Index

A
- Absorption coefficient, 14, 16–19
- Acousto-optical radio spectrometer (AOS), 261
- Adiabatic shock, 189
- Adsorption temperature, 132
- Anions, 94, 120–121, 171
- Aperture efficiency, 256
- Aperture synthesis, 262
- Astronomical unit, 8
- Asymmetric top, 238
- Atmospheric transparency, 253
- Autocorrelation spectrometer, 261
- Average dipole orientation (ADO) theory, 45

B
- Beam dilution effect, 29
- Beam pattern, 256
- Beam size, 29, 255
- Binary reaction, 37
- Blackbody, 11
- Bok globule, 91
- Branching ratio, 39, 53, 76, 118

C
- Carbon chemistry, 70–74, 107–112, 144, 185–188
- Carbon sink, 215
- Carbonaceous compound, 131
- Carbon-chain molecules, 5, 94, 114, 125, 171, 196, 228
- CCH, 22, 174, 180, 210, 246
- CCS, 92, 97, 118, 125, 150, 178, 180, 243
- Centrifugal distortion effect, 235
- CH, 4, 67, 73, 81, 109, 125, 144, 229, 242
- CH+, 4, 67, 81
- CH+ problem, 81–82
- (CH₃)₂O, 5, 146, 148, 162, 163, 168, 174, 176, 182, 183, 185
- CH₃OH, 28, 113, 145, 148, 163, 168, 171, 176, 180, 181, 183, 191, 210, 221, 229, 246
- C₂H, 74, 109, 110, 168, 196
- C₂H₂CN, 183
- C₂H₃CN, 146, 162, 163, 168, 174, 183, 185, 192, 229
- Charge-induced dipole interaction, 43
- Chemical evolution, 125, 145, 227
- Chemical model, 78–79, 122–128, 219
- Chemisorption, 132, 144
- Chopper wheel method, 265
- Class 0, 165
- Class I, 165
- Class II, 165
- Class III, 165
- Classical hopping, 140
- Cloud, 2
- Clumpy cloud model, 195
- CN, 4, 65, 67, 77, 116, 168, 210, 211, 220, 221
- CO depletion, 136
- CO₂, 148, 210, 215, 221
- Collisional rate coefficient, 27
- Column density, 19
- Comet, 221–223
- Compact H II region, 167
- Compact ridge, 176

© Springer Japan 2017
S. Yamamoto, *Introduction to Astrochemistry*, Astronomy and Astrophysics
Library 7, DOI 10.1007/978-4-431-54171-4
Complex organic molecules, 5, 162, 168, 174, 183, 229
Cosmic abundance, 3
Cosmic microwave background, 12
Cosmic-ray heating, 65, 91
Cosmic-ray-induced desorption, 147
Cosmic-ray-induced photodissociation, 107
Cosmic-ray-induced UV radiation, 217
Cosmic-ray ionization, 75
Cosmic-ray ionization rate, 84, 104, 106
Critical density, 27, 92
CS, 92, 118, 162, 168, 176, 180, 210, 221
C-shock, 190
Cyanopolyynes, 116

Degree of ionization, 67, 85, 104, 131, 214, 216
Dense core, 92
Depletion, 7, 132
Desorption, 147–148
energy, 132
temperature, 132
Deuterium fractionation, 152, 169, 172, 214, 229
Diffuse cloud, 2, 65, 227
Diffuse interstellar bands, 85
Diffusion timescale, 140
Dipole–dipole interaction, 48
Dipole-induced dipole interaction, 48
Disk midplane, 213–215
α Disk model, 208
Disk surface, 216–217
Dispersion force, 48
Dissociative electron-attachment reaction, 120
Dissociative electron recombination, 52–54
DM Tau, 210
Double-side-band receiver, 257
Dust, 2, 131

Einstein A coefficient, 17
Einstein B coefficient, 17
Emissivity, 14
Endothermic reactions, 41
Excitation temperature, 25–28
Exothermic reactions, 41

Fine structure, 240
Formation of H2, 142–144
Free-fall time, 79

G
Gas–grain interaction, 7
Gas–grain models, 149–152
Giant molecular cloud, 91
Grain growth, 218
Grain mantle, 131, 148–149
Grain-surface reactions, 7, 138–142, 215

H
H I 21-cm line, 5
H II region, 2, 161
H2, 32, 54, 57, 67, 91, 134, 142, 210
H2CO, 5, 28, 33, 68, 109, 113, 145, 148, 163, 168, 176, 181, 210, 221, 229
H2D+, 153, 214, 229
H3+, 5, 68, 75, 83, 97, 122, 153, 214, 229
H3+ chemistry, 97–105, 112, 214
H3+ problem, 83–85
HCN, 5, 21, 24, 27, 31, 68, 77, 116, 180, 210, 211, 220, 221
HCO+, 5, 6, 21, 68, 83, 104, 108, 113, 168, 176, 180, 210, 220, 221
HCOOCH3, 5, 146, 148, 162, 163, 168, 170, 174, 176, 182, 183, 185, 191, 229
HCOOH, 95, 146, 176, 178, 183
HEB mixer, 260
Herbig Ae/Be star, 211
High-mass star, 161, 166, 174
HN2+, 6
Hot core, 162, 176
Hot corino, 163, 167–170, 185, 187, 229
Hot ionized medium, 2
Hund’s coupling case, 241
Hyperfine structure, 22, 244

I
Infrared dark clouds (IRDCs), 180
Infrared excess, 205
Inner disk, 219
Intensity, 14
Interferometer, 262
Internal rotation, 246
Interstellar matter, 2–4
Interstellar molecules, 4–6
Inversion transitions, 5, 249
Ionic destruction, 106
Ionization potential, 58, 67
Ion–molecule reactions, 6, 42–46
IRAS 16293–2422, 163, 167
Isotope-selective photodissociation, 22, 57
J
J-shock, 190
Jupiter family comets, 221

K
Keplerian rotation, 206
Kirchhoff’s law of thermal radiation, 15
Kuiper belt, 221

L
L1527, 170
L1544, 97, 125, 136, 152, 155
Langmuir rate, 44, 72, 98, 107
Langmuir–Hinshelwood mechanism, 138
Line strength, 18, 31
Local thermodynamic equilibrium, 19
Lower side band, 257
Low-mass star, 161, 163
LVG model, 28

M
Mach number, 190
Magnetic hyperfine interaction, 244
Magnetorotational instability (MRI), 208
Main beam efficiency, 256
Main-sequence stars, 3
Masers, 5, 28, 177
Mean intensity, 17
Metallicity, 2
Modified rate approach, 142
Molecular cloud, 3, 91–93, 227
Molecular zone, 217
Moments of inertia, 233
MRN distribution, 157

N
Neutral–neutral reactions, 6, 47–50
N$_2$H$^+$, 92, 115, 116, 125, 136, 152, 176, 180, 210, 228
NH$_3$, 5, 32, 46, 78, 92, 97, 115, 116, 125, 145, 148, 152, 162, 221, 228, 249
Nitrogen chemistry, 77–78, 114–117
Nuclear quadrupole interaction, 245

O
OH, 5, 28, 53, 67, 76, 112, 145, 210, 219, 221, 242
Oort comets, 221
Ophiuchi, 65
Optical depth, 15
Optical thickness, 15
Orion KL, 161, 174
Ortho, 32
Ortho-to-para ratio of H$_2$, 153
Outflow shock, 188–192
Outflows, 164, 189
Oxygen chemistry, 75–77, 112–114

P
Para, 32
Parsec, 9
Partition function, 18, 31, 33
PDR, 161, 216
Phosphorous chemistry, 192–193
Photodesorption, 147
Photodissociation, 54, 73, 193, 216, 222
Photodissociation regions, 54, 193–196
Photoelectric heating, 65, 216
Photoionization, 57, 193, 216
Photon-dominated region, 54
Physisorption, 132, 144
Planck function, 12
Polycyclic aromatic hydrocarbon (PAH), 131, 196–200
Predissociation, 55
Prestellar core, 93
Products of inertia, 233
Proton affinity, 100, 136
Protoplanetary disk, 164, 205, 227, 230
Protostar, 3
Protostar phase, 164
Protostellar cores, 93, 230
Protostellar disk, 164
Pseudo-time-dependent calculation, 150
Pseudo-time-dependent model, 123

Q
Quantum effect, 140

R
Radial mixing, 218
Radiation trapping, 28
Radiative association reactions, 51–52, 70, 108, 113
Radiative electron-attachment reaction, 120
Radiative transfer, 13–16
Rate equation, 37, 78
Rayleigh–Jeans law, 12
Reaction barrier, 46, 141
Reaction cross-section, 38
Reaction rate coefficient, 37
Rideal mechanism, 139
Rotation diagram, 20
Rotational spectra, 233

S
Self-shielding, 57
Shock chemistry, 191
Shock front, 189
Side-band-separating receiver, 258
Silicate, 131
Single-side-band (SSB) receiver, 258
SiO, 28, 162, 174, 176, 180, 191
SIS mixer, 258
Snow line, 215, 219
SO, 119, 162, 163, 174, 221, 243
Solar luminosity, 9
Solar mass, 9
Source function, 14
Spectral energy distribution (SED), 165, 205
Spin–orbit interaction, 240
Spin–rotation interaction, 240
Spin–spin interaction, 240
Star-forming regions, 161, 227
Starless core, 93
Starless core phase, 163
Steady-state approximation, 79, 104
Steady-state condition, 106
Sticking probability, 132
Sulfur chemistry, 117–120
Surface mobility, 139
Symmetric top, 236
Symmetric-top molecule, 32
System noise temperature, 254

T
Thermal emission, 11
Thermal velocity width, 93

Three-body reactions, 42, 219
Time-dependent chemical model, 122
Timescale for chemical equilibrium, 60–62
Timescale for depletion, 136
Timescale of chemical reactions, 58–59
TMC-1 CP, 24, 93, 125, 155
T-Tauri star phase, 164–166
Turbulent velocity width, 92
TW Hya, 210
Λ-type doubling transition, 5, 242

U
Ultracompact H II region, 167
Unidentified infrared (UIR) bands, 196
Upper side band, 257

V
van Cittert–Zernike theorem, 262
Vertical mixing, 218
Visibility, 262
Visual extinction, 9

W
W3, 176
Warm carbon-chain chemistry (WCCC), 172, 185, 187, 229
Warm ionized medium, 2
Warm-up phase, 183
Wien’s displacement law, 12

Y
Y-factor method, 261

Z
Zenith optical depth, 255