Index

A
- Abstract Reasoning, 167, 174
- Activities, end of first term (college), 152
- Advanced science class, 155–156, 170
teacher’s function, 155–156
- Affection, 22, 199, 235
- Aldridge, Bill G., 62–63, 66
- Amnesty International, 7
- Army Chemical Center, 24
- Army General Classification Test, 144
- Association of Biology Teachers of New York, 155, 184
- Atmospheric chemist
 - Crutzen, Paul (Nobelist), 26
 - Molina, Mario (Nobelist), 26
 - Rowland, Sherwood (Nobelist), 26
- Augmented environment, 224–225, 228
 - high school, design of, 249
- Author (writer), 87

B
- Behavior characteristics, gifted students
 - attendance, 177–178
 - leadership, 177
 - planning ability, 177
 - responsibility, 175–176
trends in personality traits, 178–180
ways of work, stages, 181–182
- Benedict, Ruth, 18
- Benjamin Franklin High School, 148
- Bennett, Dean B., 98, 120, 122
- Bennett, Hugh Hammond, 92
- Berliner, Ernst, 11
- Berman, Eleanore, 281, 283–284
- Biological Sciences Curriculum Study (BSCS), 17, 61, 82–83, 122, 229, 266–267
- Biologist, 10–11, 41, 148, 236, 266, 269, 275, 283
- Brandwein, Mary, 119–123, 128–130
- Busse, Thomas W., 224
- Butterfield, Earl C., 227
- California State Department of Education, 101, 299
- Carleton, Robert H., 61, 63–64
- Carman, Harry J., 156
- Charisma, 22, 38, 58
- Chaucer, 48
- Chauncey, Henry (president of the Educational Testing Service at Princeton), 138
- College Entrance Examination Board, 171, 194
- College-preparatory model, 251
- Columbia Teachers College, 51, 278
- Columbia University, 7, 20, 24–25, 144, 213, 268
- Commitment to science, 79, 145, 158–160, 163–164, 167, 234
 - subsidiary notions, 159
- Conant, James B., 143, 148, 253
- Concepts in Science, 76, 95, 297–299
- Conceptual scheme, 73–76, 139, 142–143, 146–148, 248–249
- Conflict resolution, 137
- Conservation Learning Summit, 125–130
- Cornell University, 10, 91, 131
- Critical thinking, 71, 103, 225–226, 253
- Critical Years Ahead in Science Teaching, 187
- Cross-cultural, 106–107, 110–112, 114–115
- Curriculum, 73, 75–76
 - and instructional designs, 250
D
Dartmouth College, 12
Datta, Lois-Ellen G., 223
Depression, effects of, 48, 270
de Solla Price, Derek, 219
“Developed ability,” 140, 159, 166, 171–173, 175, 178, 196–198
DeWall, Marily, 61–67, 119–131
Dewey, John, 96, 105
Differential Aptitude Inventory of the Psychological Corporation, New York City, 167
Disadvantaged, 66, 218, 235, 238
Dobzhansky, 20, 275
Doxiadis, Constantinos A., 102
Drexel University, 26–27
Druger, Marvin, 65
Dyad: genome interacting with environment, 221

E
Earth Day, 93
Ecology, 12, 92, 94, 101, 107, 111, 121–122, 124–125, 211
contrasting ecologies, 234–235
cultural heredity, 217
early environment of child, 215
effects of, 231–233
environment-driven factors, 218
first thesis, 215–221
gene- and environment-driven factors, 217
need for talent in science, 236–237
in school, 232
school environment, as dyad, 221–226
schooling, effective, 217
scientific knowledge, 219
student as “performing scientist,” 226–228
Ecosystem(s), 57, 79, 94, 114, 121–122, 217–218, 243, 245, 247, 256–257
Educational Resources Information Center (ERIC), 83–85
system, 138, 243

Eisenhower (President), 138
Empowerment (empower), 116, 117
Environmental (environmentalism, environmental education, environmental literacy), 92–93, 94, 96
and heredity, relationship of, 246
Equal access to opportunity, xxii
ERIC, see Educational Resources Information Center
Evoking science talent, intereffective elements, 253
Evolution (Darwinism, Darwin), 266–267
Experiential learning (approach), 110
Extracurricular science work, 152

F
Family-school-community program, 245
Field-based, 122, 124–125, 129
Field-specific hypothesis, 225
First Gulf War, xvii–xviii
First World War (WW I), 217
Forest Hills High School, 5, 9, 16, 20, 22, 24, 29–30, 37, 41–42, 43, 47, 55, 61, 145, 151, 157, 169, 174, 184, 190, 205, 226, 231, 282
Framework, 96–98
Friend, James P.
accomplishments at Isotopes, Inc. (later part of the Teledyne Corporation), 25
Work at the National Academy of Sciences
on the chlorofluorocarbon problem (1981–1982), 27
the nuclear winter problem (1983–1985), 27
the stratospheric flight problem (1975–1980), 27

G
Gallagher, James J, 219
Gardiner, Mary, 11
Gender equity, 276–277
gender discrimination, 22
gender imbalance, 32
General education, program of, 153
in relation to science potential, 168
Genetics (genetic), 268–269
Genetic Studies of Geniuses, 159–160, 179
George Washington High School, 55, 148, 166, 252
George Washington University, 11–12
Getzels, Jacob W., 137, 224–225
The Gifted Child, 160, 179, 189
Gifted (giftedness, gift), 9, 24, 37, 47, 57, 61, 78–79, 135–139, 143, 166, 178, 215, 219, 221–222, 224–228, 237, 245, 255, 265
The Gifted Student as Future Scientist, 55, 78, 81, 135–213, 221, 263, 290–291
behaviors
attendance, 177–178
leadership, 177
planning ability, 177
responsibility, 175–176
trends in personality traits, 178–179
ways of work, 181–182
“conceptual scheme”, 143
identification by testing, 166–174
proposals on local/national levels, 189–195
self-identification, 151–165
teachers, 184–188
working hypothesis, 146–151
raw material for the study, 145–146
Gifted Young in Science: Potential Through Performance, 57, 61, 66, 88
Global Rivers Environmental Education Network (GREEN), 98, 105–106, 120
Golay, Marcel, 25–26
Goodrich, Hubert B., 150, 169, 183, 186, 224
Gore, Al, 94
Gould, Stephen Jay, 66, 256, 265

H
Hammerskjöld, Dag, xx
Harcourt Brace Jovanovich, xxi, xxvii, 42, 56, 63
Harvard University, 7, 20, 56, 62, 83
Heredity and environment, relationship of, 246
Heterogeneous schools, 229, 233–235
“High level ability in science,” 77, 150, 159, 223, 254, 290
students, categories, 144
High Schools in Westinghouse Science Talent Search (1942–1988), 230, 233
Home environment, 269–270, 283
Human rights, 7, 106, 277

I
“Identical genomes,” 216, 221
Identification by testing (gifted students)
genetic factor, 166–168
aptitude test, 167
honor classes after the ninth grade, 167
in relation to science potential, 168
predisposing factor, 168–169
studying the students, 169–174
Man-to-Man Rating Scale, 169–170
productivity, 170
“reliability” criterion, 170
test of developed ability, 171–172
Westinghouse National Science Talent Search Examination, 171–174
“Independence training,” 223
“Instructed learning,” 78, 244, 247–249
equal opportunity, 248
inquiry-oriented teaching, 248
Integrated problem solving, 111
Intelligence, 9, 77, 96, 139, 159, 187, 217–218, 220–223, 226, 228, 245, 253–255, 269, 283
See also IQ
Interdisciplinary approach, 51, 111
Inventory of predisposing factors, 163–164, 169, 171, 175, 200–202
IQ, 265, 269
See also Intelligence

J
Jackson, Nancy E., 227
Jackson, Philip W., 224
Johns Hopkins University, 228
Jovanovich, William, 282

K
Knapp, Robert H., 150, 169, 223
Kolb, David A., 96
Kotovsky, Kenneth, 227–228, 248

L
Laissez-faire policy, 176–177
Lawrence Berkeley National Laboratory, 7, 275
Leadership Institute(s), 124–125
Lecture, 5, 10, 32, 37, 42, 52, 56, 62–63, 65, 70, 106, 119, 122, 244, 249
Leopold, Aldo, 92
Lewin, Kurt, 96, 116
Livermore, Norman, 101, 103
Lucan-Burton-Newton model, 220
Index

M
MacCurdy, Robert D., 178, 229
“The Magic Synthesis,” 137
Man-to-Man Rating Scale, 140, 163, 169–171, 175, 198, 201
Mann, Paul B., 184
Mansfield, Richard S., 224
Massachusetts Institute of Technology (MIT), 11, 24, 39–40, 63, 82, 274
Mathematical ability, 77, 136, 148, 166–167, 183, 290
Meister, Morris, 160, 179
Meitner, Lisa, 10
Mentor (mentoring, mentored, mentorship), 19–20, 52, 271–273, 280, 284
“Methods of intelligence,” 220–221, 226, 253, 255
Michels, Walter, 11
“Model” to guide (environment preparation), 222
Modest (humble, humility), 61–62
Morholt, Evelyn, 42, 55, 57, 88, 119, 146, 204

N
National Academy of Engineering, 37
National Academy of Sciences, 7, 27, 46, 220
National Association for Gifted Children, 61
National Council of Teachers of Mathematics, 250
National Education Goals, 251
National Research Center on the Gifted and Talented, 57, 79
National Science Foundation, 32, 59, 62, 131, 138, 190, 193, 245
National Science Teachers Association (NSTA), 52, 57, 61–67, 120, 122, 127, 129–131, 249, 290
Scope, Sequence, and Coordination, 249
yearbook, summary, 244
National/State Leadership Training Institute on the Gifted and the Talented, 135
Need for talented in science, 234–235
Network(s), 109–110, 112–113
New York University, 26, 45, 58, 63, 268
North American Association for Environmental Education, 61, 130
Numerical ability, 139, 163–164, 167, 174, 263

O
Oat smut, 10, 45
Observation, careful, importance of, 87, 267
Occupational Program Undergirding Science (OPUS), 223
Operational Approach (O.A.), 276
benefits of O.A./other observations, 164–165
in blueprint, 151–161
gifted students, 147
major differences in students, 147
observations on, 161–165
place of interest, 162–163
raw materials, 161
selection through self-identification, 161–162
Oppenheimer, Jane, 41
Oppenheimer, J. Robert, 10–11
Original work, 11, 39, 51, 56, 75
Origins of American Scientists, 186
Oxtoby, Toby, 144

P
Padalino (John “Jack”), 62, 119–130
Parloff, Morris B., 222
Passow, A. Harry, ix, 57, 61, 66, 88, 226
Paul B. Mann Biology Congress, 184
The Paul F-Brandwein Institute, 119–130
Peer groups, importance of, 6, 9, 10, 15, 16, 18–19, 30, 45, 266, 271, 282
“Performing scientists,” 215, 226–228
Phenix, Philip, 82
Phi Delta Kappan, 228
Piaget, Jean, 65, 96
Piano, 37, 56, 63, 65, 83, 274, 283
Pinchot, Giffort, 92
Pinchot Institute for Conservation Studies at Grey Towers, 92, 105, 122, 125
Place-based learning, 99
Plato, 95
Pogo (Walt Kelly), 99
A Policy for Scientific and Professional Manpower, 144–145
Precollege education, 245, 250
Index

Presidential Award for Excellence in Science Teaching for New York State, 52

Primary Mental Abilities form A (verbal-meaning/reasoning, number/word fluency), 167

Proposals (gifted students)
on local level, 189–193
biology registration, 191–192
increased registrations in physics/chemistry, reasons, 190
proposals dealing with basic science courses, 190–192
special groups, solutions, 192–193
on local and national levels, 193–195
colleges, 194
public schools, 193–194
teachers’ organizations, 194–195
Protégé(es) as mentors, 272–273
Psychiatry, 11–13, 149, 274
Psychological Corporation tests, 178

Q
Questing, 77, 149–150, 164, 169, 182, 187, 222–223, 227, 264, 290

R
Rabkin, Yakon M., 219
The Races of Mankind, 18, 22, 69
Racism, 18, 22
Radcliffe, 32–33, 47
raw material for study, 145–146
Reflections of a Physicist, 181
Refugé(es), 43, 270
“Remedial experiencing,” 95
Rivers, 106–108, 110–115
Roosevelt, Theodore (President), 91–92
Rutgers Creek Wildlife Conservancy, 119–120, 128–129

S
Sample of high school students who became scientists (or did not), 264
Santer, Ursula Victor, 41
Sato, Irving, 135
Schwartz, George, 11, 17, 41, 204
Schweitzer, Alfred, 48
Schools and schooling
Benjamin Franklin High School, 148
Bronx High School of Science, 5, 160, 173–174, 189, 228
ecology(ies) of achievement, 232
effective, 217
school environment, as dyad, 221–226
elementary and secondary school science education, 87–88
Family-school-community program, 245
Forest Hills High School, xxvi, 5, 9, 16, 20, 22, 24, 29–30, 37, 41–42, 43, 47, 55, 61, 145, 151, 157, 169, 174, 184, 190, 205, 226, 231, 282
George Washington High School, xxi, 55, 148, 166, 252
growing up out, 269–271
dererogeneous, 229, 233–235
Harvard Medical school, 11
high school, after, 32–33
high school, design of, 249
high schools in Westinghouse Science Talent Search (1942–1988), 230, 233
proposals (gifted students)
public schools, 193–194
rural, 85
sample of high school students who became scientists (or did not), 264
school of science and stuyvesant high School, 174
select and heterogeneous, 234–235
special science schools, 254
Teaching science in junior high school, 51, 55, 82
Westinghouse science talent search 1942–1988, 233
Science for All Americans, 249
Science curriculum, 46, 73, 87, 189, 226, 248
responsibilities in, 153–154
Science educators, 61–63, 66, 265
Science K–12, 249
Science News Letter, 153
Science prone student(s), 77–78, 86
Science shy, 66–67
Science Since Babylon, 219
“The Science Sponsor’s Handbook,” 189

Index
Science talent, 143
in young expressed within ecologies of achievement
conception of, 254–257
curricular approach, 248–251
early self-identification of, 252–254
instructional approach, 247–248
limiting environments, 244–246
portent of, 255–256
Search, 228
Science Talent in the Young Expressed Within Ecologies of Achievement, 57, 66, 79
The Scientific American, 153
“Scientific civilization,” 219
Scientific literacy, 250
Scientific method, 153, 253
Scientific Monthly, 153
Second World War (WW II), xvii, xx, 16, 39, 67
Selected Science Teaching Ideas of 1952, 160
Self-identification? (self-identified self-identify, self-identifying), 75, 273, 281, 283
Self-identification (gifted students)
observations on operational approach, 161–165
operational approach in blueprint, 151–161
Siegler, Robert S., 227–228, 248
Silber, Robert, 61
Skepticism, 47, 75
Skoog, Gerald, 57, 61, 66–67, 88
“Slow” learner, 66, 141, 151
Small Futures, 218
“Social invention,” 159–160, 257
A Sourcebook for the Biological Sciences, 42, 82
Special education, program of, 154
Special science schools, 254
Sputnik, 236, 250, 253
Stanley, Julian C., 228–229
Stapp, William B., 92, 98, 105–117, 129
State University of New York at Buffalo, 46
Student as teaching assistant/lab preparer, 6, 23, 31, 282
Study of Mathematically Precocious Youth at Johns Hopkins University, 228
Swarthmore, 29, 32–33
T
Teacher (teach, teaching, teacher of teachers), 30, 57, 70–72, 105–106
features of stimulating teachers, 185–186
stimulating youngsters to enter science, 184–185
Teaching the Gifted Child, 219
Team effort, 145
Technological Innovation in Science: Adoption of Infrared Spectroscopy, 220
Teller, Edward, 10
Terman, Lewis M., 9, 142, 159–160, 178
Test of Developed Ability in Science (TDAS), 175, 196–198
Forms A and B, 171–172
Testing Approach, 147
Tolba, Mostafa K., 107
Torrance, E. Paul, 224
“Transformative power,” 256
Truman, President and Mrs. (Bess), 10
U
Udall, Stewart I., 126
Union of Concerned Scientists, 7
University of California, Berkeley, 37, 44, 273, 275
University of Connecticut, 57, 80, 91, 122
University of Iowa, 45, 63
University of Michigan, 39, 105, 109, 113, 122, 129
University of Oregon, 12
University of Wisconsin, xxvi
U.S. Agency for International Development, 33
U.S. Department of Agriculture, 40, 92, 131, 273
V
VanTassel-Baska, 253
Verbal Ability, 77, 139, 148, 166, 263
Verbal Reasoning, 167, 174
W
War(s), xvii–xviii, 5, 16, 18, 30, 39, 67, 217, 220
Watershed, 105–117
Watson, Fletcher G., 63, 82–83, 148, 173
“Weed and seed” approach (Government-University-Industry Research Roundtable), 245
Weltfish, Gene, 18
Western Regional Environmental Education Council (WREEC), 102, 104
Westinghouse Science Talent Search (the Search, the Westinghouse, Westinghouse), 29, 31–32, 165, 229
Witty, Paul, 160, 166, 168, 189
Wolfle, Dae, 144
Women’s Medical College of Pennsylvania, 11
Working hypothesis, gifted students, 146–151
World Bank, 33, 281, 284
World Council for Gifted and Talented Children, ix

Y
Yager, Robert, 63–64, 111

Z
Zinsser, Hans, 48