suppressor Genes 183
 Prem Seth

18. Gene Therapy for Liver Tumors .. 193
 Ragai R. Mitry, Marc R. Mansour, Roman Havlík, and Nagy A. Habib

19. Adenovirus-mediated Transfer of a p53 Gene in Ovarian Cancer.... 207
 Junzo Kigawa and Naoki Terakawa

VI. Other Systems

20. Eliciting Hyperacute Rejection as a Tumor Killing Strategy: Herpes
 Amplicon Vector Transfer of the α(1,3) Galactosyltransferase Gene . 217
 Charles J. Link Jr., Daniel J. Hellrung, Tatiana Seregina,
 and Suming Wang
21. Innate Immune Therapy for Cancer: Screen for Molecules molecules of Activating the Innate Immune System ... 229
 Tsukasa Seya, Nasim A. Begum, Midori Nomura, Shoutaro Tsuji,
 Misako Matsumoto, Akira Hayashi, Ichiro Azuma,
 and Kumow Toyoshima

22. Mda-7: A Novel Melanoma Differentiation Associated Gene with Promise for Cancer Gene Therapy .. 239
 Malavi T. Madireddi, Zao-Zhong Su, Charles S. H. Young,
 Neil I. Goldstein, and Paul B. Fisher

VII. Antisense and Ribozymes

23. Antisense IGF and Antisense IGF-IR Therapy of Malignancy 265
 Hao Wang, Yanjun Liu, Lixin Wei, and Yajun Guo

24. Sensitization of Tumors to Chemotherapy Through Gene Therapy 273
 Ruth A. Gjerset and Dan Mercola

 James S. Norris, Brian Hoel, Dale Voeks, Frideriki Maggouta,
 Michael Dahm, Weihua Pan, and Gary Clawson

26. Ribozymes: Their Design and Use in Cancer 303
 Philip C. Turner

27. The Approach of Triple Helix Formation in Control of Gene Expression and the Treatment of Tumors Expressing IGF-1 319
 Lia C. Upegui-Gonzalez, Jean-Christophe François, Adama Ly,
 and Jerzy Trojan

VIII. Immuno-Modulation

28. Dendritic Cell-based Immunization for Cancer Therapy 335
 Michael A. Morse and H. Kim Lyerly

29. Hybrid Cell Vaccination for Cancer Immunotherapy 347
 Peter Walden

30. Modulation of the Immune Response Through 4-1BB 355
 Gabriel Sica and Lieping Chen

31. Heat Shock Proteins in Cancer Therapy 363
 Katalin V. Lukacs, Olivier E. Pardo, M. Jo Colston,
 Duncan M. Geddes, and Eric WFW Alton
32. Bi-Specific Antibodies in Cancer Therapy 369
 Hao Wang, Yanjun Liu, Lixin Wei, and Yajun Guo

33. B7.1 and Cytokines: Synergy in Cancer Gene Therapy 381
 Marcel Kuiper, Raquel Sanches, Yves-Jean Bignon, and Farzin Farzaneh

34. Intrallesional Vaccinia/GM-CSF Recombinant Virus in the Treatment of Metastatic Melanoma .. 391
 Michael J. Mastrangelo, Henry C. Maguire Jr., Edmund C. Lattime

IX. Suicidal Genes

35. Approaches to Gene-Directed Enzyme Prodrug Therapy (GDEPT)........ 403
 Caroline J. Springer and Ion Niculescu-Duvaz

36. Suicide Gene Therapy .. 411
 Scott M. Freeman

37. Adenoviruses as Gene Delivery Vectors 423
 Anu-Maaria Sandmair, Matti Vapalahti, and Seppo Ylä-Herttuala

X. Angiogenesis Control

38. Evaluation of an Inhibitor of DNA Methylation, 5-aza-2'-deoxycytidine, for the Treatment of Lung Cancer and the Future Role of Gene Therapy ... 433
 Richard L. Momparler, Nicoletta Eliopoulos, and Joseph Ayoub

39. Vascular Endothelial Growth Factor as a Target for Cancer Gene Therapy ... 447
 Josephine Tuong Nguyen

40. Adeno-Associated Virus and Other Potential Vectors for Angiostatin and Endostatin Gene Therapy .. 457
 Josephine Tuong Nguyen

XI. Matrix Metallo Proteinase

41. Potential Applications of Tissue Inhibitor of Metalloproteinase (TIMP)
 Overexpression for Cancer Gene Therapy 469
 Andrew H. Baker, Matti Ahonen, and Veli-Matti Kähäri

Contributors ... 485

Index ... 495