Index

A
Alon-Boppana theorem, 179
Alon-Milman theorem, 176
Alternating knots, 104
central circuits and, 110–111
“Aperiodic distribution,” 200
“Armchair” polyhex nanotube, 23
2-dimensional fragments of, 24
scheme of its base vertex, 24
The Atlas of Fullerenes, 140
Atomic displacements in fullerenes, graph
theoretic approach to, 171–172
decay of spectral gap as function of number
of atoms in, 180
distribution of number of ramafullerenes as
function of number of atoms, 179
topological atomic displacement, 174
Atomic force microscopy (AFM), 221
Azulenoid networks, see Pentahelptite
(azulenoid) networks

B
Balaban index, 86
of IPR C80 fullerene isomers, 97–99
isomers, GAP program, computing, 97
Bifaced simple polyhedra (BS polyhedra), 62, 65
characterization of combinatorial structure
of, 71–78
Schlegel diagrams of three C40
isomers, 77
α-isolated, (β-isolated), 63
Schlegel diagrams of six different, 64
Borromean link, 104, 111
Buckminsterfullerene, 64, 153
detailed atlas of Kekulé structures of
153–155
Kekulé structures, 153
molecular structure of, 172
parameters, 154–155
Schlegel diagram of, 190
blue/red pentagon, 190
tessellation, 41
Bundelites, 104

C
Cage tessellation, 54
CageVersatile (CVNET), 40
Cáprca Ca, 45
chiral lattices performed by, 45
Carbon, 244
allotropes of, 171
Carbon nancone C[4,4], 7
Carbon nanotubes, 22
Carbon schwarzites, 218
C60/C80 fullerenes, computation of topological
indices of, 85–88
Balaban index of IPR C80 fullerene
isomers, 97–99
computing Schultz/modiﬁed Schultz
polynomials of C80 fullerene, 92–94
computing Schultz polynomial/index of
C60 fullerene by GAP program, 88–89
computing Wiener polynomial/index and
hyper Wiener index of C80 fullerene
by GAP program, 95–96
computing Zagreb indices of C$_{80}$ fullerene, 99–100
Schultz polynomial/index of C$_{60}$ fullerene, 89–91
C$_{66}$–C$_{2v}$ isomers, topological invariants of, 215
Central circuits, 110
and alternating knots, 110–111
Borromean link, 111
link corresponding to octahedron, 111
of octahedrite
irreducible, 110
parallel, 110
zigzag in plane graph and corresponding, 115
C$_{60}$ fullerene, 90
lanthanum inside C$_{60}$ cage, 118
Schultz index of, 89–91
Schultz polynomial of, 89–91
coefficients of, program, 90–91
C$_{40}$ fullerene isomers, topological parameters of, 77
Chamfering, 44
of patch of fullerene, 45
Chemical graph theory, 21
“Chemical topology,” 122
Chinese Remainder Theorem, 201
connection table of azulene tile, 202
“exploded” view, 202
Möbius Band related to cube, 203
ring-labelled, 201
Chirality in S2, 46
C$_{40}$ isomers
case study concerning classification of, 79–81
schlegel diagrams of three, 77
topological parameters of, 80
Classical EMFs, 128–129
Cluj-Iilmenau index (CI), 52–53
13C–Nmr spectra of C$_{66}$ fullerenes, topological determination of, 205–209
C$_{66}$–C$_{2v}$#0011 fullerene in direct space, 206
C$_{66}$–C$_{2v}$#0011 fullerene in dual graph, 208–210
chemical graphs/molecular graph, 207
fullerene automorphisms and topological orbits, 212–214
heuristic topological model, 210–212
topological tools/topological stability, 207
Connected graph, 3, 22, 52, 86
“Convex Polytopes,” 65
Counting polynomials, 1, 51–53
analytical formulas for, 54
codistant, 52
co-graph, 52
isometric, 52
partial cube, 52
semicubes, 52
Counting spanning trees in toroidal fullerenes, 187
algorithm, 191–192
application to pentaheptite (azulenoid) networks, 196–197
cycle theorem, 188–189
determining complexity of toroidal polyhex/other network
outline algorithm for of toroidal polyhex, 199–200
terminology, 198–199
generic circuits, 189–191
toroidal polyhexes, 192–193
counting spanning trees, 194–196
generating extended TPH bi-periodic pattern, 193–194
C$_{60}$ structural relatives, 39–41
counting polynomials, 51–53
operation on maps, 41–47
sequence Le(P$_5$(M))/Le(P$_5$(Med(M))), 50–51
sequence Le(S$_2$(T)), 49
sequence Tr$_5$(C$_{4f}$ (Q(M))), 47–48
sequence Tr$_5$(C$_{3a}$ (2c, M)), 48–49
topology of, 55–57
Le(((P$_5$(M))k) designed cages, 53–54
Cubic graphs, illustration of, 177
Cubic polyhedra, 268–272
Cuboctahedron, 262
Curvature, 103
Cycle graph, 22
“Cycle-overlap” approach, 189
“Cycle-overlap” matrix, 188
Cycle theorem, 187–189
graph’s complexity, 187
Cyclic DNAs, 120
D
Density Functional Tight-Binding (DFTB) method, 80–81
Dijkstra algorithm, 213
2-Dimensional lattice for achiral polyhex nanotorus, 31
Disjoint benzenoid rings, 39
Distance-extended property, 2
DNA net mimicking hauberk, 121
Dodecahedron, 46, 257
snub of, 44
Double-azulene to cube, relationship of
toroidal embedding of, 201–203
D-type schwarzite, 229–230, 235
density of electronic states (DOS) of, 239
element of, 226
enantiomers of, 239
poles of, 237
unit cell, 227
Dualization Du, 41
Dualization of fullerene patch, 41, 45
Dual space graph of C_{66}, 215

E
Edge-coronas, 67–68
“π-Electron network,” 249–252, 254, 259–263
Electron-phonon interaction, 218, 241
electronic structure and, 238–241
cohesive energy per atom, 240
density of electron states (DOS), 238
enantiomers of D-type schwarzite, 239
Fermi level (E_F), 238
Gauss curvature, superconductivity, 240
“Empty” C_{2n} fullerenes, 133
Endohedral fullerene complexes, 122, 125–127
hydrogen molecule inside C_{60}, 136
hydrogen storage, 136–137
modeling fullerene endohedral complexes with hydrogen
doxygen(s) guests, 137–143
in, out isomers of fullerene derivatives
as specific domain of topological chemistry, 125–127
and in-out isomerism, 117–144
serendipitous development of
topological chemistry, 117–125
“in”-“out” isomerism of hydrogenated
fullerenes, 134–135
types of, 127
endohedral metallofullerenes, 127–130
fullerenes with neutral or slightly polar
molecule(s) as guest(s), 132–133
fullerenes with noble gas atom(s) or
molecule(s) as guest(s), 131–132
group V endohedral fullerenes, 130
nested fullerenes and analogous
structures, 131
unusual properties of, 133–134
Endohedral metallofullerenes (EMF), 125, 127–130
groups, 129
Estrada index and fullerene isomerism,
265–268
alternative expression, 266
bipartivity index of fullerene graphs with
up to 60 vertices, 277
calculations, 268
cubic polyhedra, 268–272
cuboids, 272–276
consolidated plot of near-linear variation,
277
of cubic polyhedral graphs, 268
cubic polyhedra with, 271
cubic polyhedra with maximal, 273
eigenvalue spectrum of, 266
of fullerene graphs, 269
isolated-pentagon fullerene graphs, 270
isomer variation of higher spectral
moments of isolated-pentagon
fullerenes, 276
scatter-plot of, 272
scatter-plot of bipartivity index, 277
trends for cubic polyhedral graphs, 271
variation of, 275
variation of bipartivity index with
pentagon-adjacency in, 278
Euler-Poincaré Theorem, 190–191
Euler’s equation/formula, 62, 103, 105, 112
Euler Theorem, 54, 190, 228, 234
Expansion operation, 108

F
Fullerene(s), 134
atomic displacements in, 171–172
“classical,” 172
combinatorial structure/symmetry, 65
definition, 64, 103
chemistry, 63
direct synthesis of, 39
energetic characterization of, 78–79
estrada index and fullerene isomerism,
calculations, 272–278
with neutral or slightly polar molecule(s)
as guest(s), 132–133
with neutral/slightly polar molecule(s) as
guest(s), 132–133
with noble gas atom(s)/molecule(s) as
guest(s), 131–132
with noble gas atom(s)/molecule(s) as
guest(s), 131–132
omega polynomials of, 9–18
patch of
chamfering of, 45
dualization of, 45
stellation of, 45
as subset of BS polyhedra, 65
Fullerene(s) (cont.)
 truncation of patch of, 44
 “wet chemistry” of, 39
Fullerene automorphisms and topological
 orbits, 212–214
 algorithm for finding automorphisms, 214
 Dijkstra algorithm, 213
 distance code, 213
 initial vertex, 213
Fullerene isomerism, estrada index and, 265–268
 alternative expression, 266
 bipartivity index of fullerene graphs with up to 60 vertices, 277
 calculations, 268
 cubic polyhedra, 268–272
 fullerenes, 272–278
 consolidated plot of near-linear variation, 274
 of cubic polyhedral graphs, 268
 cubic polyhedral with, 271, 273
 eigenvalue spectrum of, 266
 of fullerene graphs, 269
 isolated-pentagon fullerene graphs, 270
 isomer variation of higher spectral moments of isolated-pentagon fullerenes, 276
 scatter-plot of, 272
 bipartivity index, 277
 trends for cubic polyhedral graphs, 271
 variation of, 275
 variation of bipartivity index with pentagon-adjacency in, 278
Fullerene patch
 dualization of, 41
 medial of, 43
Fullerenes, local combinatorial characterization of, 61–62
 application
 case study concerning classification of C_{40} isomers, 79–81
 energetic characterization of fullerenes, 78–79
 basic notions and definitions, 62–63
 characterization of combinatorial structure of BS polyhedra, 71–78
 combinatorial properties of polyhedra, 68–71
 fullerenes, fulleroids and bifaced polyhedra, 63–65
 line-corona detectors, 66–68
Fullerenic C_n cages, 205
Fulleroid, 65
 combinatorial structure/symmetry, 65
G
GAP program, 88
 computing
 Balaban index, isomers, 97
 hyper Wiener index of C_{80} fullerene, 95–96
 Schultz index of C_{60} fullerene, 88–89
 Schultz polynomial C_{60} fullerene by, 88–89
 Wiener index of C_{80} fullerene, 95–96
 Wiener polynomial C_{80} fullerene by, 95–96
 Zagreb indices of C_{80} fullerene, 99–100
Gauss-Bonnet theorem, 232, 236
Generic circuits, 189–191
Goldberg-Coxeter construction, 103–104, 113
Graph
 fullerenes, 22, 171
 describing, 1
 vertices/edges, 22
 Laplacian matrix of, 173
Group V endohedral fullerenes, 130
H
H_{2}@C_{60} complex, 132, 138, 141–143
4-Hedrites
 representatives for symmetry group, 108
 unreducible, infinite family of, 108
5-Hedrites, representatives for symmetry group of, 109
6-Hedrites, representatives for symmetry group of, 109
7-Hedrites, representatives for symmetry group of, 109
Heuristic topological model, 210–212
 colored direct graphs, 211
 coordination string, 210
 dual coordination string, 211–212
 as resonance peak, 212
 topological approximate method combines WW strings values, 211
High π-electronic stability, 249–250
icoshedral symmetry, 252–256
networks with high vertex-degree, 259–260
octahedral and tetrahedral symmetry, 257–259
regular and semi-regular polyhedra whose vertex degrees are all three, 263
spherically polyhedral networks, 250–252
topological symmetry, 252
HOMO-LUMO gaps, 58
Hosoya polynomials, see Counting polynomials

Hückel theory, 58

Hydrogenated fullerenes, “in”–“out” isomerism of, 134–135

Hydrogen molecule inside C_{60}, 136
hydrogen storage, 136–137
hydrogen as fuel, advantages/disadvantages, 136
modeling fullerene endohedral complexes with hydrogen molecule(s) guests, 137–143

calculated stabilization energies of endohedral complexes, 142
IPR isomers of C_{60}, C_{70}, C_{76} and C_{80} fullerenes and their symmetries, 139
molecular mechanics calculations, 138–141
physisorption, 140
quantum chemical calculations of fullerene complexes, 142–143
steric energy of complexes of H_{2}, H_{2}O and NH_{3} with fullerenes, 140

Hyper Wiener index, 86, 88
of C_{80} fullerene, 96
by GAP program, computing, 95–96

Icosahedral symmetry, 250–256
 cyclic unit, 253
 HMO energy level diagram, 256
 of truncated dodecahedron, 253
 perspective view, 253
 reduced characteristic polynomial, 256
 Schlegel diagram, 253
 topological symmetry diagram, 253
 Truncated icosahedron, 254

Icosahedron, truncation of, 44
Icosidodecahedron, 262

i-hedrites (lower case i), 103
 generation of, 106–108
 method, 108
 number of, 107

Independence polynomial, 2
 “Induced fit” mechanism, 134
 i-self-hedrite (lower case i), 103–104
 enumeration method for, 112
 number of, 112
 simple zigzags, 104

Isolated-pentagon fullerenes, 265, 273–274, 276
Isolated pentagon rule (IPR), 79, 133, 205
Isomers of fullerene C_{40}, atomic displacements in, 181–184

illustration of atomic displacements for isomers, 183
illustration of atomic displacements of fused pentagonal rings, 183
increase of thermal average of vibrational potential energy, 181
relationship between mean vibrational potential energy, 182
thermal average of vibrational potential energy/number of adjacent pentagons, 184
Iterative S^2 operation on dodecahedron, 47

Kardar-Parisi-Zhang (KPZ) equation, 221

Kekulé structures, 40, 153
 atlas of, 156–169
 of buckminsterfullerene, detailed atlas of, 153–155
 conjugated cycle, 154
 non-isomorphic, 155
Kekulé valence structure, 54
Kirchhoff index, 174

Laplacian matrix of graph, 173
Layer LM/Shell SM matrices, 2
Leapfrog Le, 44
Le((P_5(M))^k) designed cages, topology of, 53–54
tetrahedral Archimedean disposition
 4S[6]&4R[6], 54
Le(P_5(M))/Le(P_5(Med(M))) sequence, 50–51
sumanenic S[6] patterns in a tetrahedral embedding, C_{60}, 51
tessellation of 300D/I-5d cage, 51
Le(S_2(T)) sequence, 49
archimedean joint
coronenic and pentylenic co-Fw, 50
2-factor, consisting of only pentagons, 51
octahedron by, 50
platonic disjoint
 sumanenic S[6] covering, 50
 sumanenic S[r] covering on transforms of cube, 50
Sumanenic disjoint S[8] covering by, 50
Linear regression, illustration of, 178
Line-corona detector (LC detector), 61, 65–68
 edge-coronas, 68
 nine types of edge-coronas, 67
 of types L((4,3))/L((6,4))/L((10,6))/L((14,8)), 66
vertex-coronas, 68
LUMO orbital, 58
Mathematical chemistry, 21
Medial Med, 43
Medial operation, 43
medials of five platonic polyhedra, 43
Med(M) operation, 50
Metal complexation forcing perpendicular arrangement of phenanthroline units, 121
Metallic carbides EMFs, 129
Metallic nitrides EMFs, 129
Metallic oxides EMFs, 129
Möbius strip, 118
Molecular realization, 46
Molecular structures, resonant sextets, 40
“Molecular surgery,” 132
Molecular theory, 21
Moore-Penrose generalised Laplacian, 175
Nanoporous carbon allotropes, 244
Nanostar dendrimers, 31
Wiener index, 31–37
Nanostructure, 22, 219–220
Nanotubes
omega polynomials of fullerenes and, 1–3
ops of
G = TU[p,q] in Du(Med(6,6)) TiO₂ pattern, 8
T[p,q] in Du(Med(6,6)) TiO₂ pattern, 9
Wiener index of, 22–31
N@C₆₀ complex, 130
Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, 224
Nested fullerenes and analogous structures, 131
New Journal of Chemistry, 117, 120
Non-IPR exoderivatives fullerenes, stability of, 206
strain-relief/local-aromaticity, 206
Non-IPR fullerenes, 206
chemical mechanisms, 206
Number Theory, 201
Octahedral and tetrahedral symmetry, 257–259
Octahedrites, 104
examples of octahedrites of symmetry O or Oh expressed as GCₖ,₁
(octahedron), 113
generalized, 115
representatives for symmetry group of, 106
Omega polynomials, 3–5, 53
co-graph, 4
elements, 5–9
Cartesian product, 6
in nanocones, formulas to calculate, 8
ops strips, 4
orthogonal cut, 4
quasi-orthogonal cut/qoc strip, 4
Omega polynomials of fullerenes, 9–18
co-distinct edges, number of, 14, 18
F₁₀ₙ for n ≤ 9, 14
graphs
C₂₀ and C₃₀, 9
C₄₀ₙ₊₆, 10
C₄₀ₙ₊₆ with co-distinct edges, 12
F₁₀ₙ (n is odd/even), 15
Gₙ, n = 8, 13
HyperChem, 9
molecular graph of C₁₂ₙ₊₄ fullene, 17
and nanotubes, 1–3
examples, 5–9
number of co-distinct edges of e₁, 11
ops of edges
e₁, e₂, . . . , e₅ in C₁₂ₙ₊₄ fullene, 17
e₁, e₂, . . . , e₆ in Gₙ, 13
in graph of fullene C₁₄₉(2ₙ₊₁), 16
Schlegel graph of C₂₄ₙ fullerene, 16
TopoCluj, 9
“zig-zag” tube TUH[10,n], 10
Omega signature, 58
Omega 1.1 software program, 5
“Op” relation, 52–53
Pentagon fusions, 53
Pentaheptite (azulenoid) networks, 196
analogue of cube, 197
application to, 196–197
fully-azulenoid, 198
Klein Bottle embedding, 197
pyrene graph and azulenic analogue, 197
resonant azulenoid-network, 198
types of, 198
Perhydrogenated fullerene C₆₀H₁₂₀, 124
PI index, 3
PI polynomial, 2
Plane graph, 105
Platonic cage, 40
Platonic polyhedra
duals of five, 42
medials of five, 43
Polygonal Pk mapping, 42
Polyhedra, 63
bifaced, 63
combinatorial properties of, 68–71
for any polyhedral graph, 68–69
for any trivalent polyhedral graph, 69–70
for simple (trivalent) polyhedra the following inequality, 70–71
See also Bifaced simple polyhedra (BS polyhedra)

Polyhedral, plangraph, 104
Polyhedral π-electron networks of carbon, 249
3-Polyhedron, 105
P-type schwarzite, 228, 230
Pulsed Microplasma Cluster Source (PMCS), 219, 222

Q
Quadrupling Q, 44
Quantitative structure-activity relationships (QSAR), 85
Quantitative structure-property (QSPR), 85
Quantum molecular dynamics simulations, 241–243
cell with periodic boundary conditions, 242
D-type fcc-(C_{36})_2, 242

R
Ramafullerenes
atomic displacements, 178–180
as function of number of atoms, 179
Ramanujan graphs, 178
Random carbon schwarzites, 219, 230
Random schwarzites, 218
birth of, 219–224
roughness exponent α/growth exponent β, 221
self-affinity, 221
visual comparison of simulated AFM image on nanometric scale, 222
Reduction operation, 108
δ-Regular graph, 178
4-Regular/self-dual analogs of fullerenes, 103–104
central circuits and alternating knots, 110–111
generation of i-hedrites, 106–109
going on surfaces, 115–116
self-dual graphs, 111–115
structural properties, 105–106
Resistance distance, 173, 175
Rhombicosidodecahedron, 63, 251, 262
Rhombicuboctahedron, 251–252, 262
Ring-adjacency matrix, 199–200
Ring polynomial, 30, 40, 53–54

S
Schultz index, 87
of C_{60} fullerene, 89–91
by GAP program, computing, 88–89
Schultz polynomials, 87
of C_{60} fullerene, 89–91
by GAP program, computing, 88–89
of C_{80} fullerene, computing, 92–94
and modified Schultz polynomials of C_{80}
fullerene, computing, 92–94
Schwarzite, 218
Schwarzite physics, topological background of, 217–219
ab-initio density of phonon states at Γ-point, 240
abutting 7-rings, separated by re-shuffling of bonds, 234
birth of random schwarzites, 219–224
catalyst-carbon contact line, 234
catalytic growth of carbon schwarzites, 221
electronic structure and electron-phonon interaction, 238–241
minimality condition for surface, 231
quantum molecular dynamics simulations, 241–243
Schwarzite stability, 231–235
Schwarzite topology, 224–231
thermodynamics, 235–238
Schwarzite stability, 231–235
Gauss-Bonnet theorem, 232
stability regions of sp2 carbon surfaces, 233
surface deformation energy, 233
surface which total energy refers, 231
total energy expressed, 232
Schwarzite topology, 224–231
carbon schwarzite fcc-(C_{84})_2, 225
independent of number of 6-rings, 228
platonic tiling/archimedean tiling, 228
Poincaré’s formula, 228
surfaces of different topology supporting sp^2 carbon, 226
surface topology, 225
tiling with 6-/7-rings of unit cell of P-type, 227
Self-affine minimal surface, 218
Self-dual graphs, 111–115
4-Self-hedrite, generalized, 115
2-Self-hedrites, representatives for symmetry group of, 114
3-Self-hedrites, representatives for symmetry group of, 114
4-Self-hedrites, representatives for symmetry group of, 114
Septupling S_2 operation, 46
Sextet polynomial, 1–2
Simple polyhedron, q-isolated, 63
Simple (trivalent) polyhedron, q-gonal face, 63
Single walled carbon nanotubes, 22
Snub of dodecahedron, 44
Snub Sn, 43
“Solomon knot,” 121
Spherically polyhedral networks, 250–252
regular and semi-regular polyhedra of icosahedral symmetry, 250
regular and semi-regular polyhedra of octahedral symmetry, 251
regular and semi-regular polyhedra of tetrahedral symmetry, 251
semi-regular polyhedra, 252
Spongy carbon
formation of, 223
structures, 229
Statistical approach, 120
Steinitz’s theorem, 63
Stellation triangulation, 42
Steric energy of C$_{60}$H$_{60}$, dependence of, 135
Stone-Wales rearrangement of pyrene units, 196
Sumanenic circulene/flower patterns, 40
Supersonic Cluster Beam Deposition (SCBD), 219–220, 236
carbon films, surface roughness of, 222

Tetrahedral symmetry, octahedral and, 257–259
Tetrahedron (chemical journal), 117
Thermodynamics, Schwarzite physics, 235–238
D-type schwarzite, 235
poles of, 237
Gauss-Bonnet theorem, 236
Gauss curvature decreases, 238
Helmholtz free energy, 236–237
phonon spectrum, 236
vibrational contribution to free energy, 236
Tight-binding molecular dynamics (TBMD), 241
simulation of graphitization of schwarzite fcc-(C$_{36}$)$_2$, 243
Topological background of Schwarzite physics, 217–219
electronic structure and electron-phonon interaction, 238–241
quantum molecular dynamics simulations, 241–243
Schwarzite stability, 231–235
Schwarzite topology, 224–231
thermodynamics, 235–238
Topological background of schwarzite physics
birth of random schwarzites, 219–224
Topological indices, 1, 86
for molecular graph, 21
Topological symmetry, 252, 254
Toroidal embedding of double-azulene to cube, relationship of, 201–203
Toroidal fullerenes, 30
Wiener index, 21–22
Toroidal fullerenes, counting spanning trees in, 187
algorithm, 191–192
application to pentaheptite (azulenoid) networks, 196–197
calculating overlap matrix for cube, 196
cycle theorem, 188–189
generic circuits, 189–191
naphthalene graph, 190
toroidal polyhexes, 192–193
counting spanning trees, 194–196
generating extended TPH bi-periodic pattern, 193–194
writing algorithm for determining complexity of toroidal polyhex/other network
outline algorithm for counting number of spanning trees (complexity) of toroidal polyhex, 199–200
terminology, 198–199
Toroidal polyhexes, 192–193
counting spanning trees, 194–196
generating extended TPH bi-periodic pattern, 193–194
writing algorithm for determining complexity of outline algorithm for, 199–200
terminology, 198–199
Toroidal-polyhex networks, 196
TPH bi-periodic pattern, generating extended, 193–194
planar bi-periodic projection pattern, 193–194
ring- and generic-cycle labelled, 195
Transmission electron microscope (TEM)
image of random carbon schwarzite, 224
micrograph, 220
Tr$_3$(Ca$_f$ ($Q(M)$)) sequence, 47–48
corazulenic disjoint pattern and its co-Fw, 48
“Sumanenic-Kekulé” valence structure of C_{192}, 48
Triangulane molecule T4 and its associated dendrimer, molecular graph of, 35
Tr3(Ca3,2c(M)) sequence, 48–49
corazulenic flowers tessellating 120O-5d cage, 49
sumanenic patterns S[r] in SW edge-rotated 120O-5dRO cage, 49
Truncated cube, 259
Truncated cuboctahedron, 260
Truncated icosidodecahedron, 255
Truncated octahedron, 258
Truncated tetrahedron, 261
Truncation
 of icosahedron, 44
 of patch of fullerene, 44

V
Valency, average, 62
Vertex contributions, 2
to polynomial, 2
Vertex-coronas, 68
Vertex transitive graph, 2

W
“Wet chemistry” of fullerenes, 39
Wiener index, 2, 21–22, 86, 207

achiral polyhex nanotube, 31
of C_{80} fullerene, 96
 by GAP program, computing, 95–96
molecular graph
 of polyhex nanotorus is vertex transitive, 30
 of zig-zag polyhex nanotube, 26
nanostar dendrimers, 31–37
molecular graph, 32
molecular graph of triangulane molecule T4 and its associated dendrimer, 35
subgraph, 33
of nanotubes, 22–31
toroidal fullerenes and nanostars, 21–22
Wiener matrix, constructing, 32
Wiener polynomials, 86
 of C_{80} fullerene, 96
 by GAP program, computing, 95–96
 program, computing coefficients of, 95–96

See also Counting polynomials

Z
Zagreb indices, 88
 of C_{80} fullerene, 100
 algorithm, 99
 computing by GAP program, 99–100
Zero-hexagons, 193
“Zig-zag” polyhex nanotube, 23