Index

A
Above- and below-ground interaction, 22
Agroforestry, 4, 21, 57–69

B
Biodiversity in rice paddy fields, 45–53
Biological control, 53

C
Capacity building, 81, 93, 139, 143–144, 247, 248
Carbon storage, 20, 41–42
Chlorophyll-a, 177–191, 215, 216
Citizen engagement, 2
CO₂ emission, 36–42, 114, 115
Community-based mangrove management, 87–96
Community empowerment, 248
Community engagement, 262
Community participation, 87, 88
Conservation tillage, 22, 35–43
Construction-related pollution, 194, 199
Conventional and organic farming, 22
Crop productivity, 42, 64–65, 133

D
Deer management, 104–105, 107
Disaster preparedness, 139
Distance learning, 274

E
Ecological degradation, 115, 244
Ecological education, 220, 267, 268
Ecological restoration, 203–220
Ecological theory, 52, 101, 219
Ecological thinking, 265–271
Ecosystem services, 6, 20, 21, 83, 111–120, 241, 242, 244, 266
EIA. See Environmental impact assessment (EIA)
e-learning, 274
End-of-pipe treatment, 176
Environmental impact assessment (EIA), 106, 200, 201, 227
Environmental risk awareness, 198, 266, 267
Environmental risk management, 9, 87–96, 191
Environmental risks of construction, 194–195
Eutrophication, 19, 178, 179, 191, 213, 216

F
Farm income, 132, 135
Forest management, 10, 75, 77, 81, 82, 87–96
Fort Dauphin, 147–162

G
Global environmental change, 19

I
In-process management, 90, 94, 197
Interactive education, 273–284

N. Kaneko et al. (eds.), Sustainable Living with Environmental Risks,
DOI 10.1007/978-4-31-54804-1, © The Author(s) 2014
### J
Japanese experiences of environmental pollution, 168, 172, 176

### L
Land degradation, 3, 4, 58–61, 69, 78, 124, 134, 194
Leadership development, 1–13, 239–250
Leaf litterfall, 57, 64
Local community, 82, 83, 143, 144, 233, 240
Local government, 57, 78, 95, 96, 115, 119, 168, 254–256, 260–262
Local scale, 84

### M
Maximum sustainable yield (MSY), 100–102, 106, 108
Mitigation of coastal erosion, 148
MSY. See Maximum sustainable yield (MSY)
Multi-point communication, 277

### N
Native species, 83, 204, 210, 214, 219
Natural green environment restoration, 223–235
Near-natural, 203–220
Nutrient inflow, 57, 64, 69

### O
Organic pollutants, 5, 171

### P
Phytoplankton, 178, 179, 187, 190

### R
Resource management, 11, 59, 82, 88–90, 95, 100, 107, 240–241, 246, 249

### S
Satoyama, 116, 117, 253–262
Social capacity assessment, 240–243, 247
Soil biodiversity, 20–23, 27–33
Soil conservation, 20, 61, 63, 69
Soil erosion, 3, 4, 30, 38, 42, 58, 59, 61, 64, 77, 114, 115, 119, 124, 125, 133, 135, 194–197, 200, 233, 244
Soil health, 29
Southeast Asia, 111–120
Spatial analysis, 147
Stakeholder participation, 5, 88
Sustainability, 1–13, 21–22, 28, 30, 45–53, 57, 58, 66–69, 73–85, 87–90, 93–95, 101, 112, 118, 120, 194, 204, 239–250, 266
Sustainable construction, 194
Sustainable living, 2, 8–11, 75, 77, 243
Sustainable utilization of soil, 29

### T
Toxic chemical regulation, 172
Trans-disciplinary science, 6, 249

### U
Uncertainty, 100, 102–105, 108, 131
Upland dry forests, 232
Urban forest ecosystem services, 229
Urban greening, 204, 212, 228, 229, 231, 232
Urban vegetation, 232

### V
Valuation of non-marketed services, 111–120
Vegetation structure of Nairobi, 232–233