Index

A
Alkaline lava, 96. See also Kolekole cinder cone
Alteration index (AI) technique, 56, 57
Alumina, 207–208
Ambenali formation, 44
Amphibole, 153
Amphibole crystals, 255, 257
Amphibolite facies, 357, 453, 468–470
Andaman arc volcanoes, 268–272. See also
Barren Island volcano; Narcondam volcano
Andesite, 251
Ankaramite lava, 99–100. See also Kolekole cinder cone
Anorogenic, 442
Anorthosites, 355–379
ANS. See Arabian–Nubian Shield
Arabian–Nubian Shield (ANS), 73
continental lithosphere, 312
gеological history, 307
intra-plate sedimentation, 308
MORB-type Gebel Gerf ophiolite, 308
postorogenic tholeiitic magmatism, 309
stratigraphical correlation, basement rocks,
309–311
Arc magma
big mantle wedge, 129–130
fluids, slab dehydration, 128
Japan
seismicity, 119
subduction zone, 127–128
tectonic background, 118
mantle diapirs, 128
oceanic plate subduction, 117–118
Pacific slab
double-planed deep seismic zone,
121–123
intermediate-depth earthquakes, 121
low-frequency microearthquakes,
121–122, 124
low-velocity zones, 121, 122
P and S wave velocity images, 121–122
Vp/Vs and Poisson’s ratio images, 122
Pacific–Philippine Sea slab interaction
Kanto earthquake, 124–125
seismic tomography, 123–124
Philippine Sea slab
low-V zones, 126–127
Unzen volcano, 125–126
vs. Pacific slab, 127
3-D seismic structure, 119
seismic tomography, 119–121
Arc magmatism, 118, 119, 121, 130, 307
Assam–Arakan basin, 322
Assimilation fractional crystallization (AFC) process, 278
Augite
Ca map, 101
pressure gradients, 101–102
reverse/cyclic zoning, 100, 102
Autolith, 337, 345
Axum basaltic volcanic rocks
Choke and Guguftu volcanoes, 87
Ethiopian flood basalt province, 70–71
gеological background, 71–72
gеological map, 76
lower sequence and upper sequence basalts
average plots, 89–90
CaO/Al₂O₃ vs. SiO₂ plot, 87–88
Choke and Guguftu volcanoes, 87
element concentrations, 86–87
MnO–TiO₂–P₂O₅ and Zr–Nb–Y discrimination diagrams, 89
petrographic descriptions, 77–78
rock classification
column sections and composite section, 74
Axum basaltic volcanic rocks (cont.)
 fissure-fed alkali basalts, 73
 phonolite–trachyte plugs, 73
 sequence-1, 74–75
 sequence-2, 75–76
 sequence-3, 76
 sampling strategy and analytical techniques, 72–73
whole rock geochemistry
 average concentrations and ranges of contents, 84
 chondrite-normalized trace element patterns, 84–85
 CIPW normative composition, 78, 82
 Harker variation diagrams, 79, 83
 major and trace element contents, 78, 80–81
 TAS classification, 78–79
Axum volcanic, 70–73, 78, 86, 91
Axum–Adua lineaments, 72

B
Back-arc magma. See Arc magma
Barium, 213
Barometry, 109, 111, 155
Barren Island volcano
 age determination of, 251–253
 eruptions of, 244
 geochemical properties
 incompatible trace element ratios, 261–262
 isotopic ratios of, 262–263
 lavas, 256–257
 major elemental variations, 258
 spiderdiagram of, 260
 trace elemental variations, 259
geochemical signatures, 262–265
geographic framework of, 242–244
lava compositions, 270
petrography of, 252, 254–256
radiogenic lavas, 268
tholeiites, 268
trace element data of, 245–250
volcanic rocks, 244
Basalts, 138
Basanite, 34, 78, 79, 86, 97, 102, 106
Binary Variation Diagram, 298
Biotite, 153, 255
Blueschist, 323, 340, 341, 343, 348
Breccia-cored rosettes. See also Flow-top breccia crust
Burhanpur, 164, 167

Koyna quarry (see also Koyna quarry breccia-cored rosettes)
 flow lobes, 162, 164, 165
 location and composition, 164
Sajjangad hill, 164, 167
Brown mica, 153
Bushe Formation, 44

C
Ca-rich clinopyroxene, 145, 148
CFB. See Continental flood basalt
Charnockite Migmatite Zone (CMZ), 357, 358
Charnockites
 ages and saturation temperatures, 386
 backscattered electron images, 395
 Chilka region, 369–371, 374
 crustal fragmentation, The Deccan, 37
 geochronological data, 390
 geological background, 388–389
 ICP/MS data, 392–393
 myrmekite, 396
 sample descriptions, 393
 saturation temperatures, 409
 Spider and REE diagrams, 405–407
 symplectite textures, 396
 textural evidence, 395
 total alkalai-silica (TAS) diagram, 401
Chemical type, 137, 145, 186, 188, 196
Chilka anorthosites. See Massif anorthosite petrogenesis and Rodinia break-up
Choke and Guguftu volcanoes, 87
Chondrite-normalized rare earth element (REE) pattern, 218–220, 367
Chrome-bearing spinel, 139, 142–144
Chromium, 214
Clinopyroxenes, 252, 254, 255, 331–333
Columbia River flood basalts, 48
Columnar jointing, 162, 177, 281, 283
Compound flow, 188, 189
Continental flood basalt (CFB)
 Axum area rocks, 70, 73
 continental volcanic rocks, similarity to, 17
 element variations
 alumina, 207–208
 lime, 210–211
 magnesia, 208–210
 silica, 206–207
 titania, 211
 total alkali, 211
 total iron oxides (FeO total), 208
petrogenesis (see Petrogenesis)
 petrological and geochemical data
 high and low TiO₂ basalts, 233–234
lava pile and chemical characteristics, 229–231
plateau-uplifts and associated magmatism, 229
Sheth’s model, magma formation, 234
trace element chemistry, 231–233
province of, 193
quartzfayalite-magnetite (QFM), 153
tholeiites, 12

primary volcanic structures
basaltic lava flows, classification, 199, 200
N-H-A and N-L sectors, 198–199
physical zonations, 199
structural features, 198–199
rubidium, 211, 213
strontium, 211
vanadium, 214
yttrium content, 214–218

Deccan Trap igneous rocks
amphibole and biotite, 153
basalts, 138
brown mica, 153
crime-bearing spinel, 139, 142–144
dacite, 138–139
data set and analytical techniques, 137–138
eruption
products age and volume, 136–137
sites, 137
Fe–Ti oxides, 152–153
feldspar
alkali feldspar, 151
composition, 148–151
geochemical stratigraphy, 136
hydrous phases, 153
lava composition, 137
mineral chemical variation, 137
olivine, 153–154
MgO vs. FeO, 139, 142
representative compositions, 139, 143
picritic basalts, 138
pyroxene
Ca-rich clinopyroxene, 145, 148, 155
composition, 145–147
orthopyroxene, 148
pigeonite, 148
sketch map, 135–136
whole rock analyses, 140–141

Deccan Traps flood basalt province
Columbia River flood basalts, 48
Deccan event and mean eruption rate, 33–34

Deccan mantle anomaly
bulk eclogite melting, 41
carbonatites and alkalic lavas, 34
eclogite source, 35
isotopic composition, 35–38
olivine fractionation, 42
orogenic vs. subducted mantle eclogites, 40–42
oxide-oxide variation, 40, 41
potential temperature, 35
primary magma, 35
primary magmas and potential temperatures, 39, 40
tholeiitic picrites, 39
trace element chemistry, 38–39
Deccan tholeiites, 38, 39
Deccan trap flow. See also Continental flood basalt (CFB)
barium, 213
basalt, trace elements and ratios, 212
Chhindwara–Jabalpur–Seoni–Mandla (CJSM) sector, 194
chromium, 214
correlative stratigraphy, 202
flow-top breccia crust (see Flow-top breccia crust)
Madhya Pradesh, eastern Satpura areas, 193–196
Mandla lobe, 194
nickel, 213
north-eastern Deccan, 194
petrological and geochemical data
high and low TiO₂ basalts, 233–234
lava pile and chemical characteristics, 229–231
plateau-uplifts and associated magmatism, 229
Sheth’s model, magma formation, 234
trace element chemistry, 231–233
Deccan Traps flood basalt province (cont.)
 primary magmas and potential
 temperatures, 39, 40
 tholeiitic picrites, 39
 trace element chemistry, 38–39
Deccan volcanism location, 30
DMA (see Deccan melting anomaly)
 eclogite bodies, 49
Fe-rich nature, plume, 43–45
 four-component isobaric phase
 diagram, 48
Laki eruption, 30–31
 lithosphere melting and plume, 49, 50
 magmas generation, 31
 major intrusive systems, 29, 30
Morgan’s plume, 31
picrite parent hypothesis
 ol + pl + cpx fractionation, 45
 Pandey’s model, 47
 shear wave velocity, 46, 47
 stagnation, Moho, 46
Picritic parental magma, 47
 plume hypothesis, 32
 shallow mantle melting, 32
 Wilson’s model, Hawaiian volcanic
 chain, 31
Depleted mantle source, 241–271, 369, 374,
 375, 377, 378
Dharwar craton, 136, 358, 384, 422
Diamonds
 cratons, 421
 geology and genesis, 422–423
 lithosphere and sublithosphere,
 423–424
Mesozoic breakup, Pangaea, 422
Mid-Proterozoic diamond–kimberlite event
 continental-insulation model, 428
 core–mantle boundary, 428
 D” core–mantle boundary layer,
 430–432
 geologic and paleomagnetic data, 427
 Kaapvaal craton, 427
 magmatic events, Rodinia, 428
 magneto-stratigraphy, 430, 431
 paleomagnetic data, 428–430
Paleozoic–Mesozoic kimberlite events
 superchron correlation,
 426, 427
 time–depth profile, 425–426
 primary source, 422
 spatial, temporal and geodynamic
 sampling, 424–425
D” layer, 423, 426, 430
Duwi shear zone, 279, 281
E
 Eastern Deccan Volcanic Province, 194
 Eastern Ghats Belt (EGB), 356, 376, 377
 Eastern Khondalite Zone (EKZ),
 357, 358
 Eclogite, 35, 39–42, 45–50, 323, 325,
 340, 341, 343, 348, 423,
 424, 453, 454
 Enriched mantle source, 221, 230
 Eruption period, Barren Island volcano, 244
 Ethiopia, 69–91
 Ethiopian flood basalt, 70–71
 Ethiopian Institute of Geological Survey, 71
 Evaporite, 451, 453, 467, 469, 470
F
 Fe–Ti oxides, 152–153
Feldspar
 alkali feldspar, 151
 composition, 148–151
Flood basalt
 mineral chemical variation, 137
 pseudobrookite, 153
Flow-top breccia crust, 176–177. See also
 Breccia-cored rosettes
 geochemistry, Nd-Sr isotopic data, 177
 Koyna (KY) and Sajjangad (SG)
 breccia core, 173–174
 localities and age corrections, 176
 loss on ignition (LOI), 170, 172
 trace elements and element ratios,
 172, 175
 petrographic features, 170, 171
 samples, 169–170
G
 Gabal Nuqara, 277–313
 Geochemical stratigraphy, 136, 172, 289
 Giant plagioclase basalt (GPB)
 characterization, 181
 compositional types, 186
 Deccan basalt group, stratigraphy, 182
 Deccan Trap basalts, 138, 201
 element compositions, 187
 flow, 184
 geochemistry, 184–187
 mineralogy, 182–184
 minerals, electron microprobe analysis,
 185
 petrography, 182–184
 photomicrographs, 184
 Goba–Bonga lineaments, 72
Harker variation diagram, 79, 83
Hawaii, 14, 18, 31, 32, 66, 95–111
Hawaiian plume, 66
Hawaiian tholeiites, 14, 16
Hawaiian–Emperor volcanic chain
 AI technique, chemical weather detection, 57
 argon (age) data sets
 assessment, 58–61
 examination, high quality, 61, 62
 mineral samples, 56, 58
 MORB normalized trace element plots, 61, 63
 MSWD, 58
 samples, IBM Arc, 61–63
 young rocks freshness, 61, 64
 crack propagation, 66
 HEB, 55, 57
 India–Asia collision, 65
 new age, Detroit seamount, 56, 64
 Pacific plate velocity, 65
 paleomagnetic measurements, 66
 pull mechanism, 65
 radiometric data, 65
 rate of motion calculation, Pacific Plate, 55–57
 whole-rock samples, 56, 57
 High heat production (HHP), 444
 Hornblende, 266–267

Indo-Myanmar Ranges (IMR), 322, 323
Instrumental neutron activation analysis (INAA), 73, 251
Intraplate volcanoes, 129–130
Ion microprobe analysis, 390–391
Izu–Bonin–Mariana (IBM) Arc, 61

Jalor, India, 437–446

Kimberlites
 geology and genesis of diamond, 422–423
 Kaapvaal craton, 42, 427
 lithospheric and sublithospheric diamonds, 423–424
 Mesozoic event, 422
 Mid-Proterozoic event, 427–432
 Paleozoic to Mesozoic kimberlite events, 425–427
 supercontinents and deep earth dynamics
 (see Diamonds)
Kodaikanal–Palani Massif
 anorthosite
 concordia diagram, dated grains, 398
 geological background, 389
 geological map, Oddanchatram area, 387
 ICP/MS data, 394
 plagioclase compositions, 398, 399
 sample descriptions, 396
 charnockite
 ages and saturation temperatures, 386
 backscattered electron images, 395
 geochronological data, 390
 geological background, 388–389
 ICP/MS data, 392–393
 myrmekite, 396
 sample descriptions, 393
 saturation temperatures, 409
 Spider and REE diagrams, 405–407
 symplectite textures, 396
 textural evidence, 395
 total alkali-silica (TAS) diagram, 401
geochemistry
 major elements, 400–403
 trace elements, 403–408
geochronology, 410
geological background
 charnockitic rocks, Kambam Valley, 388–389
 Oddanchatram anorthosite, 389
 inductively coupled plasma (ICP) and mass spectrometry (MS) analyses, 391–394
petrography
 ion microprobe analysis, 390–391
 U–Pb isotope dilution analysis, 390–391
Kolekole cinder cone
 geochemistry
 bulk composition, 103–105
 K_{2}O/P_{2}O_{5} and K/Rb ratio, 106, 110
 MgO variation, 102, 106, 108
 primitive mantle-normalized incompatible element contents, 106, 109
 SiO_{2} vs. total alkali, 107
 Tb/Yb ratio, 106–107
geochemical setting
 ankaramite lava, 99–100
 asymmetric volcanic cone, 98
 groundmass, 95, 100, 107
 Hana lava, 96–97
Kolekole cinder cone (cont.)
Kula lava, 96–97
liquid composition, 109
location, 97
mineralogy and petrology
equilibrium pressures, 101–102
olivine and augite phenocrysts, 100–102
plagioclase microphenocrysts, 101
X-ray elemental maps, 101
post-shield alkaline lava, 96
post-shield volcanic activity, 107, 109
spheroidal bombs, 110
splay branching, 96, 98
Koyna quarry breccia-cored rosettes, 176
flow lobes, 162, 164, 165
lava tubes
cross-sectional columns, 168–169
vs. host lava, 168
war bonnet structures, 169
water circulation, 166–168
zeolitized tuff blocks, 164–165
metamorphism
eclisite, 454
gneiss, 453
mineral assemblages, 468–469
P-T conditions, 453, 454
orogeny, 451
tectono-thermal evolution, 451–452

M
Magma chamber dormancy, 188, 189
Magma mixing, 102, 145, 265, 278, 279, 300–302, 306
Magma pulses, 210, 218, 225
Magnetic, metamorphic and sedimentary rocks
'mica-fish,' 348
'transmigration model,' 347
albite-epidote-actinolite schist, 340, 341
blueschist and eclogite, 343
Central Myanmar Lowland, 323
chromite mineralization, 344, 345
Disang belt, 324, 325
dolerite dykes, 333–335
Dras Volcanic Formation, 322
eastern ophiolite belt, 347
garnet lherzolite, 327–329
glaucophane, 343
Gondwana crustal blocks, 322
IMR, 322, 323
Indus ophiolite, 322
lava flows
hyaloclastite, 336, 345
MORB, 346
textural and mineralogical criteria, 344
trachy basalt, 337, 345–346
layered magmatic rocks
gabbroids, 333, 334
ultramafics, 331–332
mafic volcanics and oceanic sediments, 339
mafic-ultramafic rock, 322–323
meta-ultramafics/peridotite tectonite, 327, 328
metallic and non-metallic mineralization, 326
Naga hills orogenic belt, 324
Naga–Manipur Hills ophiolite belt, 347
Nimi/Naga metamorphics, 324
ophiolite belt, 324–326
plagiogranite, 333, 334
planar structure and fold movement phase, 325–326
prehnite-clinochlore schist, 340–342

L
Laki eruption, 30–31, 33
Large Igneous Province, 135, 193
Large-ion-lithophile elements (LILEs), 15, 17, 293, 300, 376
Late Devonian–Carboniferous arc, 18
Lava flows. See also Deccan trap flows
correleative stratigraphy, 199–202
petrographic characters, 201
petrographic methods, 197
rare earth element (REE), 215–216
chondrite-normalized REE pattern, 218–220
primitive mantle normalized trace element pattern, 220
sampling, 196
whole rock chemical analyses
fused disks, 197–198
sampling procedure, 197
trace element and REE, 198
LILEs. See Large ion lithophile elements
Lime, 210–211
Loss on ignition (LOI), 170, 172
Low-frequency microearthquakes, 121–122, 124, 129
Lufilian–Zambezi Belt
copper–cobalt deposits, 452
evaporite, 453
lithostratigraphy, 452–453
MDZ, 451
pyroclastic rocks, 339, 346–347
radiolarian chert, 342, 344
S–C mylonite, 348
Schuppen belt, 324
serpentinite, 329–331
texture and mineral paragenesis, 324
volcanics (see Volcanics)
western ophiolite belt, 347
Magnesia, 208–210
Main Ethiopian rift (MER), 72
Malani igneous suite (MIS), 438, 440
Malani, India, 437–446
Mantle melting model
apatite fractionation, 224–225
Lu/Hf vs. La/Sm plot, 221, 223
mantle source characteristics, 221, 222
rare earth element
compositional data, 223, 225
modelling, 223, 227–228
rock/chondrite patterns for, 223
group 1 basalts, 224
group 2 basalts, 224
group 3 basalts, 225
petrogenetic evolution, 226
Mantle plume, 4, 7, 15–17, 31, 32, 36, 89, 125, 137, 193, 229, 233, 234, 445
Mantle wedge, 17, 61, 121, 122, 125, 127–130, 265, 309, 312
Massif anorthosite petrogenesis and Rodinia break-up
‘edge-driven convection,’ 377–378
“mantle line plume,” 376
continental crust melting, 375–376
deposited mantle Nd model ages, 374–375
deposited mantle-derived magma source, 373, 374
dry feldspathic magma, 375
EGB, 356, 376, 377
equilibration process, 372
gabbroic anorthosite, 372, 373
granoblastic texture, 359
LILE, 376
lower and upper continental crust, 367, 372–373
metamorphic lithological units, 357
mid-Proterozoic model ages, 375
N–MORB normalized plot, 368, 373
Nd isotopic composition, 370, 374
Nd–Sr–Pb isotopes
AGV-2 and BHVO-2, 361
eNd vs. age, 370
HF–HNO3 acid mixture, 361, 365
La-Jolla Nd standard and NBS-987 Sr standard, 364, 365
mantle-derived gabbroic anorthositic magma, 372
Nain plutonic suite, 369
Nd–Sr isotopic ratios, 368, 369
Pb isotopic composition, 370–372, 374
pyroxene–granulite and mangerite sample, 368–369, 374
trace element concentrations, 361–363
Neoproterozoic Mozambique belt, 376
plagioclase, 356, 372
Prydz Bay region, 376, 377
pyroxene granulite, 372, 373
Rayner complex, 356, 376, 377
Sr-isotope, 373
trace element geochemistry, 367–368
U–Th–Pb electron microprobe, 357–358
zircon
cathodoluminescence image, 359
Th/U and U–Pb isotopic ratio, 359–361
U–Pb ages, 365–366
U–Pb dating method, 361
Maui, 95–111
Mean square weighted deviate (MSWD), 58
Mica-fish, 341, 348
Mid-ocean ridge basalts (MORB), 35–36, 308
Middle Jurassic conglomerate, 6
MIS. See Malani Igneous Suite
Monazite, 358, 386, 388–391, 393, 395, 396, 409–411
Morgan’s plume, 31
Mwembeshi dislocation zone (MDZ), 451
Myrmekite, 396

N
Naga hills ophiolite (NHO)
basalt, 335
eastern suture, Indian plate, 347
garnet lherzolite, 327
glaucophane schist and eclogite, 325
lava flows, 344, 346
mafic, ultramafic rocks and pelagic sediments, 323
metallic and non-metallic mineralization, 326
metamorphics, 339, 341, 343
radiolarian chert, 344
texture and mineral paragenesis, 324
volcaniclastics, 338
Narcondam volcano
 age determination of, 251–253
 andesitic/dacitic lavas of, 268–270
 geochemical properties
 incompatible trace element ratios, 261–262
 isotopic ratios of, 262–263
 lavas, 256–257
 major elemental variations, 258
 spiderdiagram of, 260
 trace elemental variations, 259
 geochemical signatures, 262–265
 geographic framework of, 242–244
 hornblende phenocrysts, 266–267
 isotopic ratios of, 262–263
 lava compositions, 270
 phenocryst-sized minerals, 254–256
 silicic magmas, 265–266
 subaerial lavas of, 244, 251
 trace element data of, 245–250
Narsingpur–Harrai–Amarwara–Lakhnadon section, flood basalts
deccan trap flows (see Deccan trap flows)
petrogenesis, 221–225
Nd-Sr isotopic ratios, flow-top breccia crust, 177
Koyna (KY) and Sajjangad (SG) breccia core, 173–174
localities and age corrections, 176
loss on ignition (LOI), 170, 172
trace elements and element ratios, 172, 175
Neoproterozoic U-Pb zircon age, 356, 368, 376
NHO. see Naga Hills Ophiolite
Nickel, 213
NMORB, 367–368

O
Oceanic plateau, 3–22, 307
Oddanchatram anorthosite
 concordia diagram, dated grains, 398
 geological background, 389
 geological map, 387
 ICP/MS data, 394
 plagioclase compositions, 398, 399
 sample descriptions, 396
Old volcanic sequence
felsic volcanics
 circular accretionary lapilli, 286, 287
 clast-supported conglomerates, 287, 288
 feldspar-phric lavas, 286
 flattened pumice clasts, 286, 287
 ignimbrite, 286
 pyroclastic deposits, 288

 spherulitic/granophyrich rich matrix, 287
mafic volcanics
 andesitic breccias, 283–285
 augite and hornblends, 285
 features, 283
 mafic-intermediate lavas, 286
 plagioclase (An₃₀), 285
 pyroclastic and volcaniclastic deposits, 282
stratovolcano remnant, 282
Olivine
 Ca map, 101
 fractionation, 106
 MgO vs. FeO, 139, 142
 pressure gradient, 101–102
 representative compositions, 139, 143
 reverse/cyclic zoning, 100, 102
 spinel, 101
Olivine and pyroxene, 329
Orogenic-type eclogitic blocks, 48, 50
Orthopyroxene, 148
Orthopyroxene phenocrysts, 255

P
Palghat cauvery shear zone (PCSZ), 384, 385
Petrogenesis
 mantle melting model
 apatite fractionation, 224–225
 Lu/Hf vs. La/Sm plot, 221, 223
 mantle source characteristics, 221, 222
 rock/chondrite patterns for, 223
 source characteristics, 221
Petrography
 Barren Island volcano, 252, 254
 Narcondam volcano, 254–256
Phenocryst-sized quartz crystals, 255–256
Picritic basalts, 138, 139, 142, 153
Picritic magmas, 35, 41, 42, 47, 48, 50
Pigeonite, 148
Plagioclase, 7, 15
Plagioclase microphenocrysts, 100
Plateau/isochron age, 57, 58, 60, 65
Pleistocene-Holocene Narcondam volcano.
 See Narcondam volcano
Poikilitic clinopyroxene, 331, 332
Poisson’s ratio images, 122, 129
Polybaric evolution, 277–313
Primary melt composition (PMK), 40, 42, 43
Putirka’s method, 43
Pyroxene
 Ca-rich clinopyroxene
 augite series, 145
 diopside/salite composition, 145, 148
Index

composition, 145–147
orthopyroxene, 148
pigeonite, 148

Q
Quartz, 265
Quatsino Formation, 7
Quenched texture, 325, 335, 336, 338, 344–346

R
Radiogenic isotopes, 262, 266, 271, 369, 443
Radiometric data, 55–67, 430
Rajasthan, India, 183
Rare-earth elements (REE), 442, 443
Red bole, 136, 182, 184, 188
REE. See Rare-earth elements
Replenishment/refilling, tapping and fractional (RTF) process, 298, 306
Reunion Island, 31, 193
Reverse/cyclic zoning, 100–102
Rodinia break up, 355–379
Rosette, 162–170, 177
RTF process. See Replenishment/refilling, tapping and fractional process
Rubidium, 211, 213

S
Scapolite
amphiboles, 464
field relations and petrography, 456
mineral compositions, 462
biotite
classification, 466
groups, 464
mineral compositions, 463
non-scapolite bearing rocks, 465
classification, 465
compositions, 450–451
equivalent anorthite content, 457, 464
field occurrences, 455
fluid compositions
fluid inclusion, 467
NaCl content, 466
salinity, 467–468
granite gneisses, 450
Lufilian–Zambezi Belt (see Lufilian–Zambezi Belt)
mariolite and meionite, 450
metagabbros
Copperbelt Region, 457
mineral compositions, 460
Munali Hills Area, 456–457
metamorphic mineral, 450
mineral analyses, 457
Munali Hills
field relations and petrography, 454–456
geological map, 452
representative mineral compositions, 458–459
NaCl-rich fluids, 469–470
origin, 469
plagioclase, 464
mineral compositions, 461
replacement, 455
prevalence, 450–451
Seamounts, 18, 57, 58, 64, 66, 243
Seismic tomography (ST) controls, 120
P-and S-wave velocity images, 122–124
Pacific–Philippine Sea slab interaction, 123
principles, 119
subduction zone, 121
tavel-time delays, 120
vs. CT, 120–121
X-ray source, 120
Serpentinite, 329–331
Shallow convecting mantle. See Mid-ocean ridge basalts (MORB)
Silica, 206–207
Silicic magmas, 265–266
Siwana and Jalor ring complexes
A-type magmatism, 437
geosolical setting, 439–440
granites
10000*Ga/Al–Zr, 442
18O rift related meteoric/hydrothermal systems, 443
crustal contamination, 443
HHP granites, 444
Pb isotope data, 442, 444
REE diagrams, 442, 443
rhyolites, 442
magmatic evolution and emplacement
Eu/Eu* vs. Ba, 445
felsic minerals, 446
peralkaline and peraluminous magma, 446
plagioclase and alkali feldspar fractionation, 445
subvolcanic ring structures/dykes, 444
mineral chemistry, 441
MIS, 438, 440
petrography, 440–441
Southern Granulite Terrain, 384–385
Spinel–garnet transition zone, 15
Strontium, 211
Structural zones of lava flows, 196
Subaerial lavas, 251
Subcontinental Mantle Lithosphere, 305
Subcratonic lithosphere, 423, 430
Subduction zones, 127, 269
Symplectite textures, 396

T
Tephrite, 78, 79
Thermochemical plume model, 29–50
Titania, 211
Total alkali-silica (TAS) classification, 78–79
diagram, 401
Total iron oxides (FeO total), 208
Trapping and fractional crystallization, 12, 13, 15, 17, 35, 37, 89, 106, 109, 110, 233, 278, 279, 296–298, 300, 301, 305, 306, 312, 375
Triassic Karmutsen Formation alteration
Karmutsen volcanic and subvolcanic rocks, 8, 11
rare earth element normalization, chondrite, 8, 12
trace element normalization, mantle, 8, 14
zeolite facies metamorphism, 8
chemical analyses, rocks, 8–10
geochemistry
chondrite-normalized REE abundances, 12, 13
fractional crystallization, 13
Karmutsen lavas, 11, 12
Karmutsen volcanic and subvolcanic rocks, 11, 12
low- vs. high-Ti basalts, 13–15
mantle-normalized abundances, incompatible trace elements, 14, 15
Ti and HFSE contents, 12

geological setting
depth of deposition, 7
flood basalts, 6, 7
isotopic data, 7
Middle Jurassic conglomerate, 6
Quatsino Formation, 7
Triassic stratigraphy, Vancouver Island, 6
Wrangelia terrane characteristics, 5

decomposition

geochemical groups, 17–18
source regions, 14, 16–17
petrography, 7–8
plume model test
extrusion, high Mg lavas, 20
Late Devonian–Carboniferous arc, 18
lithospheric flexure effects, 20
magma production, seamount, 21
stratigraphy development, 19
uplift, lithosphere and asthenosphere, 20
plume-generated oceanic plateau,
Paleozoic arc, 21, 22

Triple junction rifts, 96

U
U–Pb isotope dilution analysis, 390–391
Uluguru anorthosite massif, 376
Unzen volcano, 125–126

V
Vanadium, 214
Volcanic rocks, 244
Volcanic rocks, Gabal Nuqara
AFC process, 278
analytical methods, geochemistry, 289–291
ANS
continental lithosphere, 312
geological history, 307
intra-plate sedimentation, 308
MORB-type Gebel Gerf ophiolite, 308
postorogenic tholeiitic magmatism, 309
stratigraphical correlation, basement rocks, 309–311
classification and chemical characteristics
iron/MgO ratio vs. SiO₂, 292
K₂O vs. SiO₂, 289, 292
LILEs, 293
primordial-mantle-normalized multi-element spiderdiagrams,
293, 294
total alkali vs. silica, 289, 292
compositional variations, magma, 278–279
crustal contamination/magma mixing
K/Rb vs. SiO₂, 300, 301
LILEs, 300
Nb/Y vs. Rb/Y, 302
Rb/Zr vs. SiO₂, 300, 301
Zr/Y vs. K/Rb, 301, 302
fractional crystallization
Al₂O₃/TiO₂ vs. TiO₂, 296, 297
Fe–Ti oxides and apatite fractionation, 297–298
Index

fundamental constraints, 296–297
major/trace elements vs. SiO₂, 294, 296
olivine and pyroxene, 297
RTF crystallization process, 298
lithofacies
- field photographs and photomicrographs, 281, 283
- geological map, 281, 282
- mafic-ultramafic rocks, 281
- neoproterozoic metasedimentary, 281
- old volcanic sequence (see Old volcanic sequence)
young volcanic sequence, 288–289
magma crystallization, 278
major and trace element variations, 293–295
Nuqara volcanics
- crystallization, 305–306
- garnet-and amphibole-bearing mantle, 305
- ignimbrites and rhyolitic lavas, 307
- intensive post-orogenic magmatism, 307
magma emplacement, 307, 308
quantitative evolution model, 298–300
RTF process, 306
tholeiitic young volcanic sequence, 306
plagiorheic young volcanic sequence, 306
parnet magma
- Arabo–Nubian lithosphere, 305
- crystal fractionation, 302
- metasomatism, 303, 305
- modal melting model, 303, 304
- olivine and pyroxene fractionation, 303
- phlogopite-bearing spinel lherzolite, 303
polybaric origin, 278
regional geological setting
- abundant extensional structures, 280
- Cretaceous-Paleogene marine sediments, 281
- Mesozoic graben structures, 281
- Najd fault system, 279
- Precambrian basement, 279, 280
shear zones, 280
transpressional tectonism, 279
tectonic environment, 295–296
Volcanics
- basalts
characteristics, 335
- clinopyroxene and radial alignment resorption, 336, 337
dog-tooth structure, 335, 336
- intergranular texture, 335, 336
- megacryst and phenocryst, 337, 338
- ocellar structure, 336–337
- peridotite-serpentinite, 335
- plagioclase, 335, 336
- pyroxenes, 335, 338
- spilite, 338
- trachy and plagioclase phryic basalt, 335, 337
- vitrophyric texture, 335–337
volcaniclastics, 338–340
Western charnockite zone (WCZ), 357, 358
Western khondalite zone (WKZ), 357, 358
Within plate basalts, 303
X-ray fluorescence, 8, 73, 170
Yerer–Tullu Wellel lineaments, 72
Young volcanic sequence, 288–289
Yttrium, 214–218
Zambia, 449–470
Zircon, 265–266