Appendix A

Order relations and groups

A.1 Order relations, posets, Zorn’s lemma

A relation \geq on an arbitrary set X is called a **partial order (relation)** if it is reflexive ($x \geq x$, $\forall x \in X$), transitive ($x \geq y \geq z \Rightarrow x \geq z$, $\forall x,y,z \in X$) and skew-symmetric ($x \geq y \geq x \Rightarrow x = y$, $\forall x,y \in X$). The pair (X, \geq) is then said a **partially ordered set** (shortened to **poset**).

An equivalent writing of $a \geq b$ is $b \leq a$.

The partial order \geq is a **total order** if, further, either $x \geq y$ or $y \geq x$ for any $x,y \in X$.

If (X, \geq) is a partially ordered set:

(i) $Y \subset X$ is **upper bounded** (resp. **lower bounded**) if it admits an **upper bound** (lower bound), i.e. $x \in X$ such that $x \geq y$ ($y \geq x$) for any $y \in Y$;

(ii) an element $x_0 \in X$ for which there exists no element $x \neq x_0$ in X such that $x \geq x_0$ is **maximal** in X. (Note that for us a maximal element in X may not be an upper bound in X).

If (X, \geq) is a poset, a subset $Y \subset X$ is (totally) **ordered** if the relation \geq, restricted to $Y \times Y$, is a total order.

Recall that Zorn’s lemma is an equivalent statement to the Axiom of Choice (also known as Zermelo’s axiom).

Theorem A.1 (“Zorn’s lemma”). If any ordered subset in a poset (X, \geq) is upper bounded, X admits a maximal element.

Useful among the various notions on posets (X, \geq) are those of supremum and infimum:

(i) a is called **least upper bound** (or **supremum**, or just **sup**) of the set $A \subset X$, written $a = \sup A$, if a is an upper bound of A and any other upper bound a' of A satisfies $a \leq a'$;

(ii) a is called **greatest lower bound**, (or **infimum** or **inf**) of $A \subset X$, written $a = \inf A$, if a is a lower bound for A and any other lower bound a' satisfies $a' \leq a$;

Moretti V.: *Spectral Theory and Quantum Mechanics*
Unitext – La Matematica per il 3+2
Appendix A Order relations and groups

It is immediate to see that any subset \(A \subset X \) has at most one least upper bound and one greatest lower bound.

A.2 Round-up on group theory

A group is an algebraic structure \((G, \circ)\) consisting in a set \(G\) and an operation \(\circ : G \times G \to G\) (the composition law, often called \textit{product}) satisfying three properties:

1. \(\circ\) is \textit{associative}
 \[
 g_1 \circ (g_2 \circ g_3) = (g_1 \circ g_2) \circ g_3, \quad \text{for any } g_1, g_2, g_3 \in G;
 \]

2. there exists an element \(e \in G\), called \textit{identity} or \textit{neutral} element, such that
 \[
 e \circ g = g \circ e = g, \quad \text{for any } g \in G;
 \]

3. each element \(g \in G\) admits an \textit{inverse}, i.e.
 \[
 \text{for any } g \in G \text{ there exists } g^{-1} \in G \text{ such that } g \circ g^{-1} = g^{-1} \circ g = e.
 \]

The identity and the inverse to a given element are easily seen to be unique.

A group \((G, \circ)\) is \textit{commutative} or \textit{Abelian} if \(g \circ g' = g' \circ g\) for any \(g, g' \in G\); otherwise it is \textit{noncommutative} or \textit{non-Abelian}.

A subset \(G' \subset G\) in a group is a \textit{subgroup} if it becomes a group with the product of \(G\) restricted to \(G' \times G'\). A subgroup \(N\) in a group \(G\) is \textit{normal} if it is invariant under \textit{conjugation}, i.e. for any \(n \in N\) and \(g \in G\) the conjugate element \(g \circ n \circ g^{-1}\) belongs to \(N\).

If \(N\) is a normal subgroup in \(G\), then \(G/N\) denotes the quotient, i.e. the set of equivalence classes in \(G\) with respect to the equivalence relation \(g \sim g' \leftrightarrow g = ng'\) for some \(n \in N\). It is easy to prove that \(G/N\) inherits a natural group structure from \(G\).

The \textit{centre} \(Z\) of \(G\) is the commutative subgroup of \(G\) made by elements \(z\) that commute with every element of \(G\). In other words, \(z \in Z \leftrightarrow z \circ g = g \circ z\) for any \(g \in G\).

If \((G_1, \circ_1)\) and \((G_2, \circ_2)\) are two groups, a \textit{(group) homomorphism} from \(G_1\) to \(G_2\) is a map \(h : G_1 \to G_2\) that \textit{preserves the groups' structures}, i.e.:

\[
h(g \circ_1 g') = h(g) \circ_2 h(g') \quad \text{for any } g, g' \in G_1.
\]

With the obvious notation it is clear that \(h(e_1) = e_2\) and \(h(g^{-1}_1) = (h(g))^{-1}_2\) for any \(g \in G_1\).

The \textit{kernel} \(\text{Ker}(h) \subset G\) of a homomorphism \(h : G \to G'\) is the pre-image under \(h\) of the identity \(e'\) of \(G'\), i.e. the set of elements \(g\) such that \(h(g) = e'\). Notice \(\text{Ker}(h)\) is a normal subgroup. Clearly \(h\) is one-to-one if and only if its kernel contains the identity of \(G\) only. It turns out that the image \(h(G)\) of a homomorphism \(h : G \to G'\) is a subgroup of \(G'\) isomorphic to \(G/\text{Ker}(h)\).
A group isomorphism is a bijective group homomorphism. An isomorphism \(h : G \to G \) is an automorphism of \(G \). The set \(\text{Aut}(G) \) of automorphisms of \(G \) is itself a group under composition of maps.

If \(G_1, G_2 \) are groups, the direct product \(G_1 \otimes G_2 \) is a group with the following structure. The elements of \(G_1 \otimes G_2 \) are pairs \((g_1, g_2)\) of the Cartesian product of the sets \(G_1, G_2 \). The composition law is

\[
(g_1, g_2) \circ (f_1, f_2) := (g_1 \circ f_1, g_2 \circ f_2) \quad \forall (g_1, g_2), (f_1, f_2) \in G_1 \times G_2.
\]

The neutral element is obviously \((e_1, e_2)\), where \(e_1, e_2 \) are the identities of \(G_1, G_2 \). Moreover, \(G_1 \) and \(G_2 \) can be identified with normal subgroups of \(G_1 \otimes G_2 \).

The ensuing generalisation of the notion of product plays a big role in physical applications. Let \((G_1, \circ_1), (G_2, \circ_2)\) be groups and suppose that for any \(g_1 \in G_1 \) there is a group isomorphism \(\psi_{g_1} : G_2 \to G_2 \) such that:

(i) \(\psi_{g_1} \circ \psi_{g'_1} = \psi_{g_1 \circ g'_1} \);
(ii) \(\psi_{e_1} = \text{id}_{G_2} \),

where \(\circ \) is the composition of functions and \(e_1 \) the neutral element in \(G_1 \). (Equivalently, \(\psi_g \in \text{Aut}(G_2) \) for any \(g \in G_1 \), and the map \(G_1 \ni g \mapsto \psi_g \) is a group homomorphism from \(G_1 \) to \(\text{Aut}(G_2) \).) We can endow the Cartesian product \(G_1 \times G_2 \) with a group structure simply by defining the composite of \((g_1, g_2), (f_1, f_2) \in G_1 \times G_2\) as

\[
(g_1, g_2) \circ \psi (f_1, f_2) := (g_1 \circ_1 f_1, g_2 \circ_2 \psi_{g_1}(f_2)).
\]

The operation is well defined, so \((G_1 \otimes_\psi G_2, \circ_\psi)\) is a group called the semidirect product of \(G_1 \) and \(G_2 \) by \(\psi \). The order of the factors in the product is clearly relevant.

Looking at the semidirect product \((G \otimes_\psi N, \circ_\psi)\) we could prove \(N \) is a normal subgroup of \(G \otimes_\psi N \), and

\[
\psi_g(n) = g \circ_\psi n \circ_\psi g^{-1} \quad \text{for any } g \in G, n \in N.
\]

There is also a converse of sorts. Consider a group \((H, \circ)\), let \(G \) be a subgroup of \(H \) and \(N \) a normal subgroup. Assume \(N \cap G = \{e\} \), \(e \) being the identity of \(H \). Suppose also \(H = GN \), meaning that for any \(h \in H \) there exist \(g \in G \) and \(n \in N \) such that \(h = gn \). Then one can prove that the pair \((g, n)\) is uniquely determined by \(h \), and \(H \) is isomorphic to the semidirect product \(G \otimes_\psi N \) with

\[
\psi_g(n) := g \circ h \circ g^{-1} \quad \text{for any } g \in G, n \in N.
\]

If now \(V \) is a vector space (real or complex), \(GL(V) \) denotes the group of bijective linear maps \(f : V \to V \) with the usual composition law. \(GL(V) \) is called the (general) linear group of \(V \).

If \(V := \mathbb{R}^n \) or \(\mathbb{C}^n \) then \(GL(V) \) is denoted by \(GL(n, \mathbb{C}) \) or \(GL(n, \mathbb{R}) \), respectively.

Let us define linear representations of a group. Take \((G, \circ)\) a group and \(V \) a vector space. A (linear) representation of \(G \) on \(V \) is a homomorphism \(\rho : G \to GL(V) \).
A representation $\rho : G \to GL(V)$ is called:

1) **faithful** if it is injective;
2) **free** if the subgroup made of elements h_v such that $\rho(h_v)v = v$ is trivial for any $v \in V \setminus \{0\}$, i.e. it contains only the neutral element of G;
3) **transitive** if, for any $v, v' \in V \setminus \{0\}$ there exists $g \in G$ with $v' = \rho(g)v$;
4) **irreducible** if no proper subspace $S \subset V$ exists that is **invariant** under the action of $\rho(G)$, i.e. $\rho(g)S \subset S$ for any $g \in G$.

In case V is a Hilbert or Banach space and ρ defines *bounded operators on the entire V*, the representation is said irreducible if there are no *closed* $\rho(G)$-invariant subspaces in V.
Appendix B

Elements of differential geometry

Let $n, m = 1, 2, \ldots, k = 0, 1, \ldots$ be fixed integers and $\Omega \subset \mathbb{R}^n$ an open non-empty set. A map $f : \Omega \rightarrow \mathbb{R}^m$ is of class C^k (or simply C^k), written $f \in C^k(\Omega; \mathbb{R}^m)$, if all partial derivatives of the components of f are continuous up to order k included. Conventionally, $C^k(\Omega) := C^k(\Omega; \mathbb{R})$.

A function $f : \Omega \rightarrow \mathbb{R}^m$ is (of class) C^∞, or smooth, if it is C^k for any $k = 0, 1, \ldots$, so one defines

$$C^\infty(\Omega; \mathbb{R}^n) := \bigcap_{k=0,1,\ldots} C^k(\Omega; \mathbb{R}^n).$$

Again, $C^\omega(\Omega) := C^\omega(\Omega; \mathbb{R})$. Eventually, $f : \Omega \rightarrow \mathbb{R}^m$ is C^ω or real-analytic if it is C^ω and it admits a Taylor expansion (in several real variables) at any $p \in \Omega$, on some open ball around p of finite radius, contained in Ω. Usually, when the order k of differentiability is not mentioned explicitly it means that $k = \infty$.

Notation B.1. In this section upper indices denote coordinates of \mathbb{R}^n and components of (contravariant) vectors. Thus the standard coordinates on \mathbb{R}^n will be denoted by x^1, \ldots, x^n, instead of x_1, \ldots, x_n. ■

B.1 Smooth manifolds, product manifolds, smooth functions

The most general and powerful tool apt to describe the features of spacetime, three-dimensional physical space, and the abstract space of physical systems in classical theories, is the notion of smooth manifold. In practice a smooth manifold is a collection of objects, generally called points, that admits local coordinates identifying points with n-tuples of \mathbb{R}^n.
Definition B.2. Let \(n = 1, 2, 3, \ldots \) and \(k = 1, 2, \ldots, \infty \) be fixed numbers. A \(C^k \) manifold of dimension \(n \) is a set \(M \), whose elements are called points, equipped with the geometric structure defined below.

1. \(M \) has a differentiable structure \(\mathcal{A} = \{(U_i, \phi_i)\}_{i \in I} \) of class \(C^k \), that is a collection of pairs \((U_i, \phi_i)\), called local charts, where \(U_i \) is a subset in \(M \) and \(\phi_i \) a map from \(U_i \) to \(\mathbb{R}^n \) (the local coordinate system or local frame) such that:

 i. \(\bigcup_{i \in I} U_i = M \), any \(\phi_i \) is injective and \(\phi_i(U_i) \) is open in \(\mathbb{R}^n \) (so \(M \) is called an \(n \)-dimensional manifold, or just \(n \)-manifold);

 ii. local charts in \(\mathcal{A} \) must be pairwise \(C^k \)-compatible. Two injective maps \(\phi: U \to \mathbb{R}^n, \psi: V \to \mathbb{R}^n \) with \(U, V \subset M \) are \(C^k \)-compatible if either \(U \cap V = \emptyset \), or \(U \cap V \neq \emptyset \) and the maps \(\phi \circ \psi^{-1}: \psi(U \cap V) \to \phi(U \cap V), \psi \circ \phi^{-1}: \phi(U \cap V) \to \psi(U \cap V) \) are both \(C^k \);

 iii. \(\mathcal{A} \) is maximal, i.e.: if \(U \subset M \) is open and \(\phi: U \to \mathbb{R}^n \) compatible with every local chart of \(\mathcal{A} \), then \((U, \phi) \in \mathcal{A} \).

2. Topological requirements:

 i. \(M \) is a second-countable Hausdorff space;

 ii. \(M \) is, by way of \(\mathcal{A} \), locally homeomorphic to \(\mathbb{R}^n \). In other terms, if \((U, \phi) \in \mathcal{A} \) then \(U \) is open and \(\phi: U \to \phi(U) \) is a homeomorphism.

A smooth \(C^\infty \) manifold is more often called real-analytic manifold.

Remark B.3. (1) Every local chart \((U, \phi)\) enables us to assign \(n \) real numbers \((x_1^p, \ldots, x_n^p) = \phi(p)\) bijectively to every point \(p \) of \(U \). The entries of the \(n \)-tuple are the coordinates of \(p \) in the local chart \((U, \phi)\). Points in \(U \) are thus in one-to-one correspondence with \(n \)-tuples of \(\phi(U) \subset \mathbb{R}^n \).

(2) If \(U \cap V \neq \emptyset \), the compatibility of local charts \((U, \phi), (V, \psi)\) implies that the Jacobian matrix of \(\phi \circ \psi^{-1} \) is invertible and so has everywhere non-zero determinant. Conversely, if \(\phi \circ \psi^{-1}: \psi(U \cap V) \to \phi(U \cap V) \) is bijective, of class \(C^k \), and with non-vanishing Jacobian determinant on \(\psi(U \cap V) \), then also \(\psi \circ \phi^{-1}: \phi(U \cap V) \to \psi(U \cap V) \) is \(C^k \) and the local charts are compatible. The proof can be found in the renowned [CoFr98II].

Theorem B.4 (Implicit function theorem). Let \(D \subset \mathbb{R}^n \) be open, non-empty, and \(f: D \to \mathbb{R}^n \) a \(C^k \) function for some \(k = 1, 2, \ldots, \infty \). If the Jacobian of \(f \) at \(p \in D \) has non-zero determinant there exist open neighbourhoods \(U \subset D \) of \(p \) and \(V \) of \(f(p) \) such that: (i) \(f \upharpoonright U: U \to V \) is bijective, (ii) the inverse \(f^{-1} \upharpoonright V: V \to U \) is \(C^k \).

(3) The topological requirements in (2)(ii) (valid for the standard topology of \(\mathbb{R}^n \)) are technical and guarantee unique solutions to differential equations on \(M \) (necessary in physics when the equations describe the evolution of physical systems) and the existence of integrals on \(M \). Condition (2)(ii) intuitively says that \(M \) is, around any point, “continuous” like \(\mathbb{R}^n \). Standard counterexamples show that the Hausdorff property of \(\mathbb{R}^n \) is not carried over to \(M \) by local homeomorphisms, so it must be imposed explicitly.
(4) Let M be a second-countable Hausdorff space. A collection of local charts \mathcal{A} on M satisfying (i) and (ii) in (1), but not necessarily (iii), plus (ii) in (2) is called a C^k atlas on the n-manifold M. It is not hard to see that any atlas \mathcal{A} on M is contained in some maximal atlas. Two atlases on M such that every chart of one is compatible with any chart of the other induce the same differentiable structure on M. Thus to assign a differentiable structure it suffices to prescribe a non-maximal atlas, one of the many that determine it. The unique differentiable structure associated to a given atlas is said to be induced by the atlas.

(5) If $1 \leq k < \infty$ there might be superfluous charts in the differentiable structure (only a finite number!), eliminating which gives a C^∞ atlas. ■

Examples B.5. (1) The simplest examples of differentiable manifolds, of class C^∞ and dimension n, are non-empty open subsets of \mathbb{R}^n (including \mathbb{R}^n itself) with standard differentiable structure determined by the identity map (the inclusion, alone, defines an atlas).

(2) Consider the unit sphere S^2 in \mathbb{R}^3 (with topology inherited from \mathbb{R}^3) centred at the origin:

$$S^2 := \{(x^1, x^2, x^3) \in \mathbb{R}^3 \mid (x^1)^2 + (x^2)^2 + (x^3)^2 = 1\}$$

in canonical coordinates x^1, x^2, x^3 of \mathbb{R}^3. It has dimension 2 and a smooth structure induced by \mathbb{R}^3 by defining an atlas with 6 local charts $(S^2_{(i)\pm}, \phi_{(i)\pm})$ ($i = 1, 2, 3$) as follows. Take the axis x^i ($i = 1, 2, 3$) and the pair of open hemispheres $S^2_{(i)\pm}$ with south-north direction given by x^i, and consider local charts $\phi_{(i)\pm} : S^2_{(i)\pm} \to \mathbb{R}^2$ that map $p \in S^2_{(i)\pm}$ to its coordinates on the plane $x^i = 0$. It can be proved (see below) that S^2 cannot be covered by a single (global) chart, in contrast to \mathbb{R}^3 (or any open subspace). This proves that the class of smooth manifolds does not reduce to open non-empty subsets of \mathbb{R}^n, and hence is quite interesting. A similar example is the circle in \mathbb{R}^2. ■

Given C^k manifolds M and N of respective dimensions m, n, we can construct a third C^k manifold of dimension $m + n$ over the topological product $M \times N$. (The resulting space will be Hausdorff and second-countable.) This is called product manifold of M and N, and denoted simply by $M \times N$. The structure described herebelow is called product structure. Given local charts (U, ϕ) on M and (V, ψ) on N it is immediate to see

$$U \times V \ni (p, q) \mapsto (\phi(p), \psi(q)) =: \phi \oplus \psi(p, q) \in \mathbb{R}^{m+n} \quad (B.1)$$

is a local homeomorphism. If (U', ϕ') and (V', ψ') are other charts, compatible with the previous ones, the charts $(U \times V, \phi \oplus \psi)$ and $(U' \times V', \phi' \oplus \psi')$ are obviously compatible. As (U, ϕ) and (V, ψ) vary on M and N the charts $(U \times V, \phi \oplus \psi)$ define an atlas on $M \times N$. The structure this atlas generates is, by definition, the product structure.

Definition B.6. Given C^k manifolds M, N of dimension m, n, the product manifold is the set $M \times N$ equipped with product topology and C^k structure induced by the local charts $(U \times V, \phi \oplus \psi)$ as of (B.1), when $(U, \phi), (V, \psi)$ vary on M, N.

Since a manifold is locally indistinguishable from \mathbb{R}^n, the differentiable structure allows to make sense of differentiable functions defined on a manifold other than \mathbb{R}^n or subsets. The idea is simple: reduce locally to the standard notion on \mathbb{R}^n using the local charts that cover the manifold.

Definition B.7. Let M, N be manifolds of dimensions m, n and class C^p, C^q respectively ($p, q \geq 1$). A continuous map $f : M \to N$ is said C^k ($0 \leq k \leq p, q$, possibly $k = \infty$ or ω) if $\psi \circ f \circ \phi^{-1}$ is a C^k map from \mathbb{R}^m to \mathbb{R}^n, for any choice of local charts (U, ϕ) on N and (V, ψ) on M.

The collection of C^k functions from M to N, $k = 0, 1, 2, \ldots, \infty, \omega$ is denoted $C^k(M; N)$; if $N = \mathbb{R}$ one just writes $C^k(M)$.

A C^k diffeomorphism $f : M \to N$ is a bijective C^k map with C^k inverse. If there is a C^k diffeomorphism f mapping M to N, the two manifolds are called diffeomorphic (under f).

Remark B.8. (1) Notice how we allowed for differentiable maps of class C^0, which are actually just continuous maps (like C^0 diffeomorphisms are just homeomorphisms). Every C^k diffeomorphism is clearly a homeomorphism, which explains why there cannot exist any diffeomorphism between S^2 and (a subset of) \mathbb{R}^2, for the former is compact, the latter not. Consequently, the sphere S^2 does not admit global charts.

(2) For $f : M \to N$ to be C^p it is enough that $\psi \circ f \circ \phi^{-1}$ is C^k for any local charts $(U, \phi), (V, \psi)$ in the given atlases, without having to check the condition for every possible local charts on the manifolds.

A useful notion is that of embedded submanifold. \mathbb{R}^n is an embedded submanifold in \mathbb{R}^m if $m > n$. In the canonical coordinates x_1, \ldots, x^m on \mathbb{R}^m, \mathbb{R}^n is identified with the subspace given by equations $x^{n+1} = \cdots = x^m = 0$, while the first n coordinates of \mathbb{R}^m, x_1, \ldots, x^n, are identified with the standard coordinates on \mathbb{R}^n. Now the idea is to replace $\mathbb{R}^n, \mathbb{R}^m$ using local frames, and generalise to manifolds N, M.

Definition B.9. Let M be a C^k ($k \geq 1$) manifold of dimension $m > n$. An embedded C^k submanifold of M of dimension n is the following n-manifold N of class C^k.

(a) N is a subset in M with induced topology.

(b) The differentiable structure di N is given by the atlas $\{ (U_i, \phi_i) \}_{i \in I}$ where:

(i) $U_i = V_i \cap N, \phi_i = \psi \mid_{V_i \cap N}$ for a suitable local chart (V_i, ϕ_i) on M;

(ii) in the frame x_1, \ldots, x^m associated to (V_i, ϕ_i), the set $V_i \cap N$ is determined by $x^{n+1} = \cdots = x^m = 0$, and the remaining coordinates x_1, \ldots, x^n are the local framing associated to ϕ_i.

To finish we state an important result (see [doC92, Wes78] for example) to decide when a subset in a manifold is an embedded submanifold. The proof is straightforward from Dini’s theorem [CoFr98II].

Theorem B.10 (On regular values). Let M be a C^k manifold of dimension m. Consider the set

$$N := \{ p \in M \mid f_j(p) = v_j, \ j = 1, \ldots, c \}$$
determined by \(c(< m) \) constants \(v_j \) and \(c \) functions \(f_j : M \to \mathbb{R} \) of class \(C^k \). Suppose that around each point \(p \in N \) there exists a local chart \((U, \phi)\) on \(M \) such that the Jacobian matrix \(\partial (f_j \circ \phi^{-1})/\partial x^i|_{\phi(p)} \) has rank \(r \). Then \(N \) is an embedded \(C^k \) submanifold in \(M \) of dimension \(n := m - c \).

In particular, if the square \(c \times c \) matrix

\[
\frac{\partial f_j \circ \phi^{-1}}{\partial x^k}, \quad j = 1, \ldots, c, \quad k = m - c + 1, m - c + 2, \ldots, m
\]

is non-singular at \(\phi(p) \), \(p \in N \), then the first \(n \) coordinates \(x^1, \ldots, x^n \) define a frame system around \(p \) in \(N \).

B.2 Tangent and cotangent spaces. Covariant and contravariant vector fields

Let \(M \) be \(C^k \) manifold of dimension \(n \) \((k \geq 1)\). Consider the space \(C^k(M) \) as an \(\mathbb{R} \)-vector space with linear combinations

\[
(af + bg)(p) := af(p) + bg(p), \quad \text{for any } p \in M
\]

where \(a, b \in \mathbb{R}, f, g \in C^k(M) \). Given a point \(p \in M \), a **derivation** at \(p \) is an \(\mathbb{R} \)-linear map \(L_p : C^k(M) \to \mathbb{R} \) satisfying the Leibniz rule:

\[
L_p(fg) = f(p)L_p(g) + g(p)L_p(f), \quad f, g \in C^k(M).
\]

(B.2)

A linear combination \(aL_p + bL'_p \) of derivations at \(p \) \((a, b \in \mathbb{R})\),

\[
(aL_p + bL'_p)(f) := aL_p(f) + bL'_p(f), \quad f, g \in C^k(M),
\]

is still a derivation. Hence derivations at \(p \) form a vector space over \(\mathbb{R} \), which we denote \(\mathcal{D}^k_p \). Every local chart \((U, \phi)\) with \(U \ni p \) automatically gives \(n \) derivations at \(p \), as follows. If \(x^1, \ldots, x^n \) are coordinates associated to \(\phi \), define the \(k \)th derivation to be

\[
\frac{\partial}{\partial x^k} \bigg|_p : f \mapsto \frac{\partial f \circ \phi^{-1}}{\partial x^k} \bigg|_{\phi(p)}, \quad f, g \in C^1(M).
\]

(B.3)

If \(0 \) is the null derivation and \(c^1, c^2, \ldots, c^n \in \mathbb{R} \) satisfy \(\sum_{k=1}^n c^k \frac{\partial}{\partial x^k} \bigg|_p = 0 \), we choose a differentiable function conciding with the coordinate map \(x^l \) on an open neighbourhood of \(p \) (whose closure is in \(U \)) and vanishing outside. Then the \(n \) derivations \(\frac{\partial}{\partial x^k} \bigg|_p \) at \(p \) are **linearly independent**: \(\sum_{k=1}^n c^k \frac{\partial}{\partial x^k} \bigg|_p f = 0 \) implies \(c^l = 0 \). Since we are free to choose \(l \) arbitrarily, every coefficient \(c^r \) is zero for \(r = 1, 2, \ldots, n \). Hence the \(n \) derivations \(\frac{\partial}{\partial x^k} \bigg|_p \) form a basis for an \(n \)-dimensional subspace of \(\mathcal{D}^k_p \) (actually if \(k = \infty \) the
The proof is direct from the definitions. Because the Jacobian
\[\frac{\partial}{\partial y^i} \bigg|_p = \sum_{k=1}^{n} \frac{\partial x^k}{\partial y^i} \bigg|_{\psi(p)} \frac{\partial}{\partial x^k} \bigg|_p. \]

(B.4)

The proof is direct from the definitions. Because the Jacobian \(\frac{\partial x^k}{\partial y^i} \bigg|_{\psi(p)} \) is invertible by definition of chart, the subspace of \(\mathcal{D}_p^\infty \) spanned by the \(\frac{\partial}{\partial x^k} \bigg|_p \) coincides with the span of the \(\frac{\partial}{\partial x^k} \bigg|_p \). The subspace is thus intrinsically defined.

Definition B.11. Let \(M \) be an \(n \)-dimensional \(C^k \) manifold \((k \geq 1) \), and fix a point \(p \in M \). The vector subspace of derivations at \(p \) generated by the \(n \) derivations \(\frac{\partial}{\partial x^i} \bigg|_p \), \(k = 1, 2, \ldots, n \), in any local coordinate system \((U, \phi) \) with \(U \ni p \), is called tangent space of \(M \) at \(p \) and is written \(T_p M \). The elements of the tangent space at \(p \) are the tangent vectors at \(p \) to \(M \). Tangent vectors are examples of contravariant vectors.

We recall that the space \(V^* \) of linear maps from a real vector space \(V \) to \(\mathbb{R} \) is called dual space to \(V \). If the dimension of \(V \) is finite, so is the dimension of \(V^* \), for they coincide. In particular, if \(\{e_i\}_{i=1}^n \) is a basis of \(V \), the dual basis in \(V^* \) is the basis \(\{e^j\}_{j=1}^n \) defined via: \(e^j(e_i) = \delta^j_i \), \(i, j = 1, \ldots, n \), by linearity. With \(f \in V^* \), \(v \in V \), one uses the notation \(\langle v, f \rangle := f(v) \).

Definition B.12. Let \(M \) be an \(n \)-dimensional \(C^k \) manifold \((k \geq 1) \), \(p \in M \) a given point. The dual space to \(T_p M \) is called cotangent space of \(M \) at \(p \), written \(T^*_p M \). Points of the cotangent space at \(p \) are called cotangent vectors at \(p \) or 1-forms at \(p \), and are instances of covariant vectors (covectors). For any basis \(\frac{\partial}{\partial x^i} \bigg|_p \) of \(T_p M \), the \(n \) elements of the dual basis are indicated by \(dx^i|_p \). By definition

\[\left\langle \frac{\partial}{\partial x^j}|_p, dx^i|_p \right\rangle = \delta^i_j. \]

Let us move on to vector fields on a manifold \(M \).

Suppose \(M \) is an \(n \)-dimensional \(C^k \) manifold (including \(k = \infty \) and \(k = \omega \)). A contravariant \(C^r \) vector field, \(r \geq 0, 1, \ldots, k \), is a map assigning a vector \(v(p) \in T_p M \) to any \(p \in M \), so that for any local chart \((U, \phi) \) with coordinates \(x^1, \ldots, x^n \) where

\[v(q) = \sum_{i=1}^{n} v^i(x_{q}^1, \ldots, x_{q}^n) \frac{\partial}{\partial x^i} \bigg|_q, \]

the \(n \) functions \(v^i = v^i(x^1, \ldots, x^n) \) are \(C^r \) on \(\phi(U) \). Similarly, a covariant \(C^r \) vector field, \(r \geq 0, 1, \ldots, k \) is a map sending \(p \in M \) to a covector \(\omega(p) \in T^*_p M \), so that for
any local chart \((U, \phi)\) with coordinates \(x^1, \ldots, x^n\) where
\[
\omega(q) = \sum_{i=1}^{n} v_i(x^1_{q}, \ldots, x^n_{q}) \, dx^i|_q ,
\]
the \(n\) functions \(\omega_i = \omega_i(x^1, \ldots, x^n)\) are \(C^r\) on \(\phi(U)\).

Remarks B.13. Take \(v \in T_pM\) and two local charts \((U, \phi), (V, \psi)\) with \(U \cap V \ni p\) and respective coordinates \(x^1, \ldots, x^n, \, x'^1, \ldots, x'^n\). Then \(v = \sum_{i=1}^{n} v^j \frac{\partial}{\partial x^j}\)|\(_p = \sum_{j=1}^{n} v^j \frac{\partial}{\partial x'^j}\)|\(_p\). Hence \(\sum_{i=1}^{n} v^j \frac{\partial}{\partial x^j}\)|\(_p = \sum_{j=1}^{n} v^j \frac{\partial x'^j}{\partial x^j}\)|\(_{\psi(p)}\) \(\frac{\partial}{\partial x^i}\)|\(_p\), so \(\sum_{i=1}^{n} \left(v^j - \sum_{j=1}^{n} \frac{\partial x'^j}{\partial x^j}\)|\(_{\psi(p)}\) \(v^j\) \(\right) \frac{\partial}{\partial x^i}\)|\(_p\) = 0. Since the derivations \(\frac{\partial}{\partial x^i}\)|\(_p\) are linearly independent, we conclude that the components of a tangent vector in \(T_pM\) transform, under coordinate change, as
\[
v^j = \sum_{j=1}^{n} \frac{\partial x^i}{\partial x'^j}\)|\(_{\psi(p)}\) \(v^j\). \hspace{1cm} \text{(B.5)}
\]
The same argument gives the formula for covariant vectors \(\omega = \sum_{i=1}^{n} \omega_i \, dx^i|_p = \sum_{j=1}^{n} \omega'_j \, dx'^j|_p\), namely
\[
\omega_i = \sum_{j=1}^{n} \frac{\partial x'^j}{\partial x^i}\)|\(_{\psi(p)}\) \(\omega'_j\). \hspace{1cm} \text{(B.6)}

B.3 Differentials, curves and tangent vectors

Let \(f : M \to \mathbb{R}\) be a \(C^r\) scalar field on the \(C^k\) \(n\)-manifold \(M\), and assume \(k \geq r > 1\). The **differential** \(df\) of \(f\) is the covariant vector field of class \(C^{r-1}\)
\[
df|_p = \sum_{i=1}^{n} \frac{\partial f}{\partial x^i}\)|\(_{\psi(p)}\) \(dx^i|_p\)
in any local chart \((U, \psi)\).

Consider a \(C^r\) curve inside the \(C^k\) manifold \(M\) \((r = 0, 1, \ldots, k)\), i.e. a \(C^r\) function \(\gamma : I \to M\) where \(I \subset \mathbb{R}\) is an open interval thought of as a submanifold in \(\mathbb{R}\). Assume explicitly that \(r > 1\). We can define the **tangent vector** to \(\gamma\) at \(p \in \gamma(I)\) by
\[
\dot{\gamma}(p) := \sum_{i=1}^{n} \frac{dx^i}{dt}\)|\(_{t_p}\) \(\frac{\partial}{\partial x^i}\)|\(_p\) ,
\]
where \(\gamma(t_p) = p\), in any local chart around \(p\). The definition does **not** depend on the chart. Had we defined
\[
\dot{\gamma}(p) := \sum_{j=1}^{n} \frac{dx'^j}{dt}\)|\(_{t_p}\) \(\frac{\partial}{\partial x'^j}\)|\(_p\)
in another frame system around p, using (B.5) would have given

$$\dot{\gamma}(p) = \dot{\gamma}'(p).$$

So we have this definition.

Definition B.14. A C^r curve, $r = 0, 1, \ldots, k$, in the n-dimensional C^k manifold M is a C^r map $\gamma : I \to M$, where $I \subset \mathbb{R}$ is an open interval (embedded in \mathbb{R}). When $r > 1$, the tangent vector to γ at $p = \gamma(t_p)$, $t_p \in I$, is the vector $\dot{\gamma}(p) \in T_p M$ given by

$$\dot{\gamma}(p) := \sum_{i=1}^{n} \left. \frac{d}{dt} \left|_{t_p} \frac{\partial}{\partial x^i} \right|_p \right.,$$

in any local framing around p.

B.4 Pushforward and pullback

Let M and N be manifolds of dimensions m and n, and $f : N \to M$ a function (all at least C^1). Given a point $p \in N$ consider local charts (U, ϕ) around p in N and (V, ψ) around $f(p)$ in M. Indicate by (y^1, \ldots, y^n) the coordinates on U, by (x^1, \ldots, x^m) those on V and introduce maps $f^k(y^1, \ldots, y^n) = y^k(f \circ \phi^{-1})$, $k = 1, \ldots, m$. Now define:

(i) the **pushforward** $df_p : T_p N \to T_{f(p)} M$, in coordinates:

$$df_p : T_p N \ni \sum_{i=1}^{n} u^i \frac{\partial}{\partial y^i} \bigg|_p \mapsto \sum_{j=1}^{m} \left(\sum_{i=1}^{n} \frac{\partial f^j}{\partial y^i} \bigg|_{\phi(p)} \right) u^i \frac{\partial}{\partial x^j} \bigg|_p; \quad (B.8)$$

(ii) the **pullback** $f^* : T^*_{f(p)} M \to T^*_p N$, in coordinates:

$$f^* : T^*_p N \ni \sum_{j=1}^{m} \omega_j dx^j|_{f(p)} \mapsto \sum_{i=1}^{n} \left(\sum_{j=1}^{m} \frac{\partial f^j}{\partial y^i} \bigg|_{\phi(p)} \right) \omega_j dy^i|_p. \quad (B.9)$$

It is not hard to see they do not depend on local frame systems. The pushforward is also written $f_p : T_p N \to T_{f(p)} M$.

References

References

References

[Gi00] Giulini D.: Decoherence, a Dynamical Approach to Superselection Rules?. In [BGJKS00].

[Kup00] Kupsh J.: Mathematical Aspects of Decoherence. In [BGJKS00].

[Prim00] Primas H.: Asymptotically Disjoint Quantum States. In [BGJKS00].

References

[Zeh00] Zeh H.D.: The Meaning of Decoherence. In [BGJKS00].
Index

\(A_{Ht}(t), 639\)
\(\oplus_{\alpha \in A_{Ht}}, 289\)
\(\sum_{i \in I} \text{ with } I \text{ of arbitrary cardinality}, 106\)
\((A|B)_2 \text{ with } A, B \text{ Hilbert–Schmidt operators}, 178\)
\((\lambda), 4, 101\)
\((H^{\otimes n})_{\lambda}^{(\sigma)}, 662\)
\((H^{\otimes n})_{\pm}^{(\sigma)}, 663\)
\((a, +\infty], 18\)
\(:=, 4\)
\(<K>, 102\)
\(<X_1, \cdots, X_n>, 76\)
\(A, A^*, N, 402, 493\)
\(A^{**}**, 217\)
\(Aut(G), 699\)
\(B_r(x_0), 37\)
\(C(J; S), 432\)
\(C(K), 43\)
\(C(K; \mathbb{R}^n), 42\)
\(C(X), 48\)
\(C^\#(X, \sigma), 690\)
\(C^*(A) \text{ with } A \text{ operator, } 230, 410\)
\(C^{\infty}(\mathbb{R}^n), 72\)
\(C^k \text{ map}, 701\)
\(C^k(J; H), 432\)
\(C^k(\Omega), 701\)
\(C^k(\Omega; \mathbb{R}^n), 701\)
\(C_0(X), 49\)
\(C_b(X), 48\)
\(C_c(X), 26, 48\)
\(D(T), 210\)
\(Fol(\omega), 673\)
\(G(T), 77, 210\)
\(GL(V), 699\)
\(GL(n, \mathbb{C}), 552\)
\(GL(n, \mathbb{R}), 552, 570\)
\(G\mathfrak{P}, 47\)
\(IO(3), 540\)
\(IO(n), 553\)
\(Int(S), 73\)
\(J^2, 591\)
\(J_k, 591\)
\(K^\perp, 98\)
\(K_t, 598\)
\(Ker(T), 120\)
\(L(X), 48\)
\(L^2, 459\)
\(L^2(\mathbb{R}^n, dx), 219\)
\(L^2(X, \mu), 102\)
\(L^q_0(x), 618\)
\(L^p(X, \mu), 50\)
\(M(X), 18, 300\)
\(M(n, \mathbb{C}), 570\)
\(M(n, \mathbb{R}), 570\)
\(M^a(x), 143\)
\(M_{\mathbb{R}}(X), 18\)
\(M_b(X), 48, 300, 337\)
\(O(3), 534\)
\(O(n), 553, 571\)
\(I^{(A)}_{E}, 296\)
\(P(T) \text{ with } T \text{ bounded normal}, 359\)
\(P(T) \text{ with } T \text{ self-adjoint, not necessarily bounded}, 393\)

Moretti V.: Spectral Theory and Quantum Mechanics
Unitext – La Matematica per il 3+2
\[P_E^{(f)}, 258 \]
\[P_r, 221, 405, 458, 487 \]
\[R_3(A), 311 \]
\[\text{Ran}(T), 120 \]
\[S \text{ matrix}, 625 \]
\[S(\mathcal{W}), 684 \]
\[S(X), 300, 346 \]
\[SL(n, \mathbb{R}), 553 \]
\[SO(3), 572, 588 \]
\[SO(n), 553, 571 \]
\[SU(2), 572, 588 \]
\[SU(n), 553 \]
\[T \geq U, T, U \text{ bounded on a Hilbert space}, 127 \]
\[T^*, 120 \]
\[T^* \text{ with } T \text{ unbounded}, 213 \]
\[T_2 \text{ topology}, 10, 37, 49, 254 \]
\[T_K, 169 \]
\[U(1) \text{-central extension of a group by a multiplier function}, 550 \]
\[U(n), 553 \]
\[U(t, t'), 630 \]
\[W((t, u)), 493 \]
\[W(z), 500 \]
\[X, 219, 405, 458, 487 \]
\[Y_l^m, 460 \]
\[[-\infty, \infty], 18 \]
\[[-\infty, a], 18 \]
\[[-\infty, a], 18 \]
\[[a, +\infty], 18 \]
\[\Delta \rho, 305, 484 \]
\[\Delta \text{ Laplace operator}, 470 \]
\[\Delta_f, 382 \]
\[\Omega_{\pm}, 624 \]
\[\Phi_T, 337 \]
\[\Phi_0, 324, 335 \]
\[\Rightarrow \text{ (logical implication)}, 257 \]
\[\mathbb{C}, 4 \]
\[\mathbb{N}, 4 \]
\[\mathbb{R}_{\pm}, 4 \]
\[\mathbb{H}^n_{1,n} = H_k \text{ with } n = 1, 2, \ldots, +\infty \text{ and } H_k \text{ Hilbert spaces}, 454 \]
\[\nabla(A), 410 \]
\[\mathcal{B}(X), 17, 254 \]
\[\mathcal{D}_G, 580 \]
\[\mathcal{D}_N, 580 \]
\[\mathcal{F}, \text{ phase space}, 259 \]
\[G_1 \otimes H_2, 699 \]
\[G_1 \otimes G_2 \text{ with } G_1, G_2 \text{ groups}, 699 \]
\[\mathcal{H}(n), 513 \]
\[\mathcal{I}_k, 591 \]
\[\mathcal{L}_1(X, \mu), 23 \]
\[\mathcal{L}_2, 459 \]
\[\mathcal{L}_p(X, \mu), 50 \]
\[\mathcal{L}_1, 459 \]
\[\mathcal{G} \text{ Gelfand transform}, 330 \]
\[\rho, 592 \]
\[\neg \text{ (logical ‘not’ or logical complement), 257} \]
\[\delta_{ij}, 488 \]
\[\ell^p(\mathbb{N}), 52 \]
\[\ell^p(X), 51 \]
\[\exp \text{ of a Lie group}, 568 \]
\[\mathfrak{H}, 327 \]
\[\mathfrak{S}(X), 53 \]
\[\mathfrak{S}(X, Y), 53 \]
\[\mathfrak{B}_1(H), 188 \]
\[\mathfrak{B}_2(H), 177 \]
\[\mathfrak{B}_\infty(X), 164 \]
\[\mathfrak{B}_\infty(X, Y), 164 \]
\[\mathfrak{L}(X), 53 \]
\[\mathfrak{L}(X, Y), 53 \]
\[\pi^\prime, 124 \]
\[\mathfrak{S}(H), 264 \]
\[\mathfrak{R}_\mathcal{S} \text{ von Neumann algebra of observables of a physical system}, 274, 480 \]
\[\mathcal{E}(H), 281 \]
\[\mathcal{E}_p(H), 286 \]
\[\mathcal{E}_p(H)_{\text{adm}}, 291 \]
\[\gamma^* \text{ for } \gamma \text{ symmetry (Kadison or Wigner automorphism), 539} \]
\[\inf, 697 \]
\[f_X f d\mu \text{ with } \mu \text{ complex measure}, 33 \]
\[f_X f(x) dP(x) \text{ with } f \text{ bounded, measurable}, 348 \]
\[f_X f(x) dP(x) \text{ with } f \text{ measurable, not necessarily bounded}, 382, 390 \]
\[f_X s(x) dP(x) \text{ with } s \text{ simple}, 347 \]
\[f_{\mathbb{R}} f(t)V_t \text{ with } \{V_t\}_{t \in \mathbb{R}} \text{ strongly continuous operators at } t, 417 \]
\[\langle A \rangle_p, 305, 484 \]
\[\liminf, 13 \]
\[\limsup, 13 \]
\[\text{ess ran}(f), 429 \]
\[\mu \text{-integrable function}, 23 \]
\[\mu^T, 398 \]
\[\mu_\psi, 353 \]
\[\mu^A, 484 \]
\[\mu_{\psi, \phi}, 353 \]
\[H_{ac}, \mu_{pa}, \mu_{sing}, 31 \]
\[\gamma, 260 \]
\[\nu \prec \mu, 27, 33 \]
\[A \text{ with } A \text{ operator}, 211 \]
\[S \text{ with } S \text{ a set}, 11 \]
\[\pi, 18 \]
\[\tau, 4 \]
\[\perp, 212 \]
\[\phi_0, 322 \]
\[\pi \simeq \pi', 126 \]
\[\pi_1 \approx \pi_2, 685 \]
\[\psi(\phi) \text{ and } (\phi) \psi, 4 \]
\[\rho(A), 311 \]
\[H(C), 117 \]
\[H^{\otimes n}, 660 \]
\[H_1 \otimes \cdots \otimes H_n \text{ with } H_i \text{ Hilbert spaces}, 452 \]
\[H_3, 274, 479 \]
\[H_{\psi}, 230 \]
\[H_{\rho}, 398, 626 \]
\[X', 53 \]
\[X^\alpha, 53 \]
\[X_1 \oplus \cdots \oplus X_n, 76 \]
\[\sigma\text{-additive positive measure}, 19, 49 \]
\[\sigma\text{-complete lattice}, 261 \]
\[\sigma(A), 311 \]
\[\sigma(\mathfrak{f}), 329 \]
\[\sigma_{\mathfrak{fr}}(a), 320 \]
\[\sigma_{\mathfrak{f}}(A), 311 \]
\[\sigma_{\mu}(T), 398 \]
\[\sigma_j, i = 1, 2, 3, 280 \]
\[\sigma_p(A), 311 \]
\[\sigma_p(T), 170 \]
\[\sigma_{\tau}(A), 311 \]
\[\sigma_{\mu}(T), 399 \]
\[\sigma_{\pi}(T), 399 \]
\[\sigma_{ess}(T), 398 \]
\[\sigma_{pc}(T), 399 \]
\[\sigma_{pr}(T), 399 \]
\[\sigma_{sing}(T), 399 \]
\[\sqrt{A}, 136, 465 \]
\[\subset, \supset, 4 \]
\[\sup, 697 \]
\[\tau, 212 \]
\[|A|, 139, 466 \]
\[|\mu| \text{ with } \mu \text{ complex measure}, 32 \]
\[||A||_1 \text{ with } A \text{ operator of trace class}, 188 \]
\[||A||_2 \text{ with } A \text{ Hilbert–Schmidt operator}, 177 \]
\[||| \text{, 101} \]
\[||| \psi \rangle, 345 \]
\[||| \psi \rangle, 102 \]
\[||| \psi \rangle, 58 \]
\[\Phi_T, 338 \]
\[\hat{G}_\theta, 550 \]
\[\hat{\mathcal{F}}, 149 \]
\[\hat{x}_\psi \text{ Gelfand transform}, 330 \]
\[S\mathcal{P}, 593 \]
\[\{A\}' \text{ with } A \text{ operator}, 216 \]
\[\{f, g\}, 516 \]
\[\ast\text{-algebra}, 122 \]
\[\ast\text{-algebra or } C^\ast\text{-algebra generated by a subset}, 122 \]
\[\ast\text{-anti-automorphism}, 692 \]
\[\ast\text{-homomorphism}, 122, 324, 335 \]
\[\ast\text{-isomorphism}, 122 \]
\[\ast\text{-weak topology}, 67 \]
\[a.e., 21 \]
\[a \perp b \text{ in an orthocomplemented lattice}, 261 \]
\[co(E), 65 \]
\[d_{\pm}(A), 227 \]
\[dzd\xi, 117 \]
\[f(T) \text{ with } T \text{ self-adjoint and } f \text{ measurable, neither necessarily bounded}, 398 \]
\[f(T, T^*) \text{ with } T \text{ bounded normal and } f \text{ bounded measurable}, 340, 356 \]
\[f(T, T^*) \text{ with } T \text{ bounded normal and } f \text{ continuous}, 337 \]
\[f(a), 324 \]
\[f(a, a^\ast), 335 \]
\[p(\), 36 \]
\[r(a), 317 \]
\[s\text{-lim}, 68 \]
\[sing(A), 175 \]
\[supp(P), 344 \]
\[supp(\mu), 352 \]
\[supp(f), 15 \]
\[trA \text{ with } A \text{ of trace class}, 191 \]
\[trE, 659 \]
\[v_1 \otimes \cdots \otimes v_n \text{ with } v_i \text{ vectors}, 450 \]
\[w\ast\text{-lim}, 68 \]
\[W(X, \sigma), 502 \]
\[\mathcal{D}(\mathbb{R}^n), 143 \]
Indices

\(\& \) (‘and’, logical conjunction), 257
\(\mathcal{F} \), 144
\(\mathcal{F}_t \), 255
\(\mathcal{F}_{s\cdot g} \), 144
\(\mathcal{H}_{n+1} \), 254
\(\Theta \) (‘or’, logical disjunction), 257
\(\mathcal{P} \), 660
\(\mathcal{S}(\mathcal{R}^n) \), 72, 143
\(\sigma \)-additivity, 19
\(\sigma \)-algebra, 16, 49
\(\sigma \)-algebra generated by \(\mathcal{A} \), 17
\(\sigma \)-finite, 20
\text{ess ran}_p(f), 400

Abelian
- algebra, 46
- group, 698
absolutely continuous
- function, 29
- measure with respect to another, 27
- spectrum, 399
absorbing set, 66
abstract differential equations, 431
active transformation, 523
adjoint operator
- general case, 213
- or Hermitian conjugate operator, 120
algebra, 45
- homomorphism, 46
- isomorphism, 46
- of sets, 17
- with unit, 46
algebraic
- dual, 53
- formulation of quantum theories, 292, 667
- state invariant under a quantum symmetry, 692
- state on \(\mathcal{B}_w(H) \), 293
almost everywhere, 21
analytic function with values in a Banach space, 310
analytic vector, 230, 410
anions, 664
annihilation operator, 402, 493
anti-isomorphic Hilbert spaces, 105
antiunitary operator, 229, 526
approximate point spectrum, 399
asymptotic completeness, 626
atlas, 702
atomic proposition, 274, 288
attractive Coulomb potential, 475, 617
axiom of choice, 697
Baire’s category theorem, 73
Baker–Campbell–Hausdorff formula, 492, 569
balanced set, 66
Banach
- algebra, 46, 122, 310, 316
- inverse operator theorem, 75
- lemma, 166
- space, 40
Bargmann’s superselection rule for the mass, 601
Bargmann’s theorem, 575
Bargmann–Fock–Hilbert space, 117
basis
- of a Hilbert space, 106, 107
- of a topology, 10, 71
Bell’s inequalities, 653
Beppo-Levi’s monotone convergence theorem, 24
Bessel’s inequality, 108
bi-invariant Haar measure, 554
bijectional map, 5
Boolean
- \(\sigma \)-algebra, 261
- algebra, 261
boost along the \(i \)th axis, 598
Borel
- \(\sigma \)-algebra, 17, 254
- measure, 254
- set, 254
Borel-measurable function, 17, 254
Bosonic Fock space, 664
Bosons, 664
bounded
- functional, 53
- lattice, 260
- operator, 53
- projector-valued measure, 344
- set, 37, 164
Busch’s theorem, 638
canonical
- commutation relations, 488
- injection of a central extension, 550
- projection, 76
– projection of a central extension, 550
– symplectic form, 500
Cartan’s theorem, 568
Cauchy sequence, 40
Cauchy-Schwarz inequality, 98
Cayley transform, 225
CCR, 488
central charge, 574, 599
centre of a group, 698
character of a Banach algebra with unit, 329
characteristic function, 27, 117
chronological reordering operator, 631
closable operator, 211
closed operator, 211
closed set, 10
closure of a set, 11
closure of an operator, 211
cohort
– sectors (of superselection), 289, 525
– superposition, 286
collapse of the wavefunction, 288
commutant, 124
– of an operator, 216
commutative
– algebra, 46
– Gelfand–Najmark theorem, 332
– group, 698
commutator
– of a Lie algebra, 566
– theorem of tensor products, 461
commuting
– elements in an orthocomplemented lattice, 261
– operators, 216, 483
– orthogonal projections, 132
– spectral measures, 425
compact, 14, 162
– operator, 164
compatible and incompatible
– propositions, 263
– quantities, 248, 252
compatible observables, 483
complete
– measure, 21
– measure space, 21
– metric space, 72, 73
– normed space, 40
– orthonormal system, 107
completely continuous operator, 164
complex measure, 32, 33
complex spectral measure associated to two vectors, 353
complex-valued simple function, 300
compound quantum system, 650
Compton effect, 242
conjugate observables, 489
conjugate or adjoint operator (in a normed space), 57
conjugation of the charge, 543
conjugation operator, 229, 526
connected
– components, 15
– set, 15
– space, 15
constant of motion, 639
continuous
– Borel measure on \(\mathbb{R} \), 30
– function, 13
– functional, 55
– functional calculus, 322
– map, 37, 71
– operator, 55
– projective representation, 555
– spectrum of an operator, 311
contravariant vector, 706
convergent sequence, 12, 38, 71
convex
– (linear) combination, 282
– hull of a set, 65
– set, 65, 66, 102, 282
Copenhagen interpretation, 247, 253
core of an operator, 218
cotangent space, 705
countable set, 106
counting measure, 51
covariant vector, 706
covering
– map, 567
– space of a topological space, 567
creation operator, 402, 493
cyclic vector for a \(\ast \)-algebra representation, 126
Darboux’s theorem, 500
De Broglie wavelength, 245
De Morgan’s law, 261
defcoherence, 659
deficiency indices, 227
degenerate operator, 184
dense set, 11
density matrix, 481
diffeomorphism, 704
differentiation inside an integral, 34
Dini’s theorem on uniform convergence, 43
Dirac
– correspondence principle, 515
– measure, 254
direct
– product of groups, 699
– sum, 76
discrete spectrum, 398
discrete subgroup, 567
distance, 70
distributive lattice, 260
division algebra, 126
domain of an operator, 210
Du Bois-Reymond lemma, 221
dual action of a symmetry on observables, 539
dual vector space, 706
dynamical
– flow, 609
– symmetry, 611
Dyson series, 630
Ehrenfest theorem, 643
eigenspace, 128
eigenvalue, 128
eigenvector, 128
embedded submanifold, 704
entangled states, 651
entire function, 117
EPR paradox, 651
equicontinuous
– family of operators, 64
– sequence of functions, 44
equivalent
– norms, 80
– projective unitary representations, 547
– unitary representations, 547
essential
– norm with respect to a PVM, 345
– rank, 429
– rank of a measurable function with respect to a PVM, 400
– spectrum, 398
– supremum, 52
essentially
– bounded map for a PVM, 345
– self-adjoint operator, 215
Euclidean, or standard, distance, 71
expansion of a compact operator with respect to its singular values, 175
exponential mapping of a Lie group, 568
extension of an operator, 210
extremal element of a convex set, 65
extreme element in a convex set, 282
factor (von Neumann algebra), 125, 273
factors of type II_1, 273
faithful
– algebraic state, 672
– representation, 544, 700
– representation of a \ast-algebra, 126
Fatou’s lemma, 25
Fermionic Fock space, 664
Fermions, 664
final space of a partial isometry, 133
finite measure, 20
first integral, 639
Fischer–Riesz theorem, 50
– L^∞ case, 52
fixed-point theorem, 82
Fock space, 455, 664
folium of an algebraic state, 673
Fourier transform, 144
Fourier-Plancherel transform, 149
Fréchet space, 72
fractional quantum Hall effect, 664
Fredholm equation
– of the first kind, 195
– of the second kind, 198
– of the second kind with Hermitian kernel, 196
Fredholm’s alternative, 198
free representation, 700
FS3 theorem (Flato, Simon, Snellman, Sternheimer) on the existence of unitary representations of Lie groups, 581
Fubini–Tonelli’s theorem, 31
Fuglede’s theorem, 372
Fuglede–Putnam–Rosenblum theorem, 374
function of bounded variation, 29
functional calculus, 322
Gårding
– space, 421, 580
– theorem, 580
Galilean group, 553, 592, 621, 645
Gaussian or quasi-free algebraic states, 691
Gelfand
– formula for the spectral radius, 319
– ideal, 670
– transform, 330
Gelfand–Najmark theorem, 321, 683
Gelfand-Mazur Theorem, 317
genral linear group, 552
generator (self-adjoint) of a strongly continuous one-parameter group of unitary operators, 423
generator of a unitary representation of a Lie group, 580
generators of a Weyl *-algebra, 502
Gleason’s theorem, 279
Gleason-Montgomery-Zippin theorem, 564
GNS
– representation, 505
– theorem, 669
– theorem for *-algebras with unit, 679
Gram-Schmidt orthonormalisation process, 114
graph of an operator, 77, 210
greatest lower bound, 697
group, 698
– automorphism, 699
– homomorphism, 544, 698
– isomorphism, 699
gyro-magnetic ratio of the electron, 7
Hölder’s inequality, 49
Haag theorem, 626
Haar measure, 554, 583
Hadamard’s theorem, 319
Hahn–Banach theorem, 60
Hamilton’s equations, 255
Hamiltonian
– formulation of classical mechanics, 254
– operator, 608
Hausdorff (or T_2) space, 10, 37, 49, 254
Heine-Borel theorem, 14
Heisenberg’s
– picture, 638
– relations, 488, 582
– uncertainty principle, 247
Hellinger–Toeplitz theorem, 216
Hermite
– functions, 116, 403, 494
– polynomial, 117
– polynomial H_n, 117
Hermitian
– inner product, 98
– operator, 215
– or self-adjoint element, 122
– semi-inner product, 98
Hilbert
– basis, 106, 107
– space, 101
– space associated to a physical system, 274
– space of a non-relativistic particle of mass $m > 0$ and spin 0, 487
– sum, 212, 289, 454
– tensor product, 452
– theorem on compact operators, 170
– theorem on the spectral expansion of a compact operator, 172
Hilbert–Schmidt operator, 177
Hille–Yosida theorem, 424
homeomorphism, 13
homogeneous Volterra equation on $C([a,b])$, 84
homotopy, 16
hydrogen atom, 618
ideal and *-ideal, 168
idempotent operator, 78
identical particles, 660
imprimitivity
– condition, 541
– system, 541
– theorem of Mackey, 541
incoherent superposition, 286
incompatible observables, 483
incompatible propositions, 264
indirect or first-kind measurement, 288
induced topology, 10
inertial frame system, 487
infimum, 697
infinite tensor product of Hilbert spaces, 455
initial space of a partial isometry, 133
inner
– continuity, 19
– product space, 98
– regular measure, 20
integral
– of a bounded measurable map with respect to a PVM, 348
– of a function with respect to a complex measure, 33
– of a function with respect to a measure, 23
– of a measurable, not necessarily bounded, function for a PVM, 390
– of a simple function with respect to a PVM, 347
interior of a set, 73
internal point of a set, 10
invariant
– subspace, 700
– subspace under a \(*\)-algebra representation, 126
inverse
– Fourier transform, 144
– operator theorem of Banach, 75
involution, 122
irreducible
– family of operators, 490
– projective unitary representation, 546
– representation, 700
– representation of a \(*\)-algebra, 126
– subspace for a family of operators on \(H\), 490
– unitary representation, 547
isometric
– element, 122
– operator, 127
isometry, 38, 100, 225
– group of \(\mathbb{R}^3\), 540
isomorphic algebras, 46
isomorphism
– of inner product spaces, 100
– of Hilbert spaces, 101, 127
– of normed spaces, 38
joint spectral measure, 407, 483
joint spectrum, 407
jointly continuous map, 39
Kadison
– automorphism, 526
– symmetry, 526
– theorem, 535
Kato’s theorem, 472, 615
Kato-Rellich theorem, 468
kernel of a group homomorphism, 698
kernel of an operator, 120
Klein–Gordon equation, 691
Klein–Gordon/d’Alembert equation, 439
Kochen–Specker theorem, 281
Laguerre function, 117
Laguerre polynomial, 117, 618
lattice, 260
lattice homomorphism, 261
least upper bound, 697
Lebesgue
– decomposition theorem for measures on \(\mathbb{R}\), 31
– dominated convergence theorem, 25
– measure on \(\mathbb{R}^n\), 28
– measure on a subset, 28
Lebesgue-measurable function, 28
left and right orbit of a subset by a group, 553
left-invariant and right-invariant measure, 554
Legendre polynomials, 115
Lidiskii’s theorem, 194
Lie
– algebra, 516, 566
– algebra homomorphism, 566
– algebra isomorphism, 566
– group, 564
– group homomorphism, 565
– group isomorphism, 565
– subgroup, 567
– theorem, 567
limit of a sequence, 38, 71
limit point, 13
Lindelöf’s lemma, 12
linear representation of a group, 699
Liouville’s
– equation, 255
– theorem, 256
Lipschitz function, 30
local
– chart, 702
– existence and uniqueness for first-order ODEs, 87
– homomorphism of Lie groups, 565
– isomorphism of Lie groups, 565 locally
– compact space, 14, 49, 162, 254
– convex space, 66
– integrable map, 220
– Lipschitz function, 87
– path-connected, 16
– square-integrable function, 474
logical
– conjunction, ‘and’, 257
– disjunction, ‘or’, 257
– implication, 257
Loomis–Sikorski theorem, 262
Lorentz group, 553
lower bound, 697
lower bounded set, 697
LSZ formalism, 626
Luzin’s theorem, 26
Mackey’s theorem, 501
maximal ideal, 329
maximal observable, 484
meagre set, 73
mean value, 484
measurable
– function, 17
– space, 17
measure
– absolutely continuous with respect to another measure, 33
– concentrated on a set, 20
– di Borel, 20
– dominated by another, 27, 33
– space, 19, 49, 254
measuring operators, 637
Mercer’s theorem, 185
metric, 70
– space, 70
metrisable topological space, 72
Minkowski’s inequality, 49
mixed
– algebraic state, 669
– state, 286, 481
mixture, 286
modulus of an operator, 139
momentum
– operator, 221, 405, 458, 487
– representation, 542
monotonicity, 19, 345
multi-index, 72
multiplicity of a singular value, 175
multipliers of a projective unitary representation, 546
Nelson’s
– theorem on commuting spectral measures, 582
– theorem on essential self-adjointness (Nelson’s criterion), 231
– theorem on the existence of unitary representations of Lie groups, 581
Neumark’s theorem, 638
non-destructive or indirect measurements, 481
non-destructive testing, 288
non-meagre set, 73
nonpure state, 286
norm, 36
– topology of a normed space, 37, 70
normal
– coordinate system, 569
– element, 122
– operator, 127
– operator (general case), 215
– state of a von Neumann algebra, 674
– states of an algebraic state, 673
– subgroup, 698
– vector, 98
normed algebra with unit, 46
normed space, 36
nowhere dense set, 73
nuclear operator, 188
number operator, 402, 493
Nussbaum lemma, 231
observable, 296, 482
observable function of another observable, 299
one-parameter group of operators, 413
one-parameter group of unitary operators, 414
open
 – ball, 37
 – map, 74
 – mapping theorem (of Banach-Schauder), 74
 – metric ball, 74
 – neighbourhood of a point, 10
 – set, 10, 37, 70
operator norm, 54
operators of spin, 589
orbital
 – angular momentum, 458
 – angular momentum operator, 458
ordered set, 697
orthochronous Lorentz group, 553
orthocomplemented lattice, 260
orthogonal
 – complement, 260
 – elements in an orthocomplemented lattice, 261
 – group, 553
 – projector, 130
 – space, 98
 – system, 107
 – vectors, 98
orthomodular lattice, 261
orthonormal system, 107
outer continuity, 19
outer regular measure, 20

Paley–Wiener theorem, 151
parallelogram rule, 98
parastatistics, 664
parity inversion, 542
partial
 – isometry, 133, 141, 466
 – order, 697
 – trace, 659
partially ordered set, 697
passive transformation, 524
path-connected, 15
Pauli
 – matrices, 126, 280, 533, 589
 – theorem, 635
permutation group on n elements, 660
Peter–Weyl theorem, 584, 588
phase spacetime, 254
photoelectric effect, 241
Plancherel theorem, 149

Planck’s constant, 239
Poincaré
 – group, 553
 – sphere, 533
point spectrum of an operator, 311
Poisson bracket, 516
polar decomposition
 – of bounded operators, 140, 141
 – of closed densely-defined operators, 466
 – of normal operators, 142
polarisation formula, 99
poset, 697
position operator, 219, 405, 458, 487
positive
 – element in a C^*-algebra with unit, 327
 – operator, 127
 – operator-valued measure, 345, 637
 – square root, 136
POVM, 345, 637
preparation of system in a pure state, 288
probabilistic state, 256
probability
 – amplitude, 286
 – measure, 20, 254
product
 – measure, 31
 – structure, 703
 – topology, 12, 39, 77, 211, 212
projection, 78
 – space, 78
projective
 – representation of a symmetry group, 544
 – space, 282
 – unitary representation of a group, 546
 – unitary representations of the Galilean group, 596
projector-valued measure, 296, 344
projector-valued measure su \mathbb{R}, 298
pullback, 708
pure
 – algebraic state, 669
 – point spectrum, 399
 – state, 286, 480
purely atomic Borel measure on \mathbb{R}, 30
purely residual spectrum, 399
pushforward, 708
PVM, 296
 – on \mathbb{R}, 298
 – on X, 344
quantum
 – group associated to a group, 552
 – logic, 273
 – Nöther theorem, 641
 – state, 275, 281, 480
 – symmetry, 521
 – symmetry in the algebraic formulation, 692
quasi-equivalent representations of a ∗-algebra, 685
quaternions, 125
Radon measure, 116
Radon–Nikodým
 – derivative, 27, 33
 – theorem, 27, 33
range of an operator, 120
real-analytic manifold, 702
realisation of a Weyl ∗-algebra, 505
reflexive space, 63, 105
regular complex Borel measure, 59
regular measure, 20
relatively compact set, 14, 162
representation of a ∗-algebra, 126
representation of a Weyl ∗-algebra, 503
residual spectrum of an operator, 311
resolvent, 311
 – identity, 312
 – set, 311
resonance, 446
restricted Galilean group, 593
Riesz’s theorem
 – for complex measures on \(\mathbb{R}^n \), 59
 – for complex measures, 59
 – for positive Borel measures, 26, 294
 – on Hilbert spaces, 104
right regular representation, 588
right-invariant Haar measure, 554
scattering, 623
scattering operator, 625
Schröder-Bernstein theorem, 112
Schrödinger’s
 – equation, 246, 433
 – picture, 639
 – wavefunction, 245
Schur’s lemma, 491
Schwartz
 – distribution, 73
 – space on \(\mathbb{R}^n \), 72, 143
second-countable space, 11, 71
Segal–Bargmann transformation, 519
self-adjoint
 – operator, 127
 – operator (general case), 215
semidirect
 – product, 540
 – product of groups, 699
seminorm, 36
separable
 – \(L^p \) measures and spaces, 115
 – Borel measures and \(L^p \) spaces, 116
 – Hilbert space, 113
 – measure, 115
 – topological space, 11
separating elements, 62
sequentially
 – compact, 162
 – continuous map, 38
set
 – of atoms of a Borel measure on \(\mathbb{R} \), 30
 – of the first category, 73
 – of the second category, 73
sharp state, 256
signed measure, 32
simple \(C^* \)-algebra, 678
simple function, 22, 346
simply connected space, 16
singular
 – measure with respect to another, 27
 – spectrum, 399
 – values of a compact operator, 175
smooth
 – manifold, 702
 – map, 701
 – structure, 702
space
 – of analytic vectors of a unitary representation of a Lie group, 580
 – of effects, 637
special
 – orthochronous Lorentz group, 553
 – orthogonal group, 553
 – unitary group, 553
spectral
- decomposition for normal operators, 359
- decomposition of unbounded self-adjoint operators, 393
- measure associated to a vector, 353
- measure on \mathbb{R}, 298
- measure on X, 344
- multiplicity, 370
- radius, 317
- representation of normal operators in $\mathcal{B}(H)$, 364
- representation of unbounded self-adjoint operators, 406

spectrum
- of a commutative Banach algebra with unit, 329
- of an operator, 311
- of the Hamiltonian of the hydrogen atom, 618

spherical harmonics, 460
spin, 249, 588
- statistical correlation, 664
spontaneous symmetry breaking, 693
square root of an operator, 135
standard
- deviation, 484
- domain, 210
- symplectic basis of a symplectic vector space, 500
- topology, 11
statistical operator, 481
Stone
- formula, 419
- representation theorem, 262
- theorem, 419, 579
Stone–von Neumann theorem, 500
Stone–von Neumann theorem, alternative version, 501
Stone–Weierstrass theorem, 49, 115
strong topology, 67
strongly continuous
- one-parameter group of operators, 414
- projective unitary representation, 557
- semigroup of operators, 424, 449
structure
- constants of a Lie algebra, 568
- constants of the Galilean group, 594
sub-additivity, 19, 36, 345
subalgebra, 48
subgroup, 698
- of pure Galilean transformations, 594
- of space translations, 594
- of time displacements, 609
- of time translations, 594
subrepresentation of a *-algebra, 685
superposition principle of states, 286
superselection rules, 289, 480, 524
- of angular momentum, 290, 592
- of the electric charge, 290
support
- of a complex measure, 33
- of a function, 15
- of a measure, 20
- of a projector-valued measure, 344
- of una measure, 352
supremum, 697
symmetric operator, 215
symmetry group, 544
symplectic
- coordinates, 255
- form, 500
- linear map, 500
- vector space, 500
symplectomorphism, 500
tangent space, 705
tensor
- product of Hilbert spaces, 452
- product of vectors, 450
- product of von Neumann algebras, 461
theorem
- corresponding to Heisenberg’s Uncertainty Principle, 489
- corresponding to Heisenberg’s Uncertainty Principle for mixed states, 513
- corresponding to Heisenberg’s Uncertainty Principle, strong version, 512
- of Arzelà–Ascoli, 44
- of Banach–Alaoglu, 69
- of Banach–Mazur, 45
- of Banach–Steinhaus, 63
- of characterisation of pure algebraic states, 675
- of Krein–Milman, 70
− on *-homomorphisms of C*-algebras with unit, 326
− on absolutely convergent series, 32
− on Hilbert-space completion, 101
− on positive elements in a C*-algebra with unit, 327
− on regular values, 704
− on solutions to Fredholm equations of the second kind with Hermitian kernels, 196
− on the continuity of positive functionals over C*-algebras with unit, 672
− on the eigenvalues of compact operators in normed spaces, 166
− on the invariance of the spectrum, 326
− on the representability of algebraic quantum symmetries, 692
time
− homogeneity, 608, 629
− reversal, 542, 633
time-dependent
− dynamical symmetry, 611
− Schrödinger equation, 614
time-evolution
− operator, 609
− operator in absence of time homogeneity, 629
topological
− dual, 53, 105
− group, 541, 552
− space, 10
− vector space, 66
topology, 10
− of a metric space, 70
total angular momentum of a particle with spin, 590
total order relation, 697
total variation of a measure, 32
trace of an operator of trace class, 192
trace’s invariance under cyclic permutations, 192
trace-class operator, 188
transition
− amplitude, 286, 481
− probability, 286
transitive representation, 700
triangle inequality, 36, 70
Tychonoff’s theorem, 15
uniform
− boundedness principle, 63
− topology, 67
unitarily equivalent irreducible representations of the CCRs, 667
unitarily equivalent representations of *-algebras, 126
unitary
− element, 122
− group, 553
− operator, 101, 127
− representation of a group, 547
− transformation, 101
universal
− covering of a topological space, 567
− representation of a C*-algebra, 685
upper bound, 697
− set, 697
Urysohn’s Lemma, 15, 294
vector of uniqueness, 230
vector subspace, 5
Volterra
− equation, 183
− equation of the second kind, 201
− operator, 183
von Neumann
− algebra, 124, 125, 273
− algebra generated by a bounded normal operator and its adjoint, 392
− algebra generated by a subset of B(H), 125, 273
− algebra generated by an operator, 216
− double commutant theorem, 124
− theorem on iterated projectors, 272
− theorem on the continuity of one-parameter groups of unitary operators, 416
− theorem on the existence self-adjoint extensions (von Neumann’s criterion), 229
wave operators, also known as Møller operators, 624
wavefunction, 286, 487
weak
− derivative, 220
− topology, 67
- topology on a normed space, 66
- weakly continuous one-parameter group of operators, 414
- weakly non-degenerate bilinear form, 500
- Weyl
 - C^*-algebra, 690
 - *-algebra, 502
 - (commutation) relations, 493, 502
 - C^*-algebra of a symplectic vector space, 505
 - calculus, 515, 517

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weyl–Heisenberg group</td>
<td>513</td>
</tr>
<tr>
<td>Wigner</td>
<td></td>
</tr>
<tr>
<td>- automorphism</td>
<td>528</td>
</tr>
<tr>
<td>- symmetry</td>
<td>528</td>
</tr>
<tr>
<td>- theorem</td>
<td>529</td>
</tr>
<tr>
<td>Yukawa potential</td>
<td>475, 619</td>
</tr>
<tr>
<td>Zermelo’s axiom</td>
<td>697</td>
</tr>
<tr>
<td>zero-measure set</td>
<td>21</td>
</tr>
<tr>
<td>Zorn’s lemma</td>
<td>111, 697</td>
</tr>
</tbody>
</table>
Collana Unitext – La Matematica per il 3+2

Series Editors:
A. Quarteroni (Editor-in-Chief)
L. Ambrosio
P. Biscari
C. Ciliberto
G. van der Geer
G. Rinaldi
W.J. Runggaldier

Editor at Springer:
F. Bonadei
francesca.bonadei@springer.com

As of 2004, the books published in the series have been given a volume number. Titles in grey indicate editions out of print. As of 2011, the series also publishes books in English.

A. Bernasconi, B. Codenotti
Introduzione alla complessità computazionale

A. Bernasconi, B. Codenotti, G. Resta
Metodi matematici in complessità computazionale

E. Salinelli, F. Tomarelli
Modelli dinamici discreti

S. Bosch
Algebra

S. Graffi, M. Degli Esposti
Fisica matematica discreta
13. A. Quarteroni, F. Saleri
 Introduzione al Calcolo Scientifico (2a Ed.)

14. S. Salsa
 Equazioni a derivate parziali - Metodi, modelli e applicazioni

15. G. Riccardi
 Calcolo differenziale ed integrale

16. M. Impedovo
 Matematica generale con il calcolatore

17. L. Formaggia, F. Saleri, A. Veneziani
 Applicazioni ed esercizi di modellistica numerica
 per problemi differenziali

18. S. Salsa, G. Verzini
 Equazioni a derivate parziali – Complementi ed esercizi
 2007, ristampa con modifiche

19. C. Canuto, A. Tabacco
 Analisi Matematica I (2a Ed.)
20. F. Biagini, M. Campanino
Elementi di Probabilità e Statistica

21. S. Leonesi, C. Toffalori
Numeri e Crittografia

22. A. Quarteroni, F. Saleri
Introduzione al Calcolo Scientifico (3a Ed.)

23. S. Leonesi, C. Toffalori
Un invito all’Algebra

24. W.M. Baldoni, C. Ciliberto, G.M. Piacentini Cattaneo
Aritmetica, Crittografia e Codici

25. A. Quarteroni
Modellistica numerica per problemi differenziali (3a Ed.)
(1a edizione 2000, ISBN 88-470-0108-0)

26. M. Abate, F. Tovena
Curve e superfici

27. L. Giuzzi
Codici correttori

28. L. Robbiano
Algebra lineare

29. E. Rosazza Gianin, C. Sgarra
Esercizi di finanza matematica
30. A. Machi
Gruppi – Una introduzione a idee e metodi della Teoria dei Gruppi
2010, ristampa con modifiche

31. Y. Biollay, A. Chaabouni, J. Stubbe
Matematica si parte!
A cura di A. Quarteroni

32. M. Manetti
Topologia

33. A. Pascucci
Calcolo stocastico per la finanza

34. A. Quarteroni, R. Sacco, F. Saleri
Matematica numerica (3a Ed.)

35. P. Cannarsa, T. D'Aprile
Introduzione alla teoria della misura e all’analisi funzionale

36. A. Quarteroni, F. Saleri
Calcolo scientifico (4a Ed.)

37. C. Canuto, A. Tabacco
Analisi Matematica I (3a Ed.)

38. S. Gabelli
Teoria delle Equazioni e Teoria di Galois

39. A. Quarteroni
Modellistica numerica per problemi differenziali (4a Ed.)

40. C. Canuto, A. Tabacco
Analisi Matematica II
2010, ristampa con modifiche
41. E. Salinelli, F. Tomarelli
 Modelli Dinamici Discreti (2a Ed.)

42. S. Salsa, F.M.G. Vegni, A. Zaretti, P. Zunino
 Invito alle equazioni a derivate parziali

43. S. Dulli, S. Furini, E. Peron
 Data mining

44. A. Pascucci, W.J. Runggaldier
 Finanza Matematica

45. S. Salsa
 Equazioni a derivate parziali – Metodi, modelli e applicazioni (2a Ed.)

46. C. D'Angelo, A. Quarteroni
 Matematica Numerica – Esercizi, Laboratori e Progetti

47. V. Moretti
 Teoria Spettrale e Meccanica Quantistica – Operatori in spazi di Hilbert

48. C. Parenti, A. Parmegiani
 Algebra lineare ed equazioni differenziali ordinarie

49. B. Korte, J. Vygen
 Ottimizzazione Combinatoria. Teoria e Algoritmi

50. D. Mundici
 Logica: Metodo Breve

51. E. Fortuna, R. Frigerio, R. Pardini
 Geometria proiettiva. Problemi risolti e richiami di teoria
52. C. Presilla
 Elementi di Analisi Complessa. Funzioni di una variabile

53. L. Grippo, M. Sciandrone
 Metodi di ottimizzazione non vincolata

54. M. Abate, F. Tovena
 Geometria Differenziale

55. M. Abate, F. Tovena
 Curves and Surfaces

56. A. Ambrosetti
 Appunti sulle equazioni differenziali ordinarie

57. L. Formaggia, F. Saleri, A. Veneziani
 Solving Numerical PDEs: Problems, Applications, Exercises

58. A. Machì
 Groups. An Introduction to Ideas and Methods of the Theory of Groups

59. A. Pascucci, W.J. Runggaldier

60. D. Mundici
 Logic: a Brief Course

61. A. Machì
 Algebra for Symbolic Computation

62. A. Quarteroni, F. Saleri, P. Gervasio
 Calcolo Scientifico (5ª ed.)
63. A. Quarteroni
 Modellistica Numerica per Problemi Differenziali (5ª ed.)

64. V. Moretti
 Spectral Theory and Quantum Mechanics
 With an Introduction to the Algebraic Formulation

The online version of the books published in this series is available at SpringerLink.
For further information, please visit the following link:
http://www.springer.com/series/5418