About the Editors

Lawrence Lau, FACR (Hon), FRANZCR, FRCR, FAMS (Hon), DDR, DDU, is a radiologist from Melbourne and the founding Chairman of the International Radiology Quality Network, an organization focusing on collaborative actions to improve the quality, safety and appropriate use of radiology for practitioners, facilities, and healthcare systems.

Kwan-Hoong Ng, Ph.D., MIPEM, DABMP, is a Professor of Biomedical Imaging and Intervention in the Department of Biomedical Imaging, University of Malaya Research Imaging Centre, University of Malaya, in Kuala Lumpur.
Biography

Dr. Lawrence Lau MBBS, FACR (Hon), FRANZCR, FRCR, FAMS (Hon), DDR, DDU, is the founding Chair of the International Radiology Quality Network. At Monash University in Melbourne, he was Clinical Associate Professor and Chair of the Professional Advisory Committee, Medical Imaging and Radiography Course; and served as Director and Chairman of the Department of Diagnostic Imaging for Southern Health. Within the Royal Australian and New Zealand College of Radiologists (RANZCR), he served as President, founding Chair of the Accreditation Guidelines and Quality Committee, founding Director and Chief Medical Advisor of the Australian Use of Diagnostic Imaging Program and founding Editor of the RANZCR “Imaging Guidelines”. He was the founding Chairman of the Advisory Committee for the Australian Medical Imaging Accreditation Program of the RANZCR and National Association of Testing Authorities. In the last 30 years, Dr. Lau collaborated with local, national, regional, and international stakeholders in actions towards better quality, safety, and more appropriate use of diagnostic imaging.

Dr. Kwan-Hoong Ng PhD, DABMP, FInstP (UK), FIPM (Mal), CSci (UK), AMM, is Professor in the Department of Biomedical Imaging and a Senior Consultant at the University of Malaya Medical Center in Kuala Lumpur, Malaysia. He received his M.Sc. in Medical Physics from the University of Aberdeen and his Ph.D. in Medical Physics from the University of Malaya. He is certified by the American Board of Medical Physicists. Dr. Ng has authored or coauthored more than 200 papers in peer-reviewed journals and 20 book chapters. He has presented over 450 scientific papers, more than 200 of which were invited lectures. He has directed several workshops on radiology quality assurance, digital imaging, and scientific writing. He is the co-founder and co-Editor in Chief of the Biomedical Imaging and Intervention Journal. His main research contribution has been in breast imaging, radiological protection, and radiation dosimetry. Dr. Ng has been serving as an International Atomic Energy Agency expert, a member of International Advisory Committee of the World Health Organization and a consulting expert for the International Commission on Non-Ionizing Radiation Protection. Dr. Ng is the immediate Past President of the Asia-Oceania Federation of Organizations for Medical Physics.

Remigiusz Baranczyk MSc, is Policy Officer in the Radiation Protection Unit of the European Commission’s Directorate-General for Energy. He is in charge of the Unit’s activities on radiation protection in the medical applications of ionizing radiation.

Theocharis Berris MSc, is a Medical Physicist and works at the International Atomic Energy Agency. His main work focuses on the development of new training and information material for the Radiation Protection of Patients Unit website and the management of its social media campaign.

Dr. C. Craig Blackmore MD, MPH, is a Radiologist and Director of the Center for Health Services Research at the Virginia Mason Medical Center. His research interest is in understanding the appropriate and efficient use of imaging and other medical technologies, and in determining the effectiveness of Lean methodology in healthcare delivery. He chairs the Washington State Health Technology Clinical Committee.

Dr. Caridad Borra´s DSc, DABR, DABMP, FACR, FAAPM, has worked as a Medical Physicist in Spain, the USA, and Brazil. For 15 years, she was responsible for the radiological health program of the Pan American Health Organization. She is an Adjunct Assistant Professor of Radiology at the George Washington University School of Medicine and Health Sciences and a consultant. She chairs the Health Technology Task Group of the International Union for Physical and Engineering Sciences in Medicine.

Dr. Rethy Kieth Chhem MD, PhD (Edu), PhD (History), is Director of the Division of Human Health of the International Atomic Energy Agency and has worked to improve member state capacity and capabilities in the prevention, diagnosis, and treatment of diseases through nuclear techniques. He has published more than a 100 papers and chapters and edited several books on musculoskeletal ultrasound, radiology education, and paleoradiology.

Dr. Byung Ihn Choi MD, MS, PhD, is Professor and Past Chairman of the Department of Radiology, College of Medicine, at Seoul National University. He is immediate Past President of the Asian Oceanian Society of Radiology. In recognition of his outstanding leadership and achievements, he received honors from 14 international and regional societies including the American College of Radiology, European Society of Radiology, and Radiological Society of North America.

Ms. Kelly Classic MS, MA, DABMP, is Assistant Professor of Radiologic Physics at the Mayo Clinic, Rochester, Minnesota. She is Associate Editor for the Health Physics Journal and its supplement, Operational Radiation Safety. Ms. Classic serves as the public outreach liaison for the Health Physics Society.

Malcolm J. Crick MA, MSRP, CRadP, is Secretary of the United Nations Scientific Committee on the Effects of Atomic Radiation with over 30 years experience in radiation protection. He is a member of the editorial board of the Journal for Radiological Protection.
Dr. Adrian K. Dixon MD, FRCR, FRCS, FRCP, FMedSci, FRANZCR (Hon), FACR (Hon), FFRRCSI (Hon), is a Consultant Radiologist at Addenbrooke’s Hospital in Cambridge. He is Emeritus Professor of Radiology, University of Cambridge, and Editor-in-Chief of European Radiology. Dr. Dixon is the Master of Peterhouse, the oldest of the constituent colleges in the University of Cambridge.

Dr. Keith J. Dreyer DO, PhD, is Vice Chair for Radiology Informatics at the Massachusetts General Hospital and has continuously led a substantial team of project managers, analysts, and programmers who design, build, and maintain the ROE-DS System.

Dr. Richard Duszak Jr. MD, FACR, FRBMA, is CEO and Senior Research Fellow at the Harvey L. Neiman Health Policy Institute and practices radiology in Memphis. He serves on the American Medical Association’s Current Procedural Terminology Editorial Panel and as Associate Editor of the Journal of the American College of Radiology. His research interests focus on physician payment systems and quality.

Dr. Xiaoyuan Feng MD, PhD, is Professor and Chairman of the Department of Radiology at the Huashan Hospital, Fudan University. He is also the Vice President of the Fudan University and President of the Chinese Society of Radiology.

Dr. Donald P. Frush MD, FACR, FAAP, is Professor of Radiology and Pediatrics; Interim Chairman, Radiology; Member, Medical Physics Graduate Program; Division of Pediatric Radiology at the Duke Medical Center, Durham. His research interests are in pediatric body CT, including technology assessment; MDCT techniques; image quality assessment; dosimetry; and patient safety.

Robert George ARMIT, Dip Pract Man, FIR, FAAPM, was a Diagnostic Radiographer and Practice Manager of a large private radiology practice in Adelaide. He is Past President of the Australian Institute of Radiography and the International Society of Radiographers and Radiological Technologists. His interests are in the protection of patients and staff from radiation and clinical risk management.

Dr. Hassen A. Gharbi MD, is Professor of Radiology and Medical Biophysics in Tunis with an interest in pediatric radiology, tropical disease, and use of ultrasound in developing countries. He is President of the African Society of Radiology and the World Federation for Ultrasound in Medicine and Biology. He was Founding Director of the Tunisian National Centre of Radiation Protection and Founding President of the Mediterranean and African Society of Ultrasound.

Dr. Lucy Glenn MD, is the Chair, Department of Radiology, at the Virginia Mason Medical Center, an institution which has been applying the Lean Principles to re-engineer healthcare delivery. She is a certified Lean Leader since 2002 and has been actively involved in improving radiological quality by organizing and lecturing at conferences hosted by the American College of Radiology and Radiological Society of North America.
Dr. Daniel F. Gutierrez PhD, is Physicist and Research Scientist in the PET Instrumentation and Neuroimaging Laboratory at the Geneva University Hospital. He has authored over 15 peer-reviewed journal papers and 20 conference proceedings on observer models, Monte Carlo simulation, medical imaging system characterization and dose optimization particularly in clinical and preclinical hybrid PET-CT.

Dr. Azza Hammou MD, is Professor of Radiology in the Medical School of Tunis and Director of the Tunisian National Center of Radiation Protection. She is Past President of Mediterranean and African Society of Ultrasound and a member of the International Atomic Energy Agency and World Health Organization advisory committees. She has conducted many regional training programs and conferences, and participated in research and publications in ultrasound, pediatric imaging, and radiation protection.

Dr. Evelyn Lai-Ming Ho MBBS, MMed (Radiology), FAMM, FAMS (Hon), works as a full-time Clinical Radiologist, is active in advocacy programs for breast health and end-of-life care, and has led the College of Radiology, Academy of Medicine of Malaysia, Mammogram Programmes since 2001. She is immediate Past President of the College of Radiology and Editor of College’s website.

Dr. Augustin Janssens PhD, joined the European Commission in 1985 and became Head of the Radiation Protection Unit in 2004. He is in charge of legislations on radiation protection, including public, occupational, and medical exposure as well as emergency preparedness, response, and food controls.

Hannu Järvinen MSc, is Principal Advisor on Radiation Practice Regulation to the Radiation and Nuclear Safety Authority in Finland (STUK). He provides guidance to issues on the medical use of radiation covering research and training, clinical audit, mammography screening, regulatory control, policy development and implementation, and international cooperation. He has published extensively and participated in many national and international committees.

Dr. Kenneth R. Kase PhD, FACR, FHPS, FAAPM, Dipl ABHP, is the immediate Past President of the International Radiation Protection Association, a former Faculty Member of Radiation Oncology at the Harvard Medical School and University of Massachusetts Medical School, and a former Associate Director of the Stanford Linear Accelerator Center. He is an Honorary Senior Vice President of the National Council on Radiation Protection and Measurements.

Dr. Michael G. Kawooya MBchB, MMed (Radiology), PhD, is Professor of Radiology, Director of Ernest Cook Ultrasound Research and Education Institute and Director of World Federation for Ultrasound in Medicine and Biology Center of Excellence in Kampala. He is General Secretary of the African Society of Radiology. In the last 20 years, he has been involved in the training and assessment of radiologists, sonographers, and radiographers in Uganda and other African countries.
Dr. Lizbeth M. Kenny MBBS, FRANZCR, FACR (Hon), FBIR (Hon), FRCR (Hon), is a Senior Radiation Oncologist and her main interests are Head and Neck and Breast Cancer. Within the Royal Australian and New Zealand College of Radiologists, she has served as the Dean of The Faculty of Radiation Oncology and the College President. She has received Honorary Memberships or Fellowships from five international societies.

Dr. Bernard Le Guen MD, PhD, is Radiation Protection and Industrial Safety Vice-President of the Electricité de France (EDF), Nuclear Power Plant Operations, and the Executive Officer of the International Radiation Protection Association. He advances radiation protection by lecturing at universities, advising the French nuclear regulatory authority and coordinating global actions including the radiation protection culture initiative of the International Radiation Protection Association.

John Le Heron BSc, FACPSEM, is a Medical Physicist certified in Diagnostic and Interventional Radiology. He worked for the New Zealand radiation protection regulatory body for over 25 years, before joining the International Atomic Energy Agency where he is involved in the development of international radiation protection standards and their implementation worldwide.

Dr. Osnat Luxenburg MD, MPH, MBA, is Director of the Medical Technology and Infrastructure Administration at the Israeli Ministry of Health. She is responsible for the regulation and licensing of all pharmaceuticals, medical devices and medical technologies, and the regulation of radiation protection in Israel. She is involved in national health policy decision-making.

Dr. Catherine Mandel MBBS, FRANZCR, is Consultant Radiologist at Peter MacCallum Cancer Centre, Melbourne, and a Councilor for The Royal Australian and New Zealand College of Radiologists. She trained in neuroradiology in the United Kingdom. Her research interests are in neuro-oncological radiology, human factors, and patient safety. She teaches patient safety to radiology registrars and helped to develop the patient safety module of the RANZCR radiology curriculum.

Dr. Michal Margalit PhD, works in the Medical Technology Administration at the Israeli Ministry of Health in the field of radiation protection of patients. Her research interests are in microbiology, human fertility, and radiation protection.

Dr. Arl Van Moore Jr. MD, FACP, FSIR, FAHA, was the President of Charlotte Radiology for 15 years and is currently the Chairman and CEO of Strategic Radiology, Vice President of Charlotte Radiology and Chief of Radiology at Carolinas Medical Center, Mercy. He is a Past President and Past Chairman of the Board of Chancellors of the American College of Radiology. He is an Assistant Clinical Professor in the Department of Radiology at Duke University Medical Center, Durham, North Carolina.
Dr. Richard L. Morin PhD, FACR, FAAPM, FSII, is the Brooks-Holllern Professor and Consultant in the Department of Radiology at the Mayo Clinic in Florida. His research interests include all aspects of electronic imaging in medicine and radiation dose in Medical Imaging. Dr. Morin is interested in the performance and applications of volume CT and mammography physics.

Dr. Thomas N.B. Pascual MD, MHPed, is a Nuclear Medicine Physician with an interest in pediatrics and education. He has received awards from the Asian Regional Cooperative Council for Nuclear Medicine for outstanding research. Since 2007, he has been the Executive Director of the Asian School of Nuclear Medicine and has recently joined the International Atomic Energy Agency.

Dr. Madan M. Rehani PhD, is Director of Radiation Protection for the European Society of Radiology; Secretary, International Commission on Radiological Protection Committee 3; and Secretary General, International Organization of Medical Physics. He was Radiation Safety Specialist, International Atomic Energy Agency; Professor of Medical Physics, All India Institute of Medical Sciences in New Delhi; and Head, WHO Collaborating Centre on Imaging Technology and Radiation Protection.

Dr. Soveacha Ros EdD, is a Consultant advising the Division of Human Health of the International Atomic Energy Agency on education principles and implementation strategies. He is Adjunct Professor of education at the Royal University of Phnom Penh and Pannasastra University of Cambodia. His interests include quality assurance in education, competency-based curricula framework, learning how to learn and green university policy.

Dr. Daniel I. Rosenthal MD, is Associate Radiologist in Chief at the Massachusetts General Hospital, since 1989. He is the Executive Clinical Leader of the ROEDS System having served in that capacity since its inception.

Dr. William Runciman BSc (Med), MBBCh, PhD, FANZCA, FJFICM, FHKCA, FRCA, is Professor of Patient Safety and Human Factors at the University of South Australia; Research Fellow at the Australian Institute of Health Innovation, University of New South Wales; and Clinical Professor at the Joanna Briggs Institute, University of Adelaide. He is also President of the Australian Patient Safety Foundation.

Dr. Ferid Shannoun Dipl-Ing, MSc, MPH, PhD, is Scientific Officer of the United Nations Scientific Committee on the Effects of Atomic Radiation. His main research interests focus on public health issues related to radiation protection and to population dose estimation. He is a member of the Scientific Committee of the International Organization of Medical Physics.

Dr. Esti Shelly MSc, is Senior Assistant to the Head of the Medical Technology Administration at the Israeli Ministry of Health. Among her duties are upgrading regulations and legislation of medical exposure to ionizing radiation and radiotherapy, and coordinating national and regional projects.
Dr. Paul C. Shrimpton MA, PhD, is a Senior Scientific Group Leader at Public Health England. He has been closely involved for over 30 years in the wider development and promotion of patient dosimetry and protection for x-ray examinations, including the performance of national (UK) and international patient dose surveys, and the application of reference doses to facilitate improvements in practice.

Dr. Ezequiel Silva III MD, RCC, is Director of Interventional Radiology for the South Texas Radiology Imaging Centers, and Adjunct Assistant Professor at the University of Texas Health Science Center at San Antonio. He writes on quality initiatives in his column “Reimbursement Rounds” for the Journal of the American College of Radiology.

Georgi Simeonov MSc, is Policy Officer in the Radiation Protection Unit of the European Commission’s Directorate-General for Energy. He is in charge of the Unit’s activities on radiation protection of patients in diagnostic imaging, including proposals for Euratom legislation; study and guidance development projects; and liaison with international organizations and other stakeholders.

Dr. Chris L. Sistrom MD, MPH, PhD, is a Radiologist from the Department of Radiology, University of Florida who spent a sabbatical year at and on the invitation of the Massachusetts General Hospital Radiology and the Physician’s Organization during which he learnt about, analyzed and reported on the ROE-DS System. He has been a visiting research fellow at MGH since then.

Dr. Bin Song MD, is Professor and Director of the Department of Radiology and Director of Medical Imaging Center of the West China Hospital, Sichuan University. He is Vice Chairman of the Chinese Association of Radiologists and the Secretaty General of the Chinese Society of Radiology.

Dr. Dong-Wook Sung MD, PhD, is Professor and Chairman of Thoracic Radiology in the Department of Radiology, Kyung Hee University in Seoul. He is Chairman of the Radiation Safety Committee of the Korean Radiology Society and General Secretary of the Korean Alliance for Radiation Safety and Culture in Medicine. He is involved in national surveys of radiation dose.

Dr. James H. Thrall MD, is Chairman Emeritus at the Massachusetts General Hospital and was the President of the American College of Radiology. His tireless efforts in supporting, advising, fostering and mentoring a multi-disciplinary team in the development and implementation of a comprehensive ROE-DS system at MGH must certainly be counted among his most outstanding professional achievements.

Dr. Eliseo Vano PhD, is Professor of Medical Physics at the Medical School of the Complutense University and Head of Medical Physics Service of the San Carlos University Hospital in Madrid. His research interests are in radiation
protection in interventional radiology and cardiology. He is the Chair of Committee 3 (Protection in Medicine) of the International Commission on Radiological Protection.

Dr. Richard J. Vetter PhD, CHP, DABMP, FHPS, FAAPM, is Health Physics Consultant and Professor Emeritus at Mayo Clinic, Rochester, where he also served as Radiation Safety Officer for nearly 30 years. He is currently the Government Liaison for the United States Health Physics Society and a member of the United States National Academies Nuclear and Radiation Studies Board.

Dr. Jeffrey B. Weilburg MD, from the Department of Psychiatry, Massachusetts General Hospital, is Associate Medical Director of the Massachusetts General Physician’s Organization. He is responsible for the fiscal and quality performance of several large services, including Radiology, and was instrumental in introducing and promoting the ROE-DS System to MGH.

Ms. Pamela A. Wilcox RN, MBA, joined the American College of Radiology in 1987 with the advent of the voluntary Mammography Accreditation Program. She is Assistant Executive Director of the Department of Quality and Safety and oversees all ACR quality initiatives, including accreditation for diagnostic imaging and radiation oncology, Appropriateness Criteria, and practice guidelines.

Dr. Wentao Wu MD, is Lecturer and Attending Doctor in the Department of Radiology at the West China Hospital, Sichuan University.

Dr. Habib Zaidi MSc, PhD, is Head of the PET Instrumentation and Neuroimaging Laboratory at the Geneva University Hospital and Professor at the University Medical Center of Groningen. He has authored over 300 publications, is a recipient of many awards and distinctions and has been an invited speaker of many keynote lectures at the international level.
Index

A
Accountable care organization (ACO), 425
Accreditation
American College of Radiology Accreditation Program
challenges and opportunities, 303
elements, 303, 304
overview, 298
of practice, 298, 420
of training programs, 255
Advocacy, 16, 358, 372, 445, 447
American Board of Radiology (ABR), 256
American College of Radiology (ACR), 74, 299–301
appropriateness criteria, 125–126
Appropriate imaging, 283
management of, 285
Appropriateness criteria, 125–126
As low as reasonably achievable (ALARA) principle, 144, 162
Attributing health effects and inferring radiation risk, 96
Audit. See Clinical audit
Australian Medical Council (AMC), 255
Automatic exposure control (AEC), 190, 192, 193
Awareness raising of radiation safety, 225

B
Basic Safety Standards (BSS). See International Basic Safety Standards (BSS)
Beebe symposium, 73
Bonn call-for-action, 15, 28, 448

C
CanMEDS framework, 254–255
Chinese Society of Radiology (CSR)
education and training, 372
research, 372
Clinical audit
vs. accreditation, 303, 304
EC guidelines, 295
external audit, 294
features, 292
guidelines, 293
internal audit, 294
motivation and feedback, 297–298
practical organization and financing, 295–296
priorities, 294
radiological facilities, 293, 294
Clinical decision support (CDS), 286, 287
Clinical teleradiology standards, 22
Clinical value streams, 285
Coltman’s method, 183
Collective effective dose, 89, 91–95
Competency, of facility, 259
health care system, 260
radiologist, 254
radiology team, 257
referrer, 257
Competency-based training, 254–255
Competent system, 253
Computed tomography (CT), 180
Computer-aided diagnosis (CAD), 197
Computerized physician ordered entry (CPOE), 111–112
Continuing medical education (CME), 255–256
Continuing professional development (CPD), 213, 256
CSR. See Chinese Society of Radiology (CSR)

Culture
organizational, 264–265
radiation protection, 263–276
implementation framework, 272
safety, 263–276
traits, 269

Current procedural terminology (CPT) code system, 127, 418

D
Detective quantum efficiency (DQE), 186
Digital Imaging and Communication in Medicine (DICOM), 77
Diagnostic reference levels (DRLs), 6, 315–316
adult, 62
application, 61–62
CT procedures, 62, 63
fluoroscopic procedures, 62, 63
per caput dose, 64

Division of Human Health (NAHU). See International Atomic Energy Agency, Division of Human Health (NAHU)

Dose assessment
dosimetry
performance, 60–61
radiation risk, 57–59
tissue reactions, 60

DRLs
application, 61–62
UK experience, 62–64
patient protection, 57

DOSE DATAMED, 39

Dose On Line for Interventional Radiology (DOLIR) Program, 43–45

Dose recording and monitoring, benefits, 75–77

Dose reduction strategies
hardware innovations
AEC, 190, 192, 193
computed tomography (CT), 191, 192
digital detectors, 190, 191
German DIN 6868–57 regulation, 196
magnetic resonance imaging (MRI), 195
positron emission tomography (PET), 194–195
photographic film-based detectors, 189
slip ring technology, 191

software innovations
computer-aided diagnosis (CAD), 197
iterative reconstruction techniques, 196–197

Dosimetry
purpose, 57
radiation dosimetry, 89

DRLs. See Diagnostic reference levels (DRLs)

Dual-source computed tomography, (DSCT), 192

E
Education and training, 17, 153, 370, 397
applying praxis, 17, 241–247
ensuring competency, 254
radiation protection, 46

Educational Quality Assurance for Adult, Learners (EQUAAL), 242

Efficacy of imaging
diagnostic efficacy, 284
patient outcome efficacy, 284
societal efficacy, 284
technical efficacy, 284
therapeutic efficacy, 284

Ernest Cook Ultrasound Research and Education Institute (ECUREI)
equipment support project, 350
impact assessment, 351
Midwives Antenatal Ultrasound Project (MAUP), 348, 350
Portable Maternal Ultrasound Unit (PMU) Project, 348

Error, incident and adverse event. See Incident reporting and analyzing system minimization, 11

Euratom legislation
Basic Safety Standards (BSS)
medical exposure
accidental and unintended exposures, 398
definition, 396
dose recording and reporting, 397
information, education and training, 397
justification, 396–397
medical physics expert, 397
optimization, 397
revised, 396
development and implementation, 393–394
treaty, 392–393

Euratom Treaty, 392
European Commission (EC), 392
 policy initiatives, 394–395
 regulatory cooperation, 398–399
European Commission Communication 423 (EC COM/2010/423), 394
European Society of Radiology (ESR), 334
Evidence-based advocacy, 16, 445
Evidence-Informed Policy Network (EVIPNet), 375
European legal framework, 392–393
Exposure minimization, 39
monitoring, 15
 individuals, 74 (see also Medical radiation exposure monitoring, for individuals)
occupational, 364, 381
F
 Forum of National Regulatory Bodies in Africa (FNRBA), 354
G
 General Medical Council (GMC), 256–257
 General Radiology Improvement Database (GRID), 218
H
 Heads of Radiation protection Competent Authorities (HERCA), 398–399
 Healthcare level (HCL) model, 90
 Hippocratic Oath, 162
I
 Individual exposure monitoring. See Medical radiation exposure monitoring for individuals
 Image quality
 basic concepts, 182–188
 contrast, 182
detective quantum efficiency (DQE), 186
linear observer model, 186, 187
noise, 183–185
noise equivalent quanta (NEQ), 186
receiver operating curve (ROC), 187, 188
signal-to-noise ratio (SNR), 184–186
statistical decision theory (SDT), 186
spatial resolution, 182–183
Imaging management system
 clinical decision support, 286, 287
 clinical value streams, 285
 lean management, 283
 preauthorization, 287–288
Implementation strategies
 preventive and corrective actions, 215
 synergy, 12
 system-based improvement, 12
Improvement framework (see System-based improvement framework)
 processes
 Lean Thinking, 281
 Six Sigma, 280
 Incident reporting and analyzing system
 audit and monitoring, 216
 barriers and enablers, 212
 challenges and innovations, 218
 data analysis, 214–215
 General Radiology Improvement Database (GRID), 218
 healthcare error, 204–205
 high-risk industries, 204
 implementation strategies, 215
 National Radiology Data Registry (NRDR), 218
 near miss, 204
 Radiology Events and Discrepancies (READ), 218
 Radiology Events Register (RaER), 217
 Radiation Oncology Safety Information System (ROSIS), 218
 rationale, 204
 reporting
 anonymous reporting, 211
 confidential reporting, 211
 mandatory reporting, 210
 voluntary reporting, 210
 Safety in Radiological Procedures Program (SAFRAD) 218
 taxonomy, 206
 WHO conceptual framework, 207–208
Infrastructure strengthening, 17, 116
International Atomic Energy Agency (IAEA), 227, 241–242, 308
 Division of Human Health (NAHU)
 curriculum development, 246–247
 EQUAAL framework, 242
 Integrated Review of the Regulatory System (IRRS), 352
 learning organization, 242
International Atomic Energy Agency (IAEA) (cont.)
radiation protection of patients (RPOP) program 627
Facebook, 234–236
Twitter, 236
website characteristics, 228
sustaining praxis, 245
International Basic Safety Standards (BSS) cosponsoring organizations, 309
human imaging, non-medical purposes, 319
impact of, 319
medical exposure justification, 313–314
occupational, 317–318
optimization, 314–316
unintended and accidental, 316
public exposure, 318–319
doctor limits, 319
responsibilities, 311–313
structure, 309–311
International Commission on Radiological Protection (ICRP), 6, 313,
317–318
International Organization for Standardization (ISO), 299
International Radiation Protection Association (IRPA), 264

J
Jefferson Ultrasound Research and Education Institute (JUREI), 345
Justification. See Procedure justification

K
Korea Food and Drug Administration (KFDA), 384, 388
Korean Alliance for Radiation Safety and Culture in Medicine (KARSM),
380–381

L
Lean process improvement
application to health care, 282
appropriate imaging
clinical value streams, 286–287
mistake-proofing, 282
preauthorization, 287–288
principles, 281
quality and Lean, 282
Lean thinking, 281
Lifetime attributable risk (LAR), 77
Linear observer model, 186, 187

M
Magnetic resonance imaging (MRI), 180
Maintenance of Competence, 255
Malaysian College of Radiology Value Added Mammogram Program, 408
Massachusetts General Hospital (MGH) clinical decision support (CDS) system,
125, 129, 130
imaging utilization management,
133–134, 138
radiology order entry (ROE) system, 127, 128
RAND/UCLA appropriateness method (RAM), 124–125
Radiology Benefit Managers (RBMs), 127, 129
Medical exposure databases, 87
Medical imaging techniques
conventional imaging techniques, 178
image quality 182–188
projection imaging (2D) techniques, 179
tomographic imaging (3D) techniques (see Tomographic nuclear imaging technique)
Medicine physics expert (MPE), 397
Medical radiation exposure monitoring, for individuals
challenges and solutions, 78–80
cumulative radiation dose reporting
Beebe symposium, 73
driving forces, 70
International Atomic Energy Agency (IAEA) 73, 74, 77
joint position statement on patient radiation exposure tracking, 38
national quality forum, 73–74
radiation dose monitoring program benefits, 75–77
monitoring options, 77
size-specific dose estimate (SSDE), 77
Mental models, 271
MGH. See Massachusetts General Hospital (MGH)
Midwives Antenatal Ultrasound Project (MAUP), 348, 350
Mistake-proofing, 282
Multi-detector computed tomography (MDCT), 163
N
NAHU. See Division of Human Health (NAHU)
National Patient Safety Agency (NPSA)
206–216
National Radiological Protection Board (NRPB), 62, 188
National Radiology Data Registry (NRDR), 218
National Reporting and Learning System (NRLS) database, 209–210
Never events, 421
Noise-equivalent quanta (NEQ), 186
Noise power spectrum (NPS), 183, 184
NPSA. See National Patient Safety Agency (NPSA)

O
Optimization, 10
and justification, 42
and as low as reasonably achievable (ALARA), 57
built-in optimization, 48
by equipment design, 188–197
of diagnostic data and radiation protection, 42–51
of image quality and radiation protection, 167
of protection, 57, 167, 314, 371
Organizational culture, 264–265

P
Patient dosimetry, 43
Patient journey, 9, 24, 36, 107, 165, 206
Pay for performance (P4P), 419–429
Performance enhancement, 12
Physician payment systems
 accreditation, 420–421
 bundled episodic payment, 425–426
 challenges for 442
 maintenance of certification, 423
 never events, 421–422
 resource based relative value system (RBRVS), 417
 Social Security Act, 417
 value-based purchasing, 418–420
Physician quality reporting system (PQRS), 422
Physicians Ultrasound in Rwanda Education Initiative (PURE), 407
Picture archiving and communications systems (PACS), 324
Policy implementation
 Euratom Treaty, 21, 392–393
 practitioner competency, 21, 254
 procedure justification, 9, 21, 127, 151
 Portable Maternal Ultrasound Unit (PMU) Project, 348
 Positron emission tomography (PET), 181
 Practice accreditation. See Accreditation
 Praxis, 244–245
 Preauthorization, examples
 Israel, 145
 Virginia Mason, 287
 Massachusetts Blue Cross Blue Shield (BCBS), 127
 Principles of International Clinical Teleradiology, 334
 Procedure justification, 8, 37, 107, 371, 438
 by referral guidelines
 institutional implementation, 9, 127
 national implementation, 21
 national policy
 leadership, 149, 150
 public health, 148
 radiation protection, 148
 task force, 150–151
 Procedure justification and optimization, 10, 42, 107
 Procedure utilization
 Korea, 382
 UNSCEAR, 91–94
 Process improvement. See Lean process improvement
Professional leadership
 competent system, 253–254
 diagnostic imaging, 252–253
 radiologist, 256–257
 radiology community, 252
 radiology team, 257
 referring clinicians, 258
 UN agencies and professional organizations, 261

Q
Quality and radiation safety, 6, 36
 principles, 37
Quality and safety measures, 8
Quality assurance of education and training programmes
 adult learners framework, 242, 243
 Educational Quality Assurance for Adult Learners (EQUAAL), 242
 praxis-oriented TQM, 244–245
 resource triangle, 242–247
 total quality management (TQM), 245–246
Quality elements, 4–5, 280, 434
medical imaging, 36
radiology, 107
processes, 6, 168–169
programs, 37, 38, 49–50
radiation protection actions, 50
Quality radiology and radiation protection, 405–406
influencing factors, 405
Quality Use of Diagnostic Imaging Program (QUDI), 260, 439
framework and projects, 439–440
objectives, 439
Radiation protection (RP)
culture, 263–276
data optimization
built-in optimization, 48
education and training, 46–47
patient dosimetry, 43–44
patients and staff, 44–46
European Commission actions, 49
International Commission on Radiological Protection (ICRP)
recommendations, 48–49
individual exposure recording and justification and referral guidance
European guidelines, 39–40
International Commission on Radiological Protection (ICRP)
perspective, 40–41
quality programs, 49–51
patients and staff, 44
procedure justification, 8, 37, 107, 371, 438
optimization of radiation protection, 57, 167, 314, 371
monitoring, 38–39
Radiation protection of patients (RPOP)
program
Facebook, 234–236
Twitter, 236
website characteristics, 228
Radiation safety, radiation protection culture, 19, 267, 320, 344, 369, 395, 451
Radiation safety and radiation protection in Korea
awareness, 383
communication, radiation risk, 380
diagnostic reference levels, 384
dose reduction
children, 388–389
CT, 385–386
interventional radiology and fluoroscopy, 386–388
radiography, 384–385
issues for a dualistic system, 380
occupational exposure, 381, 382
procedure utilization, 382–383
Radiology Benefit Managers (RBMs), 127, 129
Radiology Events and Discrepancies (READ), 218
Radiology Event Register (RaER), 217
Radiology errors, 468 Index
Radiology quality and radiation safety in Africa, 339–359
ECURIE (see Ernest Cook Ultrasound Research and Education Institute (ECUREI)) resources, 357–358
infrastructure, 340–341
issues, 341–344
leaders, 353
national regulatory framework, 352
outreach innovations, 348
radiation safety awareness, 343–344
radiation safety officer, 353
radiation safety training, 352
Radiology quality and radiation safety in China, 361–376
education and training, 370
improvement actions, 369–373
issues, 364–366
laws and regulations, 366–368
procedure utilization, 363
Regional Radiation Quality Control Center (RRQCC), 369
resources, 366
radiation protection research, 372–373
team building and safety culture, 372
Radiology referral guidelines
constructing national policy
design, 151–152
education and training, 153
information technology development, 154–155
implementation process, 152
leadership, 149, 150
managing and updating cycle, 156–157
monitoring and evaluating, 155–156
radiation protection, 148
task force, 150–151
development and implementation
content, 110–111
computerized physician ordered entry (CPOE), 111–112
development process, 110
evaluation, 112
implementation, 111
institutional, 9
Massachusetts General Hospital, 127–131
national, 21, 147–148
interface, 111
referrer’s checklist, 111–112
global actions, 117–119
issues and solutions
development and update, 112–114
end-users, 114–115
health care system, 115–116
national, regional and global guidelines, 108–109
World Health Organization/International Radiology Quality Network referral guidelines project, 119
radiation protection, 39
rationale, 106–108
stakeholders engagement, 117
Radiology stakeholders, 4, 117, 441
Radiology reimbursement
bundled episodic, 425
fee for service, 417
pay for performance (P4P), 424
quality metrics, 426
value-based, 418, 423
RAND/UCLA appropriateness method (RAM), 124–125
Receiver operating curve (ROC), 187, 188
Referral guidelines. See Radiology referral guidelines
Regional Radiation Quality Control Center (RRQCC), 369
Resource based relative value system (RBRVS), 417
Resource triangle, 242–247
RMMI. See Radiation medicine and medical imaging (RMMI)
Rose model, 185
ROSIS. See Radiation Oncology Safety Information System (ROSIS)
Royal Australian and New Zealand College of Radiologists (RANZCR), 217, 255
Royal College of Radiologists (RCR), 218, 257
RPOP program. See Radiation protection of patients (RPOP) program
S
Safety culture, 263–276
Safety in Radiological Procedures Program (SAFRAID), 218
Self referral, 37, 106, 146, 227, 257, 419
Signal-to-noise ratio (SNR), 184–186
Single-photon emission computed tomography (SPECT), 180–181
Six sigma, 281
Size-specific organ dose estimations (SSDE), 77
SM platforms. See Social media (SM) platforms

Social entrepreneurship in radiology
definition, 409–410
examples, 406
impact investments, 411
social impact bonds, 411–412

Social impact bonds, 411–412

Social media (SM) platform
Facebook, 234–236
issues for advertising purposes, 233–234
guidance for proper use, 231–233
International Atomic Energy Agency
Radiation Protection of Patients (RPOP) experience, 234–236
roles and potentials, 229–230
Twitter, 236
web 2.0, 229–230

Social radiology, examples
Malaysian College of Radiology
Value Added Mammogram Program, 408

Physicians Ultrasound in Rwanda Education Initiative (PURE), 407
RAD-AID International (RAD-AID), 407

Spatial resolution, 182–183

Stakeholders, 4, 117, 441
roles and responsibilities, 163
Statistical decision theory (SDT), 186
Swedish Radiation Protection Authority (SSI), 145
Swiss cheese model, 204, 205
System-based quality improvement framework, 23, 434, 441, 444

Team approach
equipment providers, 170–171
health care systems, 170
professional organizations, 172–173
regulatory authorities, 171
research and academic institutions, 172
radiology facilities, 164
team members, 164–165
UN agencies, 173

Teamwork, 24, 162, 441

Teleradiology
impact on patient, 330–332
practice performance, 325, 326
radiologist, 327–330
radiology community, 334
radiology department, 325–327
radiology managers, 332–334

Principles of International Clinical Teleradiology, 334

Tomographic imaging technique
computed tomography (CT), 180
magnetic resonance imaging (MRI), 180
positron emission tomography (PET), 181
single-photon emission computed tomography (SPECT), 180–181

Total quality management (TQM), 245–246

U
Uncertainties in cancer risk estimation, 96
United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR), 227
data interpretation
cancer risk estimation, 96–97
health effect and inferring risk, 95–96
DATAMED project, 98
emerging trends, 97
medical exposure survey, 88
healthcare level (HCL) model, 90
historical review, 88–89
impact in radiation safety, 99
improvement strategies, 98
objectives, 88
survey challenges, 97–98
survey findings, 90–95
annual frequency of procedures, 90, 91
annual collective effective dose, 91–92
annual per caput effective dose, 91–92

United States Nuclear Regulatory Commission, 270

V
Virginia Mason Medical Center, 282–283

W
Web 2.0, 229–230
World Health Imaging Telemedicine and Informatics Alliance (WHITIA), 408
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>areas of work, 437</td>
<td>implementation, 438</td>
</tr>
<tr>
<td></td>
<td>objectives, 435–436</td>
</tr>
<tr>
<td></td>
<td>projects, 437–438</td>
</tr>
<tr>
<td></td>
<td>World health reform, 434–435</td>
</tr>
</tbody>
</table>