References

1. Aaronson, J.: An Introduction to Infinite Ergodic Theory. AMS Mathematical Surveys and
3. Clemens, J.D.: Descriptive Set Theory, Equivalence Relations, and Classification Problems in
Analysis, 142 pp. Thesis (Ph.D.), University of California, Berkeley (2001)
16. Eigen, S., Hajian, A., Kakutani, S.: Complementing sets of integers—a result from ergodic
Index

A
Aaronson, J., 94, 102
absolutely continuous, 6
adding machine, 43, 48, 52, 90
α-type, 86, 87, 93

B
Birkhoff Ergodic Theorem, x, 26

C
Calderon, A.P., 5, 34
Clemens, J.D., 115–117
commutator, 49, 69, 81
complementing set, 104, 116, 119, 132
compressible set, 10
countably equivalent sets, 2, 5, 10, 14, 15, 27
Coven, E., 104–106
cutting and stacking, 84, 85, 88, 96, 111, 115, 119

d
Dateyama, M., 132
de Bruijn, N.G., 104, 105, 141
derived set, 17, 18
difference set, 65, 66, 110, 116, 117
direct sum, 103, 106, 108–110
dissipative sequence, 71, 72, 74, 75
dissipative transformation, 49, 57
Dowker, Y., ix, xi, 5, 34
dyadic odometer, 43, 48, 84, 88, 90, 102

e
Eigen, S., 23, 67, 95, 102, 106, 107, 111, 115, 119, 124, 131, 132, 139, 141, 145
equivalent measures, 1
ergodic, 21, 25
ergodic type III, 49, 50
even complete, 132
even differences, 131, 132
eww; see exhaustive weakly wandering
eww growth sequence, 36, 37, 39
eww set, 46, 48, 67, 69, 85, 88, 96, 109, 112, 123, 140, 143
exh, see exhaustive
exh sequence, 67
exh set, 67
exhaustive, 67
exhaustive weakly wandering, 18
exterior, 76

F
finite ergodic, 25
finite invariant measure, ix, 1, 4–16, 29
finite tilings, 105, 106
finite type, 67, 80
finitely equivalent sets, 2, 3, 8, 10
foundational sequence, 92
free ultrafilter, 75
Friedman, N., 94, 111, 112
Fuglede conjecture, 106
Fuglede, B., 106
full group, 53
G
growth distribution, 94

H
Hajos, G., 105
Halverson, K., 141, 145
Hamachi, T., 86
Hansen, R., 105
hereditary
 eww sequence, 23, 39, 67
 sww sequence, 19
Hewitt–Savage Zero–One Law, 54
hitting sequence, 110, 112, 116, 126
hitting times, 108, 109, 116, 126, 143
Hopf, E., ix, xi, 5, 26, 62

I
induced transformation, 42
infinite ergodic, 25–39
infinite tiling, 104, 108
invariant measure, 1
isomorphism, 79
Ito, Y., vii, 5, 22, 56, 67, 94, 130, 131, 134

J
Jones, L., 23

K
Kakutani, S., v, vii, 5, 29, 41–43, 56, 59, 94, 124, 132
Kalikow, S., 119
Kamae, T., 108, 111, 132
Kosek, W., 75
Krengel, U., 23

L
Long, C.T., 105

M
maximal, 131, 132
measure-preserving commutator, 69
Meyerowitz, A., 104–106
mixing, xi, 26
monotonic set function, 6–8

N
Newman, D., 105
Niven, I., 105
no finite invariant measure, 17–24, 29, 39
no recurrent sequence, 39, 41, 62
non-measure-preserving commutator, 50
nonsingular, 1

O
odd complete, 132
odd differences, 131, 132
odometer, 52, 141
orbit, 50
ord, 125, 131
ord, 131, 142
Ornstein, D., 87
Osikawa, M., 86

P
Pascal automorphism, 59
Prasad, V.S., 95, 102, 131
principal ultrafilter, 75

R
random walk, 62
recurrence
 p, 145
 multiple, 145
recurrent sequence, 32–34, 39, 41, 46, 47, 70, 87, 93
recurrent transformation, 1–3, 25
regular open, 76
regularization, 76
return sequence, 144
return times, 81, 108, 126
returning sequence, 110, 116

S
Schmerl, J., 106, 107
SFS, 119, 120, 124–127, 142
Shields, P., 87
shift-repeat property, 110
double, 110
skyscraper, 94–101
Stone–Čech compactification, xi, 76
strongly mixing, 26, 32
strongly recurrent set, 2, 5, 9
strongly weakly wandering, 18
subadditive, 6, 8
Index

Sums of Finite Subsets, see SFS
sumset, 65, 103
superadditive, 6–8
Swenson, C., 106, 115–117
sww, see strongly weakly wandering
sww sequence, 18, 19, 23, 39

T
tiling the integers, 103, 104, 106, 108, 109
2-adic integers, 131, 141

U
ultrafilter, 75
uniformly absolutely continuous, 6

V
Vaidya, A.M., 104, 105, 141
Vershik, A., 59
von Neumann transformation, 43, 48, 52, 84, 88, 90, 137

W
wandering rate, 94
wandering set, 2, 25, 39, 50, 57
weakly wandering sequence, 2, 18
weakly wandering set, 2, 5, 39
Weiss, B., 139
ww, see weakly wandering
ww growth sequence, 36, 39
ww set, ix, 41, 46, 101