<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>accumulations</td>
<td>138</td>
</tr>
<tr>
<td>aggrading</td>
<td>56</td>
</tr>
<tr>
<td>alluvial sediments</td>
<td>5, 42, 191 - 203, 215 - 224</td>
</tr>
<tr>
<td>asbestos</td>
<td>4, 191 - 204</td>
</tr>
<tr>
<td>alaskite</td>
<td>85 - 99</td>
</tr>
<tr>
<td>algal mounds</td>
<td>2, 7, 12 - 14, 17, 94</td>
</tr>
<tr>
<td>amalgamated channels</td>
<td>2, 41 - 43, 50</td>
</tr>
<tr>
<td>analogue</td>
<td>19, 20, 28, 31, 38</td>
</tr>
<tr>
<td>anamorphosis</td>
<td>121, 141</td>
</tr>
<tr>
<td>anastomosed channels</td>
<td>10</td>
</tr>
<tr>
<td>Archean greenstone belts</td>
<td>102</td>
</tr>
<tr>
<td>apatite</td>
<td>205</td>
</tr>
<tr>
<td>auger holes</td>
<td>133, 137</td>
</tr>
<tr>
<td>banded iron formation</td>
<td>101, 108, 112</td>
</tr>
<tr>
<td>bauxite</td>
<td>102</td>
</tr>
<tr>
<td>bayesian kriging</td>
<td>76</td>
</tr>
<tr>
<td>bedding planes</td>
<td>3, 85, 91, 97</td>
</tr>
<tr>
<td>blastholes</td>
<td>169, 172</td>
</tr>
<tr>
<td>braided stream</td>
<td>41 - 52</td>
</tr>
<tr>
<td>boolean</td>
<td>2, 7, 16, 69, 71, 79</td>
</tr>
<tr>
<td>boundary conditions</td>
<td>69 - 75, 79 - 83</td>
</tr>
<tr>
<td>Cajati Mine</td>
<td>5, 205, 215, 29, 31</td>
</tr>
<tr>
<td>calcrete</td>
<td></td>
</tr>
<tr>
<td>Cana Brava Mine</td>
<td>191 - 203</td>
</tr>
<tr>
<td>carbonate reservoir</td>
<td>2, 7</td>
</tr>
<tr>
<td>carbonatites</td>
<td>5, 205</td>
</tr>
<tr>
<td>ceramic tiles</td>
<td>3, 4, 133 - 158</td>
</tr>
<tr>
<td>channel</td>
<td>63, 71 - 73, 79, 81 - 83</td>
</tr>
<tr>
<td>chip sampling</td>
<td>150, 154</td>
</tr>
<tr>
<td>chronostratigraphic marker</td>
<td>85, 90, 91</td>
</tr>
<tr>
<td>chrysotile</td>
<td>191 - 204</td>
</tr>
<tr>
<td>Chuquicamata Mine</td>
<td>164, 170 - 171</td>
</tr>
<tr>
<td>clay minerals</td>
<td>3 - 4, 102, 133 - 148, 166</td>
</tr>
<tr>
<td>coastal plain</td>
<td>2, 9 - 11, 134 - 136</td>
</tr>
<tr>
<td>Codelco</td>
<td>163 - 176</td>
</tr>
<tr>
<td>codispersion coefficient</td>
<td>110</td>
</tr>
<tr>
<td>cokriging</td>
<td>4, 191 - 203, 214</td>
</tr>
<tr>
<td>collaboration</td>
<td>163, 164</td>
</tr>
<tr>
<td>Colorado River</td>
<td>63</td>
</tr>
<tr>
<td>conditional simulation</td>
<td>48</td>
</tr>
<tr>
<td>copper</td>
<td>4, 149 - 161, 163 - 176, 177 - 189, 218</td>
</tr>
</tbody>
</table>

225
correlation coefficient 5, 60, 191, 194, 199 - 202
Covico vein 218, 224
cross-validation 64, 183 - 188
cutoff grades 168 - 170, 175
Cyprus-Amax 163, 164, 167

D
declustering 138, 144
deltaic reservoir 2, 7, 10, 11, 56 - 67, 71, 81 - 83
dikes 111, 178 - 189, 207
distal 136, 139, 215 - 224
drainage pattern 4, 20, 102, 107, 108, 120, 167, 171 - 173, 177, 180,
drillhole samples 183, 191 - 194, 206, 210

dune 7, 16

E
El Abra Mine 4, 163 - 170, 176
Elatsite 4, 177 - 189
electrowinning 163, 164
eolian reservoir 2, 7, 15 - 17
erosion 17, 60 - 61, 75 - 76, 79
external drift 53, 60 - 61, 75 - 79

F
facies 19 - 39
factorial kriging analysis 60
Farias vein 218, 224
Fe2O3 206
fertiliser 5, 205, 206
fiber grade 4, 191 - 203
flow paths 42, 48, 49, 64 - 67
flow simulation 2, 41, 42, 53 - 67, 69, 71 - 74 81,
fluvial bar 2, 41 - 46, 49, 50
fluvial reservoir 2, 7, 22, 25, 29, 30, 35, 41 - 52, 71
foreshore 9

G
Ganges-Bramaputra River 63
geo-metallurgical 163, 166
gneiss 87, 88, 91, 102
gold 3, 5, 117 - 131, 178 - 189, 215 - 224
Graça orebody 4, 149 - 161
grade control 130, 149 , 150
grade-tonnage curves 158 - 160
granite 85 - 99, 102
granodiorite 177 - 189

H
heterotopic data 5, 191, 192, 197 - 203
history matching 1, 3, 53, 54, 64 - 67
### Horizontal Proportion Curves
19, 27 - 28, 33 - 38

### Incised Valleys
47

### Indicator Variograms
26

### Interquartile Range
3, 123 - 131

### Iron Ore
3, 101, 115

### Isotopic Data
191, 197 - 203

### Itabirite
3, 103, 105 - 115

### K
- **Klang-Langat**: 63, 118, 123, 125
- **Kriging**: 60 - 61, 69, 76, 86, 88, 133, 134, 139 - 141, 147, 151, 151, 152, 154, 158, 168, 173, 174, 176, 177, 184, 188 - 189, 191 - 203, 205, 212 - 214

### L
- **Lake Maracaibo**: 3, 53 - 67
- **Lagoon**: 22, 26 - 31
- **Laterites**: 119 - 120
- **Leaching System**: 3, 103 - 107, 114, 163, 166, 170, 173
- **Length Index**: 4, 191 - 204
- **Limestone**: 218
- **Limonite**: 218
- **Linear Retraction**: 3, 133 - 140
- **Lithofacies**: 8, 10, 62, 64, 71 - 73
- **Lithotyp Rule**: 13, 85, 88 - 93

### M
- **Marked Point Processes**: 8, 45, 69, 80 - 83
- **Markovian**: 7, 160
- **Marine Bars**: 79
- **Massive Ore**: 150, 156
- **Matrix of Proportions**: 8, 10 - 11, 19, 24, 28, 37
- **Meandering Channels**: 19
- **Mesa Verde**: 2, 7, 9 - 12, 17
- **MgO**: 5, 205 - 215
- **Molybdenum**: 180
- **Monte Carlo**: 79, 110
- **Mudstone**: 41, 52
- **Multiple Point Statistics**: 74, 79
- **Multipoint Attractor**: 3, 101, 106 - 107

### N
- **Ness Formation**: 20
- **Nested Simulations**: 14 - 17
- **Neves-Corvo Mine**: 4, 149 - 161
- **Nonstationarity**: 2, 3, 7, 9 - 12, 16 - 19, 26 - 28, 35, 69, 74 - 78
- **Nova Veneza Mine**: 133 - 148

### O
- **Object-Based**: 2, 7, 8, 15 - 17, 41, 44 - 51, 69, 71 - 74, 79 - 82
offshore 10
oil saturation 59
open-pit 4, 117 - 131, 168, 170 - 176, 178
Ord River 63
ordinary kriging 4, 5, 133, 134, 139, 142, 147, 191 - 204, 205, 212 - 214
outcrop study 2, 7 - 17, 22, 31, 37
oxide copper 43, 45, 165, 168, 170 - 176, 180, 181, 188
P
P2O5 5, 205 - 215
Paradox Basin 2, 7, 12 - 17
permeability 1, 30, 50, 51, 79, 81, 82
petroleum 1 - 3, 7 - 17, 19 - 38, 41 - 52, 53 - 67, 69 - 84
petrophysical data 20, 41 - 43, 50, 71 - 73, 81
Phelps Dodge 163, 164
phylmites 102, 111, 117 - 131, 134, 216
pixel-based 8 - 12, 15 - 17, 44, 71 - 74
plurigaussian 2, 3, 7, 12 - 14, 73, 77
porosity 1, 30, 50, 51, 79, 81, 82
porphyry 163
Princesa Isabel region 215
probability field 4, 149, 150, 153
probability map 69
production faces 150
production tests 43, 51
proportion curve 8, 19 - 39, 62 - 64, 74 - 78
proportion matrix 8, 10 - 11, 63
pyrite 156, 165, 179
pyroxinites 192
Q
quartz veins 5, 215 - 224
quartzite 111, 117 - 131, 216
R
Radomiro Tomic Mine 4, 163, 164, 170 - 176
random walk 101, 102, 105 - 107
reconciliation 1, 4, 163, 169 - 170, 175 - 177, 189
recoverable reserves 144 - 146
recovery 163
reference level 19 - 39
regressive-transgressive 9, 10
reservoir characterisation 7 - 17, 19 - 39, 53 - 67
resource classification 147, 168
retrograding 55, 56, 79
risk assessment 4, 69, 133, 147, 149, 159
Rossing Mine 3, 85 - 100
S
sandstone 2, 10, 14, 22, 31, 32, 35, 41 - 52, 56, 134
saprolites 119
Scarborough formation 31
scenarios 141
schists 102, 156, 177 - 189, 216, 218
sea level changes 19, 26 - 27
seismic attributes 53 - 67
seismic data 2, 3, 8, 20, 41 - 54, 57 - 59, 79, 82, 83
selectivity 117, 144
sequential gaussian (SGS) 4, 69, 72, 79, 141 - 148, 153, 154, 158
sequential indicator (SIS) 4, 45, 69, 72, 73, 101 - 115, 149, 153, 154, 158
sequence stratigraphy 3, 7 - 17, 19 - 39, 41, 43, 45, 55, 58, 62, 79 - 81
serpentinites 192
shale 9, 10, 45, 56, 59, 71, 72, 79 - 83, 136
shoreface 9, 79
sieve size 4, 191 - 192
siliclastic 2, 12 - 14
soluble copper 166
solvent extraction 163 - 164
splays 71, 73
stationarity 19, 22, 26 - 28, 33
streamlines 70, 71, 73, 76, 78
stopes 154
subsidence 25, 26, 29, 34 - 37
sulphide 119, 164, 165, 167, 171, 180, 181
sulphur 180, 181, 188
SX-EW process 4, 163 - 176

T
talus 136 - 139
team work 163, 176
tectonic 4, 28, 29, 102, 104, 133, 136, 177 - 189
thalwegs 2, 41 - 52
thickness 4, 25, 26, 29, 34 - 37, 46, 133, 137 - 148
thresholds 110, 145, 160
tidal complex 10, 82
transgressive 55, 56
transition probability 27
trend maps 48
truncated gaussian 2, 7, 10, 53, 61 - 64, 67, 73, 78 - 83,
turning bands 118, 122

U
underground mine 150, 154, 159, 164 - 170, 171
universal kriging 76
uranium 3, 85 - 100
upscaled 21, 64, 69, 79 - 83, 122, 123

V
validations 112, 114, 121, 122
variograms  8, 21, 22, 27, 28, 60, 62, 139 - 141, 143, 151, 152,
          156, 168, 173, 177, 183 - 189, 196, 205, 210 - 212,
          215 - 224
vector fields     42, 47 - 48
vertical proportion curves 1, 19, 22 - 29, 31, 38, 74, 76
W
Walther’s law     25
water absorption  3, 133 - 140
weathering        3, 5, 101 - 115, 205
well-logs         3, 8, 28, 30, 41 - 52, 53, 54, 56 - 59
workflows         3, 69 - 84
Y
Yorkshire cliffs  20, 21, 31
Z
zonation          62, 78, 79, 153, 160, 166, 176, 178, 188, 209, 221
LIST OF COLOUR FIGURES

CHAPTER 1
Using Quantitative Outcrop Databases As a Guide for Geological Reservoir Modelling
R. Eschard, B. Doligez and H. Beucher

Figure 1: Photograph of the outcrop of the Mesa Verde deltaic prograding sequence

Figure 2: Facies model for a progradational deltaic sequence

Figure 3: Matrix of proportions of the deltaic sequence

Figure 4: Mesa Verde simulation, using a non-stationary pixel-based geostatistical method

Figure 5: Geological model of algal mounds in the Pennsylvanian series of the Paradox basin

Figure 6: Lithotype rules used in the plurigaussian simulation

Figure 7: Plurigaussian simulation of the algal mounds

Figure 8: Outcrop of fluvio-eolian series, in the Permian in Utah

Figure 9: Geological model of the Permian of Utah, showing facies transitions between fluvial, eolian and lacustrine facies

Figure 10: Simulation of channels incising the eolian dune, obtained using a nested boolean and pixel simulation

CHAPTER 2
Quantification of facies relationships via proportion curves
C. Ravenne, A. Galli, B. Doligez, H. Beucher and R. Eschard

Figure 1a: VPC computed with lithofacies of Fig. 1d
1b: General geological setting of the above computation
1c: Lithofacies
1d: Digitised section

Figure 2a and b: 5 wells and their vertical proportion curves.

Figure 3: New VPC after smoothing of Fig 2b
Figure 4a and 4b The 5 wells with erosion at the top (central part) and the corresponding vertical proportion curve

Figure 5: VPC in a carbonate environment

Figure 6: HPC corresponding to the wells of Fig 2a

Figure 7a and 7b: Non normalised and normalised HPC corresponding to wells shown in Fig 4a (erosion)

Figure 8a and b: Former interpretation below and final above

Figure 9a and b: VPC computed on the same data set with different reference levels
    9c: Effect of a minor change in the reference level

Figure 10a, b and c: Impact of reference level on reservoir correlation

Figure 11a to d: Impact of reference level on sandstone proportion

Figure 12a and 12b. Wells corresponding to Fig2a after differential subsidence, and VPC with top as reference

Figure 13a and b: Two VPC calculated using different reference level

Figure 14: Relative VPC for wells shown Fig 4a

Figure 15a: Wells corresponding to Fig 12a after erosion of the upper part
    15b,c. Non normalised and normalised horizontal proportion curves corresponding to the wells of Figure 15a
    15 d and e: Non normalised and normalised VPC computed on wells shown in Fig 15a (Ref.: top)
    15 f, g and h: VPC computed on same wells

CHAPTER 3
Geologic Modelling of External and Internal Reservoir Architecture of Fluvial Depositional Systems
P.E. Patterson, T.A. Jones, C.J. Donofrio, A.D. Donovan and J.D. Ottmann

Figure 1: Object-based modelling of fluvial-bar deposits. The bar-train module uses a hierarchical system for modelling fluvial elements

Figure 2: An example of fluvial bars conditioned to user-defined flow paths.
CHAPTER 4
Impact of Seismic Constraints on a Stochastic Reservoir Model and Fluid Flow Simulation

Figure 1: Location Map

Figure 2: Regional stratigraphic cross section

Figure 3: Eocene-C6 Genetic Units Depositional Environments

Figure 4: Seismic line showing calibrated markers

Figure 5: Decomposition of the AAA attribute into spatial components

Figure 6: Proportion Curves related to the depositional environment of the Upper Unit

Figure 7: Attribute combination % sand in the Upper Unit

Figure 8: Proportion Curves related to the depositional environment for the Lower Genetic Unit

Figure 9: Attribute combination % sand Lower Genetic Unit

Figure 10: Comparison of the two stochastic models

Figure 11: Comparison of two upscaled petrophysical properties models

Figure 12: C6 Reservoir development plan

CHAPTER 5
Practical Workflows for Reservoir Modelling
J.M. Yarus, K. Yang and K. Kramer

Figure 2: Outcrop of the Fountain Formation, Colorado showing the boundary conditions between the fluvial-deltaic facies.

Figure 4: Streamline flow simulations for a 3D section of the reservoir depicted in Figures 3a and 3c.

Figure 7: Non-Stationarity

Figure 9: Compensating for horizontal non-stationarity, an example from North Africa.
Figure 11: Modelling complex reservoirs, an example from South America

Figure 12: Modelling complex reservoirs, an example from Southeast Asia.

CHAPTER 6
**Simulating the Geometry of a Granite-hosted Uranium Orebody**
*T. Skvortsova, H. Beucher, M. Armstrong, J. Forkes, A. Thwaites and R. Turner*

Figure 1: Geological map of the outcrop at the Rosing uranium mine, with the ore (alaskite) shown in red

Figure 4: Vertical proportion curve for the whole sequence with alaskites in black

Figure 6: Location of drill-hole collars and position of the vertical section CD

Figure 7a: Vertical section of a simulation at position based on the initial six lithotypes

Figure 7b, c & d: Vertical section of a simulation at position CD, based on eight lithotypes. The coefficients of correlation between the two underlying gaussians were 0, 0.6 and -0.6 respectively

Figure 8a, b & c: Three plan views at the 400m level which is approximately at ground level so that they can be compared with the outcrop map shown in Figure 1. The correlation coefficients between the two underlying gaussians were +0.6, 0 and -0.6 respectively.

CHAPTER 8
**Geostatistical Simulation of Structurally Controlled Low Grade High Tonnage Gold Ores: A Strategy for Targeting Genuine Enriched Zones**
*A.H.M. Silva, A.Z. Remacre and C.R. De Souza Filho*

Figure 1: Typical boudinaged gold-bearing quartz veins hosted by carbonaceous phyllites

Figure 6a: Simulation 1 of Selective Mining Units

Figure 6b: Simulation 1 of upscaled mining units

Figure 7a: Mean of simulations map

Figure 7b: Kriged map

Figure 9: Interquartile range (IQR) map

Figure 15: Scattergram showing strong correlation between the mean of simulations and probability for the 486 strategy selected blocks
CHAPTER 9
Geostatistical Framework for Modelling Clay Deposits: Nova Veneza Case Study in Southern Brazil

Figure 4: Collar location for the auger holes and their clay bed thickness

Figure 8: Kriged block maps for the quality variables and thickness. Blocks of 25x25m

Figure 9: Block models generated by ordinary kriging and classified into the two types of clay

Figure 10: Four out fifty realisations of thickness at 1x1 m grid, showing the spatial patterns and local fluctuations

Figure 13: Maps of the coefficients of variation for thickness in mineralised blocks

Figure 14: Probability maps for blocks to exceed a given thickness

Figure 15: Recoverable reserves for the worst, the best and the median scenarios (respectively the lower, the upper and the intermediate curves on the graphics).
Quantitative Geology and Geostatistics

3. *Cancelled*