References

159. Ogden R.: *Non-Linear Elastic Deformations.* Ellis Horwood, Chichester, 1984

180. Program ABAQUS. Ver.6.6-2.

181. Program AceGen by J. Korelc (http://www.fgg.uni-lj.si/Symech/)

182. Program ADINA. Ver.8.3.1.
183. Program FEAP by R.L. Taylor, Ver.7.4., University of California, Berkeley (http://www.ce.berkeley.edu/rlt)

Author index

Abdel Rahman, H.H. 421
Adkins, J.E. 104
Allman, D.J. 347
Altman, S.L. 126, 144
Aminpour, M.A. 360
Angeles, J. 126
Argyris, J. 126, 405, 440
Armero, F. 288, 290
Atluri, S.N. 31, 37, 43, 126, 179, 347

Babuška, I. 295, 296
Badur, J. 31
Balmer, H. 440
Basar, Y. 444, 453
Bathe, K.J. 230, 295, 301, 385, 412, 414, 421
Batoz, J.-L. 393, 394
Bazeley, G.P. 425
Bednarczyk, H. 30, 443
Belytschko, T. 62, 74, 367, 403, 408, 412, 426, 441, 445
Benson, D.J. 236, 259
Beresford, P.J. 278, 281, 284
Bergan, P.G. 347, 443
Bertsekas, D.P. 321, 325, 329
Betsch, P. 97, 179
Bischoff, M. 230
Blackburn, Ch.L. 405
Blackham, S. 425
Bowen, R.M. 6
Brank, B. 447
Brebbia, C.A. 230
Brezzi, F. 31, 295, 334
Bucalem, M.L. 412, 414

Buechter, N. 179, 209, 230
Buffler, H. 31, 42, 75, 360
Campbell, G. 436
Cardona, A. 126, 179, 183, 189, 209, 219
Cartan, E. 126
Cazzani, A. 31, 43, 126, 179
Chapelle, D. 301, 413
Chen, D.-P. 303
Chernykh, K. F. 92
Cheung, Y.K. 236, 425
Chróścielewski, J. 30, 230, 420, 448, 451
Connor, J.J. 230
Cook, R.D. 230, 347, 360, 432
Corliss, G. F. 262
Cosserat, E. 30
Cosserat, F. 30
Crisfield, M.A. 62, 230, 290

Damjanic, F.B. 447
Danielson, D.A. 75
DeBoer, R. 6, 32, 46, 64, 88, 130, 147, 165, 170, 209
Dennis, J.E. 189
Ding, Y. 444, 453
Doherty, W.P. 274, 278, 281
Doltsinis, J.St. 440
Donnell, L.H. 411
Dunne, P.C. 440
Dvorkin, E.N. 385, 412, 421

Eberlein, R. 230
Felippa, C.A. 333, 347
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figueiras, J.A.</td>
<td>238</td>
</tr>
<tr>
<td>Fix, G.J.</td>
<td>420</td>
</tr>
<tr>
<td>Fletcher, R.</td>
<td>321, 325, 329</td>
</tr>
<tr>
<td>Fortin, M.</td>
<td>295</td>
</tr>
<tr>
<td>Fox, D.D.</td>
<td>28, 31, 44, 45, 47, 166, 167, 230, 290, 433, 438, 440, 443, 446</td>
</tr>
<tr>
<td>Fraeijs de Veubeke, B.</td>
<td>31, 37</td>
</tr>
<tr>
<td>Franca, L.P.</td>
<td>23</td>
</tr>
<tr>
<td>Frey, F.R.</td>
<td>230, 347, 359, 360, 394, 407</td>
</tr>
<tr>
<td>Geradin, M.</td>
<td>126, 179, 183, 189, 209, 219</td>
</tr>
<tr>
<td>Ghaboussi, J.</td>
<td>274, 278, 281</td>
</tr>
<tr>
<td>Goldenveizer, A.L.</td>
<td>74</td>
</tr>
<tr>
<td>Goldstein H.</td>
<td>126, 152</td>
</tr>
<tr>
<td>Goto, Y.</td>
<td>454, 455</td>
</tr>
<tr>
<td>Goudreau, G.L.</td>
<td>236, 259</td>
</tr>
<tr>
<td>Green, A.E.</td>
<td>104</td>
</tr>
<tr>
<td>Griewank, A.</td>
<td>262</td>
</tr>
<tr>
<td>Gruttmann, F.</td>
<td>75, 118, 169, 170, 230, 347, 452</td>
</tr>
<tr>
<td>Haase, M.</td>
<td>440</td>
</tr>
<tr>
<td>Haftka, R.T.</td>
<td>405</td>
</tr>
<tr>
<td>Hallquist, J.O.</td>
<td>259, 236</td>
</tr>
<tr>
<td>Harari, I.</td>
<td>335, 360</td>
</tr>
<tr>
<td>Harder, R.L.</td>
<td>347, 358, 405, 407, 420, 421, 430, 433, 435, 436, 441, 445</td>
</tr>
<tr>
<td>Hassenpflug, W.C.</td>
<td>138, 161</td>
</tr>
<tr>
<td>Hinton, E.</td>
<td>412, 413, 421</td>
</tr>
<tr>
<td>Hoff, C.C.</td>
<td>405, 407, 435, 436</td>
</tr>
<tr>
<td>Holzapfel, G. A.</td>
<td>104</td>
</tr>
<tr>
<td>Horrigmoe, G.</td>
<td>443</td>
</tr>
<tr>
<td>Huang, Y.-S.</td>
<td>303, 306, 344, 368, 378, 409, 410, 412, 413</td>
</tr>
<tr>
<td>Hughes, T.J.R.</td>
<td>28, 31, 44, 45, 47, 78, 94, 97, 110, 138, 230, 234, 236, 254, 290, 334, 335, 355, 360, 369, 370, 374, 384, 385, 412</td>
</tr>
<tr>
<td>Ibrahimbegovic, A.</td>
<td>126, 210, 230, 347, 433, 446</td>
</tr>
<tr>
<td>Irons, B.M.</td>
<td>425</td>
</tr>
<tr>
<td>Iura, M.</td>
<td>347</td>
</tr>
<tr>
<td>Jaamei, S.</td>
<td>347, 394, 407</td>
</tr>
<tr>
<td>Jang, J.</td>
<td>412</td>
</tr>
<tr>
<td>Jaunzemis, W.</td>
<td>23</td>
</tr>
<tr>
<td>Jelenic, G.</td>
<td>290</td>
</tr>
<tr>
<td>Jemiolo, S.</td>
<td>104, 110</td>
</tr>
<tr>
<td>Jetteur, P.</td>
<td>230, 347, 359, 360, 394, 407</td>
</tr>
<tr>
<td>John, F.</td>
<td>107</td>
</tr>
<tr>
<td>Jones, E.</td>
<td>290</td>
</tr>
<tr>
<td>Kane, T.R.</td>
<td>161</td>
</tr>
<tr>
<td>Kania, E.</td>
<td>302, 344</td>
</tr>
<tr>
<td>Kanok-Nukuchai, W.</td>
<td>230, 369, 370, 374, 384</td>
</tr>
<tr>
<td>Kasugai, T.</td>
<td>454, 455</td>
</tr>
<tr>
<td>Kelsey, S.</td>
<td>405</td>
</tr>
<tr>
<td>Kirchhoff, G.R.</td>
<td>74</td>
</tr>
<tr>
<td>Kleiber, M.</td>
<td>230, 440</td>
</tr>
<tr>
<td>Knight, N.F.Jr.</td>
<td>436</td>
</tr>
<tr>
<td>Koiter, W.T.</td>
<td>30, 31, 74, 107</td>
</tr>
<tr>
<td>Kollmann, F.G.</td>
<td>230, 394</td>
</tr>
<tr>
<td>Korelc, J.</td>
<td>266, 290, 311, 421</td>
</tr>
<tr>
<td>Kowalczyk, P.</td>
<td>218, 219, 254</td>
</tr>
<tr>
<td>Krakeland, B.</td>
<td>443</td>
</tr>
<tr>
<td>Laursen, T.A.</td>
<td>333</td>
</tr>
<tr>
<td>Lee, S.-H.</td>
<td>62</td>
</tr>
<tr>
<td>Lee, S.W.</td>
<td>230</td>
</tr>
<tr>
<td>Leung, A.Y.T.</td>
<td>236</td>
</tr>
<tr>
<td>Leviathan, I.</td>
<td>403</td>
</tr>
<tr>
<td>Levinson, D.A.</td>
<td>161</td>
</tr>
<tr>
<td>Lewinski, T.</td>
<td>74</td>
</tr>
<tr>
<td>Likins, P.W.</td>
<td>161</td>
</tr>
<tr>
<td>Liu, W.K.</td>
<td>74, 97, 110, 230, 311, 412, 426</td>
</tr>
<tr>
<td>Liu, X.H.</td>
<td>420</td>
</tr>
<tr>
<td>Lo, S.H.</td>
<td>236, 420</td>
</tr>
<tr>
<td>Luenberger, D.G.</td>
<td>321, 329</td>
</tr>
<tr>
<td>Lyons, L.P.R.</td>
<td>290</td>
</tr>
<tr>
<td>Makowski, J.</td>
<td>30, 92, 119, 209, 420, 448, 451</td>
</tr>
<tr>
<td>Malejannakis, G.A.</td>
<td>440</td>
</tr>
<tr>
<td>Malkus, D.S.</td>
<td>230</td>
</tr>
<tr>
<td>Mäkinen, J.</td>
<td>219</td>
</tr>
<tr>
<td>Marguerre, K.</td>
<td>411</td>
</tr>
<tr>
<td>Maskeri, S.M.</td>
<td>302, 344</td>
</tr>
<tr>
<td>Masud, A.</td>
<td>335, 360</td>
</tr>
<tr>
<td>Matzenmiller, A.</td>
<td>447</td>
</tr>
<tr>
<td>Menzel, A.</td>
<td>179</td>
</tr>
<tr>
<td>Mlejenek, J.P.</td>
<td>440</td>
</tr>
<tr>
<td>Moita, G.F.</td>
<td>62, 290</td>
</tr>
<tr>
<td>Moran, B.</td>
<td>74, 426</td>
</tr>
<tr>
<td>Morley, L.S.D.</td>
<td>294</td>
</tr>
</tbody>
</table>
Muller, M. 440
Murakawa, H. 37
Naganayyana, B.P. 406, 428
Naghd, P.M. 74, 108, 123, 124
Nagtegaal, J.C. 290
Noll, W. 35, 115, 130
Nour-Omid, B. 333, 399
Novozhilov, V.V. 74
Obata, M. 454, 455
Oden, J.T. 329, 333
Ogden, R. 23, 24, 104, 116
Ong, J.S.-J. 311, 412
Onate, E. 230
Owen, P.R. 238
Panasz, P. 408, 412, 414, 422
Parisch, H. 230
Park, K.C. 412
Peric, D. 447
Pian, T.H.H. 290, 301–303, 306, 344
Piltner, R. 306, 309, 344
Pinsky, P.M. 412
Pister, K.S. 109
Ploska, M.E. 230
Poterasu, V.F. 126
Powell, M.J.D. 328
Prathap, G. 406, 428
Rall, L. B. 262
Ramm, E. 169, 179, 209, 230, 443, 447
Rankin, C.C. 399
Razzaque, A. 425
Rebel, G. 336, 455
Reese, S. 290
Reissner, E. 31, 42, 75, 124
Rhu, J.J. 230
Rifai, M.S. 167, 166, 230, 283, 433, 438, 440, 443, 446
Rixen, D. 126
Roberts, J.E. 295
Robinson, J. 294, 344, 405, 406, 425
Roehl, D. 230
Rosenberg, R.M. 126
Russell, W.T. 370
Sansour, C. 30, 97, 230, 394, 443
Scharp, D.W. 440
Schieleck, B. 119
Schnexl, R.B. 189
Schultz, R. 453
Sim, Y.S. 347, 402
Simmonds, J.G. 75
Soh, A.K. 347, 402
Soreide, T.H. 443
Spilker, R.L. 302, 344
Spring, K.W. 138, 144
Stander, N. 447
Stanley, G.M. 412
Stein, E. 97, 179, 230
Stolarski, H. 62, 367, 408, 412, 441, 445
Strang, G. 420
Straul, D.J. 58, 141
Stuelpnagel, J. 126, 138, 141, 161, 163
Stumpf, H. 30, 92, 119, 209, 451
Sumihara, K. 301–303
Sze, K.Y. 347, 402, 420
Tahar, M.B. 393, 394
Talaslidis, D. 394
Tan, X.G. 97
Tarnow, N. 230
Telega, J.J. 74
Tezduyvar, T.E. 385, 412
Thomas, J.M. 295
Timoshenko, S. 408
Ting, T.C.T. 23
Too, J.M 413
Toupin, R.A. 30, 31
Trueisdell, C. 35, 115, 130
Uras, R.A. 311
Valid, R. 74
Vu-Quoc, L. 97, 179, 209
Wagner, W. 230, 347, 452
Wan, F.Y.M. 30
Wang, C.C., 6
Warren, C.Y. 430, 439
Watanabe, Y. 454, 455
Weinitschke, H.J. 30
Wempner, G. A. 394
Wilson, C.T. 405, 407, 435, 436
Wilson, E.L. 274, 278, 281, 284, 347, 433, 446
Winget, J. 138
Witkowski, W. 230
Wittenberg, J. 126
Woinowsky-Krieger, S. 409
Wong, K.K. 158, 179, 218-220, 222, 224, 412, 441, 445
Wood, W.L. 219
Woźniak, Cz. 120
Yuan, K. 303, 306, 344
Zacharia, Th. 403, 421
Zhu, Y. 403, 421
Zienkiewicz, O.C. 219, 230, 266, 348, 412, 421, 425, 426, 427
Subject index

Allman elements, 347
EADG2x enhancement, 356
Special techniques, 357
Stabilization of spurious modes, 357
Procedure of [Jetteur, Frey, 1986], 359
Allman+EADG2x elements, 360
Allman shape functions
 Classical, 349
 for finite drilling rotation, 351
 Conditions to calculate mid-side displacement vector, 351
 Mid-side displacement vector for small strains, 353
Hierarchical shape functions of 2D quadrilateral, 348
Algorithmic schemes for finite rotations, 178, 202
 in initial tangent plane, 204
 in reference tangent plane, 205
 in current tangent plane, 208
Angular velocity
 Eulerian (spatial, or left), 212
 Lagrangian (material, or right), 214
Angular acceleration, 214
Angular velocity and acceleration for parametrizations, 214
Approximation of curved surfaces by four-node elements, 416
Automatic Differentiation, 265

Balance equations, 31
 Weak form, 32
 Four forms of virtual work of stress, 33

Bases for initial configuration, 235
Bases in FE computations, 249
Basic geometric definitions for shells, 49, 52
Bending; sinusoidal and cylindrical, 371
Bilinear elements with drill rotation, 341
 Enhanced EADG4, 341
 Assumed stress HR5-S, 342
 Assumed stress/enhanced strain HR7-S, 343
 Assumed stress & strain HW14-SS, 344
 Assumed stress & strain/enhanced strain HW18-SS, 345
Bilinear shape functions, 230
Calculation of drilling rotation for given displacement, 313
Cartesian bases, 6
 Product of vector and tensor, 6
 Transformation of components, 7
 Forward and backward-rotated objects, 8
Characteristics of tested shell elements, 421
Co-basis definition expressed by Jacobians, 245
Composition of rotation tensors, 170
Euler parameters (quaternions), 172
 semi-tangential vectors, 173
 canonical vectors, 175
 coaxial canonical vectors, 175
tangent & drilling rotation, 176
Euler angles, 177

Configuration space
 Classical, 22
 Extended, 30

Constitutive equations for shells, 97
 General form for shell resultants, 101
 Reduced, 107
 for ZNS condition, 108
 for incompressibility condition, 115

Constant strain patch tests, 424

Cook’s membrane, 361, 362, 432

Coordinates
 Natural, 50
 Skew, 291

Curvature of reference surface, 53
 Restriction and simplifications, 55, 56
 Warpage, 396

Curvature correction for beams, 379

Curved beam, 433

Deformation gradient, 54, 250

Derivatives of shape functions w.r.t.
 Cartesian coordinates, 20

Differential \(\chi \text{T} \), 188

Discrete Kirchhoff (DK) elements, 394

Displacement element \(Q_4 \), 272
 Compatible displacements, deformation
 gradient and Green strain, 272
 Approximation of strain, 273

Distortion test, 427

Drill RC for shells, 313
 Three forms, 314
 Rotational invariance, 315
 Difficulties in approximation, 317
 Expansion of \(Q^T F \) product, 319

EADG method for formulations with
 rotations, 337
 Modification motivated by EAS, 338

EAS for transverse shear strains, 393

Eigenvalues of a single element, 422

Element EADG4, 288
 Construction of enhancing matrix, 288
 Variational basis, 289

Element EAS4, 283
 Variational basis, 283
 Enhancing strain, 284
 Verification of orthogonality condition,
 285, 286

Verification of compatibility of
 enhancing strains, 287

Couplings in tangent matrix \(K \), 287

Element ID4, 278
 Original formulation, 278
 Modified formulation, 279
 Variational basis, 280
 Sufficient cond. to pass patch test, 280
 Modification of Jacobian inverse, 281
 Gradient of incompatible displacements, 282

Elements PS and HR5-S, 301, 306
 Assumed representation of stress, 302
 Verification of equilibrium equation for
 assumed stress, 303
 Verification of compatibility of strains
 for assumed stresses, 304

Element HW14-SS, 307, 309
 Assumed representation of strain, 307

Verification of compatibility of assumed
 strains, 308

Enhanced shell kinematics
 with in-plane twist rotation, 92
 with two normal stretches, 91
 with warping parameters for cross-
 section, 94
 with shift of the reference surface, 95

Enhanced strain elements, 277
 EADG4, 288
 EAS4, 283
 ID4, 278

Euler angles, 160
 Elementary rotation, 160
 Non-uniqueness, 163

Euler parameters, 144

Euler’s theorem, 135

Examples
 Geometry of cylinder, 57
 Twisted ring by 3D beam element, 210
 Unstable rotations of rigid body, 222
 Fast spinning (rigid) top, 224
 \(Inf-sup \) test, 301

Finite rotations for shells, 125

Five-parameter representation, 140
 Stereographic projection, 141
 in terms of components, 143

Formulations for Biot stress
AMBJ for isotropic material, 43
Virtual Work equation, 42
2-F functional for isotropic material, 44
3-F potential, 42
Formulations for nominal stress
4-F, 37
Virtual Work equation, 38
Weak form of basic equations, 38
4-F potential, 39
3-F, 40
Strain energy and constitutive law, 40
Virtual Work equation, 41
Weak form of basic equations, 40
3-F potential, 41
Formulations for second Piola–Kirchhoff stress, 45
Weak form of basic equations, 45
2-F functional, 47
3-F potential, 45
Formulation 2-F with unconstrained rotations, 48
Virtual Work equation, 48
2-F potential, 48
Forward-rotated shell strains variations, 78
Four-node elements with drilling rotation
Bilinear, 341
Allman-type, 347
Four-node elements without drilling rotation, 268
Displacement Q4, 272
Incompatible Displacement ID4, 278
Enhanced Assumed Strain EAS4, 283
Enhanced Assumed Displacement Gradient EADG4, 288
Hellinger–Reissner PS and HR5-S, 301
Hu–Washizu HW14-SS, 307
Functional
Hellinger–Reissner, 269
Hu–Washizu, 268
Potential energy, 270
Geometry and bases of shell element, 232
Hinged cylindrical panel, 443
Hyperboloidal shell, 453
Identity tensor consistent with kinematics, 55, 63
Implementation of drill RC in finite elements, 321
Basic method, 321, 323
Methods of optimization, 321
Penalty method, 325
Perturbed Lagrange method, 329
Incompressibility condition, 103, 104
for small strains, 118
Increment of Green strain, two forms, 253
Incremental constitutive equations for 3D, 98
for shell resultants, 99
for strain linear over thickness, 100
Increments of rotation vectors in two tangent planes, 179
Left composition, 180
Right composition, 186
Integration of strain energy over thickness, 260
Integration over element volume, 259
In-plane deformation with drilling rotation, 76
Instantaneous angular motion, 212
Invariance of a single element, 424
Inverse Jacobian, 244
Isoparametric approximations for shell elements, 231
Jacobian matrices, 240
for initial configuration, 241
Kirchhoff kinematics, 74
Kirchhoff limit for transverse shear constrained to zero, 394
Local Cartesian basis, 235
Local Jacobian and its inverse for vector of shape functions, 246
Local operations for shell element, 249
Local shell equations for shell resultants, for Biot stress, 86, 88
for second Piola–Kirchhoff stress, 91
Locking for sinusoidal bending,
RBF correction, 370
Long channel section beam, 452
L-shaped plate, 440
Membrane locking
2D arch element, 408
Curved shell elements, 408
Nine-node shell elements, 412
Membrane patch test for elements with drilling rotation, 426
Membrane strain of curved shallow shell, 411
Mixed formulations, 290
 Eigenvalues, 291
 Inf-sup (LBB) condition, 295
Mixed functionals with rotations
 Hu–Washizu, 339
 Hellinger–Reissner, 340
 EADG enhancement, 341
Natural tangent vectors, 234
Natural basis at element’s center, 271
Newton method, 261
Normal bases, 10
 Transformation of components
 In-plane contravariant, 10
 In-plane covariant, 12
 Transverse (α_3 and 3α), 14
Normal coordinates for shells, 49
Normal vector, 235
 associated with ξ^3, 239
Numerical integration of shell elements, 255
 over thickness, 259
Numerical tests of four-node elements with drilling rotation, 360
Numerical tests of shell elements, 420
 Elementary and linear tests, 422
 Nonlinear tests, 436
Operator T, 179
 Scheme of calculation, 181
 for semi-tangential vector, 182
 for canonical vector, 183
Orthogonal tensors, 127, 131
 Composition, 170
 Left and right sequence, 171
Parametrization of finite rotations, 126, 137
 Six parameters, 139
 Five parameters, 140
 Four parameters, 144
 Three parameters: rotation vectors, 146
 Three parameters: Euler angles, 160
 Two parameters: constrained rotations of shell director, 164
Parametrization of reference surface, 232
Pinched clamped cylinder, 447
Pinched cylinder with end diaphragms, 434
Pinched hemispherical shell with hole, 445
Pinched spherical shell, 450
Polar decomposition of deformation gradient F, 22
 Uniqueness, 23
Properties of U, 23
 Algorithm for calculation of U for given C, 23
Properties of R, 24
Position vectors for shells, 50
Programs
 ABAQUS, 398, 422, 436
 ADINA, 422
 FEAP, 266, 421
 AceGen, 266, 421
 Maple, 182, 190, 262
 Mathematica, 182, 190, 262, 266
Products $F^T F$ and $Q^T F$, 249
 Modification of $F^T F$, 310
$Q^T F$ for shells, 63
$F^T F$ for shells, 69
Quaternions, see Euler parameters
Raasch’s hook, 435
Regularization parameter for drill RC, selection of value, 361
Relations between variations for various composition rules, 192
 for canonical vector, 193
 for semi-tangential vector, 194
Relation between g_α and t_α, 244
Relation between g^α and t_α, 245
Reissner kinematics
 Assumptions, 60
 Deformation gradient, 62
 Identity tensor, 63
 Variation of deformation gradient, 64
Relaxed stretching tensors, 25
Representation of gradient, 19
Requirements for shell elements, 420
Residual Bending Flexibility (RBF) correction for beam, 370 for shells, 388 for mixed shells, 392 Roll-up of a clamped beam, 438 Rotation of vector about axis, 128 of a triad of vectors, 134 of shell director, 164 Basic properties, 126 Constrained, 164 Around known axis, 160, 168 Rotation Constraint equation, 24 Interpretation of rotation \(\mathbf{Q} \), 26 Rate form, 28 Rotations calculated from, 29 Rotation Constraint (RC) for shells, 65 of zeroth order, 65 of first order, 66 Transverse shear strains satisfying RC, 73 Rotations for 3D Cauchy continuum, 22 Rotation symmetrizing strain, 75 Rotation pseudo–vectors, 146 Canonical rotation vector, 147 Methods of avoiding numerical indeterminacy, 149 Extraction from quaternion, 152, 156 Semi-tangential rotation vector, 152 Extraction from rotation matrix, 155 Transformation to another basis, 159 Rotation tensor, 127 Eigenvalues, 132 for given initial & current director, 166 Selection of coordinates \(\vartheta^\alpha \), 50 Selection of penalty value in contact mechanics, 333 for drill RC, 332, 335 Upper bound, 334 for shells of [Rebel, 1998], 336 Shear correction factor, 120, 124 Shell description, formalisms, 51 Shell kinematics Reissner, 60 Enhanced Reissner, 91 Kirchhoff, 73 Shell-type constitutive equations, 97 Shifter (translation) tensor, 53 Short channel section beam, 451 Simplifications for orth normal coord., 56 Skew-symmetric tensors, 129, 131 Axial vector, 130 Slender cantilever under in-plane shear, 436 bent by end drill rotations, 362 pure bending, 388 Slit open annular plate, 444 Solution of FE equations for problems with additional variables, 274 System of equations, 275 Local elimination of variables, 275 Schemes of update of multipliers, 276 Special orthogonal group SO(3), 127 Plane tangent to SO(3), 179 Straight cantilever beam, 430, 362 Strains, 3D Green, 34 Rate of Green strain, 255 Right stretch strain, 34 Non-sym. relaxed right stretch, 36 Symmetric relaxed right stretch, 37 Strains of shell Non-sym. relaxed right stretch, 66 Objectivity, 67 Symmetric relaxed right stretch, 68 Green strain, 69 Covariant components, 70 in forward-rotated basis, 72 Strain energy Mooney–Rivlin material, 103 Neo-Hookean material, 103 Incompressible material in principal stretches, 115 Ogden’s material, 116 depending on invariants of right stretching tensor, 117 Stress Biot (Biot–Lurie), 42 Nominal, 31 Piola–Kirchhoff 1st, 31 Piola–Kirchhoff 2nd, 34 Stretched cylinder with free ends, 448 Substitute flat element Warpage correction, 403 Warpage operator, 404 Correction of equilibrium, 405
Rigid links correction, 406
Tangent basis varying over thickness, 52
Co-basis, 53
Tangent matrix,
Analytical method, 263
Finite difference method, 264
Automatic Differentiation, 265
Symmetry for rotational dofs, 209
Three-dimensional formulations with rotations, 30
Torsion of a plate strip, 438
Transverse shear locking, 366
Two-node beam, 367
Reduced Integration, 368
Numerical tests, 376
Four-node shells
Selective Reduced Integration, 384
Assumed Natural Strain method, 384
Nine-node shells
Reduced Integration, 412
Assumed Strain method, 413
Transverse shear strain
Timoshenko beam, 365
Large rotation beam, 366
Shell, 383
Transverse shear stress distribution, 121
Expressed by shell resultants, 122
Twisted beam, 441
Twisted ring, 210, 454
Updates of rotations for rigid body motion, 218
Multiplicative, 220
Multiplicative/additive, 221
Variations of rotation tensor
First variation, 189
for additive composition, 189
for multiplicative composition, 190
Second variation, 198
for canonical vector, 199
for semi-tangential vector, 201
for coaxial rotation vectors, 201
Vector of shape functions, 231
Very thin elements
Annihilation of bending stiffness, 374
RBF correction, 370
Scaling of trans. shear stiffness, 374
Virtual work for shell, 80, 85
of Biot stress, 80
of stress for forward-rotated shell resultants and strains, 81
of second Piola–Kirchhoff stress, 82
of body forces and external forces, 84
Variation of RC term, 83
Volume and area of shell element, 258
Infinitesimal, 256
Warpage, definition, 396
Relative warpage parameters, 397
Calculation of warpage parameter, 399
Warped four-node shell element, 396
Mean plane, 398
Two formulations, 400
Warped single element test, 428
Warped element with modifications
Green strain, 400
In-plane shear strain, 401
Drill RC, 402
Regularization parameter, 402
Membrane over-stiffening of warped shell element, 402
ZNS condition, 108