References


© Springer Nature Singapore Pte Ltd. 2016


List of Symbols

Symbols

\[ \pm, \pm, \pm, \pm \] 78

*, Hodge star operator 94

\( \Lambda^+(N) \) 56

\( \Lambda^+_\text{even}(N) \) 58

\( \Lambda = -(dd^* + d^*d) \), Hodge Laplacian 95

\( \Delta_{\mathbb{S}^{n-1}} \) 5, 101

\( \Delta_{\mathbb{L}^n} \), holomorphic Laplacian 42

\( \Xi \), light cone 14, 132

\( \Pi_{\ell, \delta} \), irreducible unitary representation of \( O(n+1,1) \) 19

\( \Pi_{n-1} \), projection onto \( \text{Ker}(t_{\frac{2}{\delta^{n}}}) \) 103, 108, 122

\( \Phi^+_{u, \delta} \equiv (\Phi_{u, \delta}^{(i)})^* \) 93

\( \Omega(h,x) \), conformal factor 1

\( \gamma(\mu, a) \) 5, 157, 165, 166, 175

\( e_n(I) \), signature of index set \( I \) 94

\( t \), conformal compactification 15, 136

\( i_{\lambda}^{(i)} \), map to flat picture 16, 126

\( t_{\overline{\delta}_{n}} \), interior multiplication 5, 61, 101, 104, 108

\( [\lambda] \), \( O(N) \)-modification rule 59

\( \lambda \setminus v \), skew diagram 57

\( \lambda / v \) 57

\( \mu^\gamma \equiv \mu^\gamma(i, \alpha) \), small \( K \)-type 19

\( \mu^\mu \equiv \mu^\mu(i, \alpha) \), small \( K \)-type 19

\( \xi^\pm (\in \Xi) \) 14

\( [\xi^\pm] (\in \Xi / \mathbb{R}^n = S^n) \) 14, 21

\( [\xi^-] \), north pole in \( S^n \) 15, 136

\( \sigma_{\lambda}^{(i)} \), conformal representation on \( i \)-forms 1, 17, 20, 93, 94

\( \pi_{(\sigma, \lambda)} \), principal series 33

\( \pi_{(\sigma, \lambda)^*} \) 33

\( \rho \) 18, 33

\( \rho \) 18

\( \sigma^\lambda : = \sigma \boxtimes \mathbb{C}^\lambda \) 15, 33, 35, 41

\( \sigma^* : = \sigma^\prime \boxtimes \mathbb{C}^\rho - \lambda \) 33

\( \sigma_{\lambda}^{(i)} \), representation of \( P \) on \( \bigwedge^i (\mathbb{C}^n) \) 15, 63, 67, 88, 121, 144

\( \tau_y \equiv \tau \boxtimes \mathbb{C}^\nu \) 34, 41

\( \tau_{\nu, \beta}^{(i)} \), representation of \( P' \) on \( \bigwedge^j (\mathbb{C}^{n-1}) \) 21, 63, 67, 88, 121

\( \vartheta_z = z \frac{d}{dz} \) 79, 175

\( \chi_{\pm, \pm} \), one-dimensional representation of \( O(n+1,1) \) 16, 20, 27

\( \chi_{-} \) 16, 21, 126

A

A, split torus (\( \simeq \mathbb{R} \)) 14, 17, 21, 32

\( A_{H'} \), matrix coefficient of \( A_{\sigma} \) 47, 52

\( A_{H''} \), matrix component of \( A_{\sigma} \) 74, 75, 146
\(A_\# \quad 31\)
\(A_\sigma\), vector part of \(d\pi(\sigma, \lambda)^*\) \quad 37, 45, 47

\(B\)

\(B^{(k)}\), bilinear map \quad 53, 107

\(C\)

\(C^+_\ell\) \((= 2N^+_\ell)\), basis of \(\mathfrak{n}_+(\mathbb{R})\) \quad 13
\(C^-_\ell\) \((= N^-_\ell)\), basis of \(\mathfrak{n}_-(\mathbb{R})\) \quad 13
\(C^{\mu}_\ell(t)\), Gegenbauer polynomial \quad 173
\(\check{C}^\mu_\ell(t)\), renormalized Gegenbauer polynomial \quad 5, 22, 67, 69, 112, 174
\(\text{Conf}(X)\) \quad 2, 98, 100, 131
\(\text{Conf}(X; Y)\) \quad 2, 98, 100, 131, 133
\(\mathcal{C}_\lambda\), one-dimensional representation of \(A\) \quad 15
\(\mathcal{C}_{2\rho}\) \quad 18, 33
\(\bar{\mathcal{C}}_{\lambda, v}\) \((= \text{Rest}_{\eta=0} \circ \mathcal{D}^{\lambda - v - \frac{1}{2}}_v)\), Juhl’s operator \quad 22
\(\mathcal{C}^{i,j}_{\lambda, v}\) \((= \mathcal{D}^{i,j}_{\lambda - i, v - j})\): \(\mathcal{E}^i(\mathbb{R}^n) \rightarrow \mathcal{E}^j(\mathbb{R}^{n-1})\), (unnormalized) differential symmetry breaking operator \quad 23
\(\mathcal{C}^{i,j}_{\lambda, v}^{-1}\) \quad 23
\(\mathcal{C}^{i,j}_{\lambda, v}\) \quad 23
\(\bar{\mathcal{C}}^{i,j}_{\lambda, v}\) \((= \widehat{\mathcal{D}}^{i,j}_{\lambda - i, v - j})\), normalized differential symmetry breaking operator \quad 23
\(\bar{\mathcal{C}}^{i,j}_{\lambda, v}^{-2}\) \quad 126
\(\bar{\mathcal{C}}^{i,j}_{n-i, n-i+1}\) \quad 24, 129
\(\bar{\mathcal{C}}^{i,j}_{n,n-2}\) \quad 24, 129
\(\mathcal{C}^{i,j}_{\lambda, v}^{-1}\) \quad 23, 122, 126
\(\mathcal{C}^{i,j}_{\lambda, v}\) \quad 23, 126
\(\bar{\mathcal{C}}^{i,j}_{\lambda, v}\) \quad 24, 126
\(\bar{\mathcal{C}}^{i,j}_{i+i, i+i}\) \quad 24
\(\mathcal{C}^{i,j}_{\lambda, v}\) \quad 24

\(D\)

\(d,\) differential \quad 101
\(d^*,\) codifferential \quad 4, 97, 101
\(\mathcal{D}(E)\), Weyl algebra \quad 31, 34
\(\mathcal{D}_l^\mu\) \quad 5, 22, 112
\(\text{Diff}^{\text{const}}\) \quad 34, 107
\(\text{Diff}(\mathcal{E}^i(X)_{u, \delta}, \mathcal{E}^j(Y)_{v, \varepsilon})\) \quad 2
\(\mathcal{D}^{i,j}_{u,a}\) \((= \mathcal{C}^{i,j}_{u+i, u+i+a})\): \(\mathcal{E}^i(\mathbb{R}^n) \rightarrow \mathcal{E}^j(\mathbb{R}^{n-1})\), (unnormalized) differential symmetry breaking operator \quad 22
\(\mathcal{D}^{i,j}_{u,a}^{-1}\) \quad 5, 23, 68, 157
\(\mathcal{D}^{i,j}_{u,a}\) \quad 6, 23, 116, 157
\(\tilde{\mathcal{D}}^{i,j}_{u,a}\) \((= \mathcal{C}^{i,j}_{u+i, u+i+a})\): \(\mathcal{E}^i(\mathbb{R}^n) \rightarrow \mathcal{E}^j(\mathbb{R}^{n-1})\), normalized differential symmetry breaking operator \quad 22
\(\tilde{\mathcal{D}}^{i,j}_{u,a}^{-1}\) \quad 8
\(\tilde{\mathcal{D}}^{i,j}_{u,a}\) \quad 7, 68, 168
\(\widetilde{\mathcal{D}}^{i,j}_{u,a}\) \quad 7, 168
\(\mathcal{C}^{i,j}_{\lambda, v}^{-1}\) \quad 1, 8, 24, 125
\(d\pi^{\lambda, *}_\lambda\) \quad 37, 46
\(d\pi^{\text{scalar}}(\sigma, \lambda)_\lambda^*\) \quad 38
\(d\pi^{\text{vector}}(\sigma, \lambda)_\lambda^*\) \quad 38
\(d\pi^{\text{principal series}}(\sigma, \lambda)_\lambda^*\), algebraic Fourier transform of principal series \quad 34, 35
\(d\pi^{\text{scalar}}(\sigma, \lambda)_\lambda^*\) \quad 38
\(d\pi^{\text{vector}}(\sigma, \lambda)_\lambda^*\) \quad 38
\(d\pi^{\text{principal series}}(\sigma, \lambda)_\lambda^*\) \quad 52, 64, 72, 146

\(E\)

\(\mathcal{E}^i(X)\) \quad 1
\(\mathcal{E}^i(X)_{u, \delta}\), conformal representation on \(i\)-forms on \(X\) \quad 1, 2, 98
\(\mathcal{E}^i(S^n)_{u, \delta}\) \quad 3, 142
\(E_\xi\), Euler homogeneity operator \quad 45

\(G\)

\((Gj)\) \quad 180
\(G^\mu_\ell\), Gegenbauer differential operator \quad 173, 175
\(G = O(n + 1, 1)\) \quad 16
### List of Symbols

**H**

- $h^{(k)}_{i \rightarrow j}$: 61, 107
- $h^{(k)}_{i \rightarrow i+1}$: 88, 108, 125
- $h^{(k)}_{i \rightarrow i-1}$: 62, 67, 70, 73, 122
- $H^{(k)}_{i \rightarrow j}$: 54, 106, 144
- $\tilde{H}^{(k)}_{i \rightarrow j}$: $\bigwedge^i(\mathbb{C}^N) \rightarrow \bigwedge^j(\mathbb{C}^N)$ \(\mathcal{H}^k(\mathbb{C}^N)\) 54, 106, 144
- $H_0$, generator of: 13, 17, 41, 44, 145
- $\mathcal{H}^k(\mathbb{C}^N)$, harmonic polynomials: 42, 60, 145

**I**

- $\tilde{I}(i)_{\alpha}$, irreducible subquotient: 19
- $I(i)_{\alpha}^\#$, irreducible subquotient: 19
- $I^c$, complement of index set $I$: 94, 103
- $I_\ell$, $\ell$-inflated polynomial: 5, 22, 111, 174
- $I(i, \lambda)_{\alpha}$, principal series of $O(n + 1, 1)$: 16, 17, 21, 64, 121, 133, 143
- $\text{Ind}_{G}^P(\sigma_{\lambda})$: 15, 33
- $\text{ind}_{p}^G(V )$, generalized Verma module: 34
- $\mathcal{I}_{n,k}$, index set: 51, 72, 75, 101

**J**

- $J(j, \nu)_{\beta}$, principal series of $O(n, 1)$: 21, 24, 64, 87, 121

**K**

- $K_{\ell, \alpha}$: 10, 113, 157, 169

**L**

- $\ell(\lambda)$, column length: 58
- $L = MA$, Levi part of $P$: 17, 35, 67
- $L' = M'A$, Levi part of $P'$: 35, 67
- $(L_j)$: 180, 180
- $L_j(\varphi_0, \varphi_1, \varphi_2)$: 70, 180

**M**

- $M (= O(n) \times O(1))$: 14, 17, 32
- $M' (= O(n - 1) \times O(1))$: 21, 41
- $M_{IJ}$, matrix component of $\tilde{d}_{\pi(i, \lambda)}(N_+^1, \psi)$: 48, 72
- $M_{IJ}$, matrix component of $\tilde{d}_{\pi(i, \lambda)}(N_+^1, \psi)$: 89, 146
- $M_{ij}^{\text{scalar}}$: 48, 73, 89, 146
- $M_{ij}^{\text{vector}}$: 48, 73, 75, 89, 146

**N**

- $n_+$, complex nilpotent Lie algebra: 35, 60
- $n_+(\mathbb{R})$, Lie algebra of $N_+$: 14
- $n_+(\mathbb{R})$, Lie algebra of $N'_+$: 21, 35, 41
- $\text{neg}(I)$: 94
- $N_+$, unipotent subgroup of $O(n + 1, 1)$: 14, 17, 32
- $N'_+$, unipotent subgroup of $O(n, 1)$: 21

**O**

- $O(n + 1, 1)$: 13
- $O(n, 1)$: 13, 93, 98
- $\text{or}_{N/Y}$, relative orientation: 99

**P**

- $p$, stereographic projection: 4, 15, 136
- $P$, parabolic subgroup of $O(n + 1, 1)$: 14, 17, 35
- $P'$, parabolic subgroup of $O(n, 1)$: 21, 35
- $\text{Pol}^{k}[\zeta_1, \cdots, \zeta_N]$: 54
- $\text{Pol}_{\ell}[\tau]_{\text{even}}$: 43, 111, 174, 175
- $\text{pr}_{j \rightarrow i}$: $\bigwedge^i(\mathbb{C}^n) \rightarrow \bigwedge^j(\mathbb{C}^{n-1})$: 61, 109
Q

$Q_n(x)$ 14, 136
$Q_{n+1,1}(x)$, quadratic form of signature $(n+1,1)$ 13
$Q_{n-1}(\zeta')$ 43, 62, 111
$Q_I(\zeta)$, quadratic form for index set $I$ 80, 147
$\tilde{Q}_I(\zeta)$ 54, 62, 149

R

$R_{\ell}^A$, imaginary Gegenbauer differential operator 45, 70, 175
Resty $\circ t_{N_f(X)}$ 2, 100

S

sgn 33
sgn($I; p$) 51, 101
sgn($I; p, q$) 51
$Sol(n_{+}; \alpha, \tau_v)$ 35, 41
$Sol(n_{+}; \alpha^{(i)}, \tau_v^{(j)})$ 64, 67, 88
$S \setminus T$ 51
$\text{Supp}(I, J; k)$ 75
Symb 34, 36, 42, 107, 112, 144

T

$\mathcal{T}_{2\ell}^{(i)}$, Branson’s operator 10, 142, 156
$\mathcal{T}_{2\ell}^{(j)}$ 10, 156
$T_{a}$ 43, 79, 112
$T_{a}^{*}$, $T$-saturated differential operator 79
$\hat{T}$, algebraic Fourier transform 31

X

$X_{pq}$, basis of $\mathfrak{o}(n)$ 13, 47, 52

Z

$Z(g)$, center of $U(g)$ 18
$Z_G(g)$ 18
Index

A
algebraic Fourier transform (Weyl algebra) 31

duality theorem for symmetry breaking operators (principal series) 21, 25, 69, 87, 121

B
Branson’s operator 10, 142, 156

codifferential 4, 95, 101
conformal factor 1
conformal group 17
conformal representation 17
conformal representation on i-forms 1

density bundle 33
differential operator between two manifolds 32
differential symmetry breaking operator 2, 121
duality of Gegenbauer polynomials 178
duality theorem (principal series) 151
duality theorem for symmetry breaking operators (conformal geometry) 4, 98, 131

C
codifferential 4, 95, 101
conformal factor 1
conformal group 17
conformal representation 17

D
density bundle 33
differential operator between two manifolds 32
differential symmetry breaking operator 2, 121
duality of Gegenbauer polynomials 178
duality theorem (principal series) 151

duality theorem for symmetry breaking operators (conformal geometry) 4, 98, 131

E
Euler homogeneity operator 45

F
F-method 35, 67
F-system 35, 45, 55, 65, 67, 121, 146, 151, 179
factorization identity 10, 155
flat picture 15, 33, 121, 126

generalized Verma module 28, 34
GJMS operator 2
(g, K)-cohomology 20

H
harmonic polynomials 42
Hodge Laplacian 95
Hodge star operator 4, 94, 126, 161
<table>
<thead>
<tr>
<th>Index</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>imaginary Gegenbauer differential equation</td>
<td>45, 71, 90, 175</td>
</tr>
<tr>
<td>infinitesimal character</td>
<td>19</td>
</tr>
<tr>
<td>inflated polynomial</td>
<td>174</td>
</tr>
<tr>
<td>interior multiplication</td>
<td>2, 4, 5, 61, 101, 104</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Juhl’s operator</td>
<td>112, 119, 161</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>light cone</td>
<td>14</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>matrix-valued F-method</td>
<td>41</td>
</tr>
<tr>
<td>matrix-valued functional identities</td>
<td>9, 155</td>
</tr>
<tr>
<td>modification rule for $O(n)$</td>
<td>59</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>normal vector field</td>
<td>99</td>
</tr>
<tr>
<td>$N$-picture</td>
<td>15, 33, 36</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>open Bruhat cell</td>
<td>15</td>
</tr>
<tr>
<td>orientation bundle</td>
<td>17</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>principal series representation</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>renormalized differential symmetry</td>
<td></td>
</tr>
<tr>
<td>breaking operator</td>
<td>68</td>
</tr>
<tr>
<td>renormalized Gegenbauer polynomial</td>
<td>67</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>scalar part of $d\pi_{(\sigma,\lambda)^*}$</td>
<td>38, 146</td>
</tr>
<tr>
<td>singular vector</td>
<td>30, 35</td>
</tr>
<tr>
<td>skew Pieri rule</td>
<td>56</td>
</tr>
<tr>
<td>stereographic projection</td>
<td>4, 15, 136</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>twisted pull-back</td>
<td>4, 93, 138</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>vector part</td>
<td>37</td>
</tr>
<tr>
<td>vector part of $d\pi_{(\sigma,\lambda)^*}$</td>
<td>38, 146, 148</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Weyl algebra</td>
<td>31, 176</td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Yamabe operator</td>
<td>2</td>
</tr>
</tbody>
</table>