References

Abbreviations

ICAF International Committee on Aeronautical Fatigue
NLR National Aerospace Laboratory, The Netherlands
NRC National Research Council Canada
TU Delft Delft University of Technology

References

Flugge, W.: Stress problems in pressurized cabins, NACA TN 2612, February 1952

References

References

References

References

References

Schiijve, J.: Some considerations on the correlation between the rivet squeezing force and the dimensions of the driven head. Memorandum M-847. TU Delft, Faculty of Aerospace Engineering, Delft (2005)

326 References

Tong, Ch.W.: Literature review on aircraft structural risk and reliability analysis. DSTO-TR-1100 Report. DSTO Aeronautical and Maritime Research Laboratory, Melbourne (2001)

Tong, Ch.Y.: Literature review on aircraft structural risk and reliability analysis. Aeronautical and Maritime Research Laboratory, Defence Science and Technology Organisation, DSTO-TR-1100, Melbourne, Febr. 2001

Wang, H.L.: Evaluation of multiple site damage in lap joint specimens, Ph.D. dissertation, Purdue University, West Lafayette, IN (1998)

Index

B

Biaxial loading
- biaxiality ratio, 15, 16
- effect on lap joint specimen fatigue behaviour, 16–18, 220, 221

Bulging of the skin, 20, 278, 280, 286–289, 298, 304, 305

C

Clamping between sheets
- clamping area, 138, 141, 142, 196
- clamping force, 75, 132, 136, 137, 140, 171, 172, 189, 192, 218, 246, 270
- clamping pressure, 87, 137–139, 142, 196

Cold working of rivet holes, 48–50, 87

Corrosion effect for lap joints, 23–25, 35, 50, 52–54, 143, 210, 218, 238

Crack growth rate observations
- at rivet hole, effect of growth direction, 199–203, 245
- squeeze force, 203, 204
- in sheet material, effect of different batches, 30
- different producers, 30
- environment, 22, 25, 30–32
- loading conditions, 31, 32
- natural ageing, 30
- measurements by marker loads, 201, 205, 258

Crack initiation site in lap joint
- fatigue loading, dependence on rivet type, 188–192
- squeeze force, 188–194, 199
- static loading, 185–188

Crack shape development observed in lap joint development during fatigue life, 199–206
- effect of secondary bending, 205
- thickness, 205, 206
- part-through cracks
 - quarter elliptical, 199–203, 205, 206
 - semi-elliptical, 199–204, 257
- through cracks, 200, 201, 225, 228

Curvature effect for lap joint specimen, 19, 20

D

Design variables for lap joint
- number of rivet rows, 101–103
- outer rivet location, 109
- rivet pattern, 110
- rivet pitch in row, 108, 109, 185, 187
- row spacing, 104–108, 152, 158, 170, 178
- sheet thickness, 34, 68, 111–114, 156
- size effect, 113, 114

E

Equivalent initial flaw size (EIFS) See Predictions of fatigue crack growth for lap joints

F

Fastener flexibility
- analytical solution, 120–122
- dependence on squeeze force, 58, 122, 124–126, 128, 129
- experimental determination, effect of loading conditions, 124, 125, 128, 129
- measurement method, 122–130
- influence on load transfer, 129–131, 133
Fasteners
rivets
effect of rivet type on clamping force, 140
hole expansion (see Rivet hole)
lap joint fatigue behaviour, 36–41, 52, 54, 83, 84
SB, 159–162
types, properties and nomenclature, 33–36, 65
special fasteners, 39, 40
Fiber-metal laminates
Glare, 238
riveted lap joints, 238
Finite element (FE) modelling
applied load effect on lap joint membrane stresses, 92–99
clamping pressure between sheets, 139, 140
SB (see Secondary bending (SB) in lap joints)
residual strength analysis, 289–296
rivet installation
clamping between sheets, 137–142
hole expansion, 75, 77, 80–82
residual membrane stresses, 87–95
rivet forming, 64
SIF solutions for cracks at rivet holes, 248, 249, 253, 266
Flapping
experimental observations, 1, 233, 235, 286, 287
predictions, 287, 288, 295, 296, 305–308
Fretting
damage mechanism, 194–196, 218, 224, 225
in lap joints
crack initiation site, 192, 193, 197–199, 224, 225
fatigue life prediction, 245–247
influence on EIFS, 257–259
Friction in lap joints
contribution to load transfer, 134–136, 142, 143, 182
influence of friction coefficient on contact stresses, 139, 140
measurements, 134–137, 195, 196
Fuselage skin structure
finger doublers, 118, 119, 227, 296
frames
floating, 1, 3, 214, 216, 233, 234
shear tied, 1, 2, 233, 234
stopper bands
tear straps, 1, 3, 14, 15, 174, 214, 216, 233, 234
waffle pattern doublers, 1, 4, 299
stringers (longerons), 1, 5, 11, 12, 174, 214, 216, 293, 294, 299, 303
Joints in fuselage skin
bonded, 7, 8
riveted
lap, 1, 4, 5, 16, 174, 197, 207, 208, 210, 211, 214, 216, 223–227, 233, 234, 236, 293, 294, 296, 299
single strap, 4, 5
riveted-bonded, 7, 8
Load transfer in lap joints
computation, 115–119
effect of
cracks, 251, 265, 267
fastener flexibility (see Fastener flexibility)
friction (see Friction in lap joints)
joint geometry, 117–119, 156, 157 (see also Friction in lap joints)
squeeze force, 133, 134
measurements, 130–134
Loading conditions for lap joints
effect of
frequency, 22–24
fuselage bending, 16, 235
overloads and underloads, 235
pillowing, 11, 15, 20, 174
stiffening elements, 11–15
membrane stresses, 3–5 (see also Membrane stresses at rivet hole)
SB, 6, 145, 146 (see also Secondary bending (SB) in lap joints)
simulation of actual loading during flight, 16, 22, 214, 215, 230, 303
Membrane stresses at rivet hole
residual, 87–92
under applied loading, effect of
clearance fit, 97, 98
friction coefficient, 97, 98
squeeze force, 92, 94–97
Multiple-site damage (MSD)
case histories, 207–212
Index

331

comparison between uniaxial and biaxial loading, 220, 221 with SSD, 212–218 design against MSD, 238 effect of bending, 235 fuselage design, 233, 234 overloads and underloads, 235 squeeze force, 218–220 phenomenon, 9, 212 predictions, 265–268 residual strength dependency on MSD, 212, 229–232, 274–280, 296–305 tests on fuselage panels, 223–224

effect of

phenomenon, 9, 212
predictions, 265–268
residual strength dependency on MSD, 212, 229–232, 274–280, 296–305 tests on fuselage panels, 223–224

P
Predictions of fatigue crack growth for lap joints

R

S
Secondary bending (SB) in lap joints accounting for in SIF for crack at rivet hole, 247, 248, 253, 254 analytical models, 146–151 effect of joint geometry, 151–158, 170, 177, 205, 206 rivet type, 159–161 squeeze force, 160–162 effect on fatigue behaviour, 175–181 faying surface condition effect, 181–183 FE analysis, 158–162 measurements, 162–175 phenomenon, 6, 145, 146 validation of analytical models, 165–169, 177–181 Sheet material types and properties, 27–31 Single-site damage (SSD) phenomenon, 212 comparison with MSD (see Multiple-site damage (MSD))
Squeeze force, effect on clamping between sheets, 137–140
 driven head dimensions
 FE analysis, 64, 65, 142
 measurements, 64–73
fatigue life of lap joints, 55–63, 83, 84
 hole expansion
 FE analysis (see Finite element (FE) modelling)
 measurements (see Rivet hole)
load transfer (see Load transfer)
 residual membrane stresses at rivet hole
 FE analysis (see Finite element (FE) modelling)
 measurements, 92–95
rivet flexibility (see Fastener flexibility)
 SB (see Secondary bending (SB) in lap joints)
Stress intensity factor (SIF) solutions for cracks at rivet holes, (see Finite element (FE) modelling; Predictions of fatigue crack growth for lap joints)
Surface treatment of sheets
 anodizing, 50, 51, 182
 cladding layer, 27, 30, 51
 painting, 51
 penetrant, 52–54, 182
 sealant, 54, 55

T
Time to crack initiation (TTCI) See Predictions of fatigue crack growth for lap joints

W
Width effect for lap joint specimen, 19