References

Begemann F.: 1963, ‘The tritium content of hot springs in some geothermal areas’ in: Nuclear geology on geothermal areas, Spoleto, 55–70.

Epstein S. and Taylor H.P.: 1970, $^{18}\text{O}/^{16}\text{O}$, $^{30}\text{Si}/^{28}\text{Si}$, $^2\text{H}/^1\text{H}$ and $^{13}\text{C}/^{12}\text{C}$ studies of lunar rocks and minerals’, *Science*, 167, 533–535.

Epstein S. and Taylor H.P.: 1971, $^{18}\text{O}/^{16}\text{O}$, $^{30}\text{Si}/^{28}\text{Si}$, $^2\text{H}/^1\text{H}$ and $^{13}\text{C}/^{12}\text{C}$ ratios of Apollo 14 and 15 samples’, in: *Proc. Second Lunar Conf.*, 1421–1441.

Epstein S. and Taylor H.P.: 1972, $^{18}\text{O}/^{16}\text{O}$, $^{30}\text{Si}/^{28}\text{Si}$, $^{13}\text{C}/^{12}\text{C}$ and $^2\text{H}/^1\text{H}$ studies of Apollo 14 and 15 samples’, *Geochem. et Cosmochem. Acta*, Suppl. 3, 1429–1454.

References

References

References

References

Subject Index

A
Accretion hypothesis, 242, 253, 273, 275
Angular momentum, 95, 115, 164, 204, 208, 233, 275, 280
Anomaly
 eccentric, 4, 5, 51, 205, 206, 209
 mean, 4, 5, 51, 205, 209
 true, 4, 5
Apsides line, 183
Archimedes’ force, 52, 142, 160, 161, 166, 192
Archimedes’ law, 3, 21, 189
Atmospheric pressure, 173, 213, 216–219
Atmospheric temperature, 173, 213, 219
Atom of hydrogen, 85, 115–122
Avogadro’s law, 61

B
Barycentric co-ordinates, 69, 71, 98, 102
Bianchi, 230
Bifurcation point, 278, 279, 281
Bohr radius, 118
Boltzmann constant, 233, 236
Bolzmann constant, 233, 236
Boyle-Mariotte’s law, 61

C
Cartesian co-ordinates, 53, 63, 73, 82, 99, 100
Centre of inertia, 161, 164
Centre of mass, 165
Chandlers wobbling, 25, 36, 187
Chandrasekhar-Fermi equation, 237, 238, 280
Charge elementary, 226
Christoffel symbol, 92
Clairaut equation, 22, 28, 50
Clapeyron-Mendelev’s equation, 60
Clausius’ virial theorem, 27, 46, 48, 51, 156
Condensing temperature, 242, 266
Confidence interval, 214–218

Conservative system, 49, 73, 97–124, 126, 135–137, 163, 164
Copernican world system, 2, 51
Coriolis’ force, 52, 142, 160, 161, 166, 192
Cosmochemical events, 268
Coulomb energy, 226, 228, 237, 280
Coulomb interaction, 225–229, 237, 238, 278–280
Coulomb law, 89, 163
Covariant 4-delta, 230
Covariant differentiation, 230

D
D’Alembert operator, 231
Defect of mass, 90, 91, 193–195, 239
Degassing of volatiles, 260
Dipole electric, 229–234, 278
oscillating, 230, 232, 278
Discrete-wave structure, 164, 235
Discriminant curves, 135, 136, 277, 278
Dissipative function energy, 154
Dynamical approach, 97, 98, 142, 186, 223, 284
Dynamical equilibrium of state, 46, 53, 59, 191, 197

E
Eccentricity, 4, 5, 106, 151, 184, 205–209, 233
Eigenoscillations, 44, 142–152, 212–219
Einstein’s equations, 60, 89, 124, 156, 230
Electromagnetic coherent radiation, 234, 235, 238
Electromagnetic potential of field, 224, 231
Ellipsoidal shell, 22
Elliptic motion, 3, 112, 232
Energy
 conservation law of, 111, 156, 170, 182, 201, 230
 electromagnetic, 91, 94, 154, 164, 224,
 229–235, 239, 276, 279
 gravitational, 91, 97, 113, 191, 224, 237,
 239, 272, 273, 276
kinetic, 26, 27, 43–51, 59–62, 67, 70, 72,
 78, 79, 94, 97, 101, 113, 118, 125,
 141, 142, 148–150, 153, 154, 156,
 162, 163, 166, 168–170, 180, 190, 199, 201
potential, 26, 27, 45, 46, 48–50, 56,
 58, 61, 62, 64, 67, 70–74, 78,
 79, 81, 84, 85, 89, 93, 101,
 102, 104, 114, 120, 126, 137,
 141, 142, 149–155, 157, 158,
 162–166, 167–171, 184, 188,
 194, 195, 199, 202, 203, 219,
 223–230, 237, 239, 276–280
total, 26, 69–72, 80, 90, 91, 94, 101, 102,
 104, 113, 114, 121, 126, 149, 150,
 162, 191, 201, 205, 207, 212, 224,
 228, 232, 239
Energy-moment tensor, 89, 90, 123, 230
Equation of geodetic, 92
Equation of motion
 compressible liquid, 13
 continuity, 25, 29, 74, 110, 198, 199
 dynamical equilibrium, 46–53, 58–63, 67,
 68, 71–73, 88, 97, 120, 139, 141,
 171, 229, 277–279, 284
 free surface of liquid, 39
 hydrostatic equilibrium, 61, 88
 incompressible liquid, 25
 perturbed oscillation, 130, 207
 state, 25
 virial oscillation, 124, 126–134, 137, 150,
 203, 209
Equation of radial wave, 118
Equation of state of perfect gas, 60
 star, 61
Equilibrium boundary conditions, 235–237
Equilibrium of gaseous nebulae, 236, 237, 279
 radiation, 236
Ermit’s operator
Euler’s angles, 23–25, 31, 37, 47, 60, 62,
 73–80, 109, 110, 113, 143, 149,
 156, 198, 199
Euler’s equation of hydrodynamics, 25, 109
Euler’s equations of hydrostatics, 62
Euler’s equations of motion, 24, 47, 143, 149
 equations of free rotation, 24
Euler’s theorem of homogeneous functions, 67
 period of free precession, 25
F
Field
 electromagnetic, 31, 90, 91, 154, 164, 190,
 223–239
 gravitational, 7, 30, 34, 44, 45, 48,
 52–58, 89, 91–93, 156, 163,
 164, 192, 199, 202, 236, 237,
 239, 241, 253, 254
 inner, 62, 98, 188, 190
 magnetic, 212, 220, 231
 solenoid, 164
 theory, 27, 52, 194, 284
 vector, 164
Fisher-Tropsh reaction, 259
Force
 function, 17, 26, 50, 57, 58, 61, 97, 141,
 152, 153, 156, 158, 163, 164, 195,
 224, 239, 243, 279
 gravitational, 14, 30, 40–44, 152, 156, 162,
 190, 236
 inertial, 1, 21, 24, 39, 41, 43, 48, 51, 52,
 57, 60, 82, 95, 284
Form-factor structural, 56, 57, 153, 166, 188
Fractionation of isotopes
 biologic, 257
 high-temperature, 245, 260
Function of inter-coherence
 density of change
 kinetic energy, 67
 phase difference, 214–219
 potential energy, 58, 64, 67, 70, 72, 73
 spectral density, 214, 216
G
Galileo’s law of inertia, 2–3, 51
 free fall, 2–3, 51
Gauss-Ostrogradsky theorem, 74, 79
Gay-Lussac’s law, 61
Generalized co-ordinates, 80, 81
 momentums, 80
 virial theorem, 46, 49, 50, 53, 59–73, 94,
 141, 171
Geodynamic parameter, 41, 42, 59, 176
Gravitational attraction
 constant, 64, 122, 127
 contraction, 161, 234
energy, 91, 97, 113, 191, 224, 237, 239, 272, 273, 276
field, 7, 30, 34, 44, 45, 48, 52–58, 89, 91–93, 156, 163, 192, 199, 202, 236, 237, 239, 241, 253, 254
potential, 33, 34, 40, 150, 204, 224
pressure, 30, 52, 58, 172, 173, 189, 190, 192, 197
Gravitational moments
sectorial, 42, 50
tesseral, 34, 40–42, 50, 152

H
Hamilton’s equation of motion, 80
Hamilton’s operator, 81, 82, 115, 116, 120
Harmonic coherent, 215, 219
Hermite’s operator, 81
Hertz dipole, 231
Hertz vector, 231, 232
Hook’s law, 8–9, 21, 30, 126, 143, 162, 163
Huygens pendulum clock
evolute, 6, 7
evolvent, 6–8
Hydrostatic
pressure, 29, 30, 34, 145, 165, 189–191
Hyperbolic motion, 112
Hypothesis of matter accretion, 242, 253, 273, 275

I
Integral characteristics, 44, 45, 97, 102, 104, 139, 141
Integrals of area
moment of momentum, 66, 76, 77
motion of mass center, 65, 74, 75, 98
Internal energy of system, 78, 79
Internal friction, 137
Interval of discreteness, 213, 215–217, 219
Isotopes
carbon, 255–264
hydrogen, 244–255
oxygen, 188, 244–255, 260, 272, 274

J
Jacobi’s virial equation, 26, 27, 50, 58, 62–95, 97–124, 134, 135, 137, 141, 147, 149, 156, 198, 201, 212
Jacobi’s n body problem, 25–27, 104–109, 156
Juvenile water, 248–250, 253–255

K
Kepler’s equation, 5, 8, 101, 138, 151, 204, 205, 209
Kepler’s law of motion, 3–6, 9, 17, 20, 51, 98, 151, 158
Kepler’s unperturbed motion, 3, 40, 98
Kinetic energy, 26, 27, 43–51, 59–62, 67, 70, 72, 78, 79, 94, 97, 101, 113, 118, 125, 141, 142, 148–150, 153, 154, 156, 162, 163, 166, 168–170, 180, 190, 199, 201
Kronecker’s operator, 82

L
Lagrange’s co-ordinates, 75, 77
Lagrange’s identity, 54, 62, 68, 69
Lagrange’s series, 107, 108, 121, 131, 151, 157, 204–206
Lamé constant, 143
Laplacian limit, 108, 205
Laplacian operator, 29, 116
Larimer-Anders model, 271, 272, 281
Law of conservation
energy, 26, 80, 111, 156, 170, 182, 201
mass, 114
moment of momentum, 233

M
Madelung coefficient, 279
Madelung energy, 238, 279
Many-body problem, 65, 82, 85, 97, 98
Mass
force, 37, 38, 141, 143, 198, 200
point, 18–20, 26, 47–49, 51, 52, 54, 62, 63, 68, 71, 72, 81, 82, 95, 156, 162, 170, 171, 180, 193, 194
Mass of ions, 226
Mathematical pendulum, 204
Meteorites
iron, 246, 256, 261, 270
iron-stone, 256, 261
stone, 250, 251, 256, 261, 269
Method of variation
arbitrary constants, 129–131, 209
successive approximation, 131
Subject Index

Mode of Earth oscillation
 rotary, 45
 spheric, 45
Model of mass point, 51
Modulus of volumetric deformations
 elasticity
 shift
Moment of inertia
 axial, 158, 166
 polar, 26, 27, 43, 44, 46, 49, 50, 53, 55–57,
 59, 62, 94, 95, 97, 115, 125, 136,
 141, 149, 150–154, 156, 157, 166,
 170, 202, 212, 223, 230, 239, 277, 278
Moseley law, 235

N
Nature of the Earth
 earthquakes, 190–192
 orogenic, 190, 192
 perturbations, 141, 142, 176–191, 193, 230
 precession-nutation, 182–186
 volcanic, 190, 192, 193
Newton’s equation of motion
 aphelion, 16
 central force field, 19–21, 29, 61
 centrifugal force, 14, 15, 18
 centripetal force, 9–11, 13, 16–18, 50, 51
Earth oblateness problem, 51
 gravity and pressure, 52
 hydrostatics, 9–21, 28, 47, 177
 innate force, 10, 17
 laws of motion, 1, 9, 12, 13, 16, 17
 potential, 40, 74, 109
 two-body problem, 5, 9, 14, 17, 20, 21, 51
 world system, 51
Non-conservative system, 70, 72, 134–136
Non-linear resonance
Nutation of the Earth axis, 23, 24, 31, 176,
 178, 185, 187

O
Oblateness of the Earth
 centrifugal, 42, 43
 dynamical, 22, 33, 34, 41, 50
 equatorial, 34, 43, 181, 183, 188, 189
 geometrical, 22, 50
 polar, 21, 34, 42, 43, 181, 183, 188, 189
Obliquity of the Earth, 188, 189
One-body problem, 98
Orbital anomalies of the Earth
 co-ordinates, 99, 100
 line of apsides, 183
 perihelion, 5, 187, 205
Origin of the Earth
 cold, 242, 253, 255
 homogeneous, 242, 253
 hot, 253, 255
 негомогенное
 non-homogeneous, 276
Oscillation of the Earth’s own
 gravitational field, 44, 45, 156
 interacting particles, 44, 142, 184, 185
 polar moment of inertia, 59, 62, 156, 157
 shells, 59, 142, 159–161, 173–176, 182,
 185, 187, 188, 198

P
Parabolic motion, 163
Pendulum motion, 3, 6–8
Perturbation
 basic term, 142
 first order of approximation, 133, 208
 function, 98, 126, 127, 132, 133, 137, 207,
 209, 230
 periodic term, 133, 134, 211
 secular term, 42, 43, 133
 theory, 133, 137, 208, 211
Perturbed virial oscillations, 125–139
 of the atmosphere, 205, 209
Picard method, 209
Picard procedure, 210
Planck mass, 238
Planck’s constant, 82
Planets
 Earth group
 Jupiter group, 264
Poisson brackets, 88
Potential
 scalar, 164
 vectorial, 164, 231
Precession of the Earth, 33, 184
Problem of the Earth’s mass, 143, 148
Protoplanet matter, 243, 265, 268, 271, 273
Protosun evolutionary branches, 269, 270

Q
Quantum mechanics, 27, 58, 60, 81–89, 115,
 120, 121, 156, 284
Quasi-periodic oscillations
 solution, 135

R
Radial distribution of density, 22, 50, 57,
 164–172, 182, 189
Radius of inertia of the Earth
 of gravity forces, 55, 57, 165
Rayleigh-Jeans equation, 239
Reaction of bindings
 elastic
 non-elastic
Regime of quantum generator, 234, 236, 239
Resonance
 periods, 209–212
 terms, 211
Riccati equation, 146
Roche’s tidal dynamics, 159, 160
Rotation of force field, 43, 44, 141–143,
 147, 149, 150, 152, 156, 161, 163,
 164–172, 174, 176, 180–195
Rotational energy, 46, 50, 101, 141, 142, 148,
 149, 151–158, 162–164, 166–171,
 180, 182, 184, 185, 188, 190, 191,
 193–195
Rubey’s theory of ocean’s creation, 242

S
Scattering
 elastic, 164
 inelastic, 154, 164
Schmidt hypothesis, 241
Schröedinger equations, 84–87, 116, 120, 121
Schwarzschild solution
 gravity radius, 93
 metric tensor, 93
Secondary body, 190, 237, 279–281
Secular term of perturbation, 133
Seismic waves
 longitudinal, 164–166
 transversal, 164–166
Self-gravitating body, 39, 46, 50, 51, 53, 58,
 62, 113, 156, 164, 180, 184, 186,
 187, 189, 194, 195, 223, 234, 235,
 237, 239, 280
Series of long-term inequalities, 134, 211
Small parameter, 127
Solar energy flux, 197, 205–207, 209
Sound velocity in elastic media, 150
Spectral analysis
 of pressure, 173
 of temperature, 173, 213
Spectrum
 deuterium, 85
 hydrogen atom, 85, 115, 120
Spectrum of power, 214–218
Spherical shell, 55, 56, 109, 159, 162, 166,
 276
Standard of oceanic water, 245
Stefan-Boltzmann constant, 60, 233, 236
Stefan-Boltzmann equation, 229

System of co-ordinates
 absolute, 63
 barycentric, 69, 71, 98, 102
 elliptical, 2
 polar, 40, 100
 spherical, 143
System of mass points, 47–49, 81
System of the world
 geocentric Ptolemaean, 2
 heliocentric Copernican, 2, 3, 51

T
Tensor
 deformations, 143, 144
 stresses, 143–145
Theorem
 continuous solution, 135
 periodic perturbation, 211
Tidal force, 160, 162, 172, 178, 179
Tidal interaction of bodies, 189, 190
Tides
 long-periodic, 178
 short-periodic, 178
Tomas-Fermi model, 226

U
Unperturbed Keplerian problem, 98
Urey boundary conditions, 264

V
Velocity
 light, 7, 91, 122, 231
 longitudinal waves, 30, 148, 164–166
 sound, 150
 transversal waves, 30, 164–166
Virial equation of covariant form, 89–91
Virial oscillations, 94, 124–139, 150–152, 157,
 172–176, 192, 193, 197, 203–205,
 207–212, 215, 216, 219, 221
Virial theorem
 averaged, 50, 59–62, 101, 139, 149, 162
 generalized, 46, 49, 50, 53, 59–73, 94,
 141, 171
 non-averaged, 59
Volatile components of the Earth, 242, 243,
 260, 270, 272, 281

W
Wave function of system, 81, 82, 86, 118
Williamson-Adams equation, 142