Notation

2.1 \mathbb{R}^m, $M(f, x, \varepsilon)$, $f^*(x)$, $C^+(E)$, $C^-(E)$, χ_G, χ_F, Γ_A, F^A, K, $M(f, K)$, K_n, K_{max}.

2.2 $\sigma(G)$, μ, $G_0(\mu)$, $\sup \mu$, $M(G)$, $\mu_F(E)$, ν, \mathcal{M}^d, ν^+, ν^-, $|\nu|$, $\sup \phi$, \rightarrow, \bar{E}, \overline{E}, $\sigma(\mathbb{R}^{m_1} \times \mathbb{R}^{m_2})$, $\Phi_1 \otimes \Phi_2$, $\mu_1 \otimes \mu_2$.

2.3 $\varphi_n \overset{D}{\longrightarrow} \varphi$, $\alpha(t)$, $\alpha_x(t)$, $\psi_x(t)$, $\langle f, \varphi \rangle$, $\langle \delta_x, \varphi \rangle$, $\langle \delta_x(n), \varphi \rangle$, $\langle \mu, \varphi \rangle$, $\langle \alpha f, \varphi \rangle$, $\langle f_1 + f_2, \varphi \rangle$, $\langle \varphi, f \rangle$, $f|_{G_1}$, $\cos \rho(\phi)$.

2.4 Δ_{φ_0}, $E_{\varphi}(x)$, θ_{φ}, $G(x, y, \Omega)$, $G(x, y, K_{a, R})$.

2.5 $\Pi(x, \mu, D)$, $G_N(x, y)$, $\Pi_N(x, \mu, D)$, $\Pi(z, \mu)$, $\text{cap}_G(K, D)$, $\text{cap}_m(K)$, $\text{cap}_m(D)$, $\text{cap}_m^e(E)$, $\text{cap}_m^i(E)$, $\text{cap}(K)$.

2.6 $M(x, r, u)$, $N(x, r, u)$, E^ε, $D^-\varepsilon$, $u_\varepsilon(x)$, K_R, $M(r, u)$, $\mu(r, u)$, $M(r, u)$, $N(r, u)$, $M(z)$.

2.7 $\tilde{u}(x)$, $\mu_x(t)$, $E(\alpha, \alpha', \varepsilon, \mu)$, E_{n, δ_0}.

2.8 $a(r)$, $\rho[a]$, $\sigma[a]$, $\rho(r)$, $\sigma[a, \rho(r)]$, $V(r)$, $L(r)$, $\delta S H(\mathbb{R}^m)$, $T(r, u)$, $\rho T[u]$, $\sigma_T[u]$, $\sigma_T[u, \rho(r)]$, $\rho_M[u]$, $\sigma_M[u]$, $\sigma_M[u, \rho(r)]$, $\rho[\mu]$, $\check{\Delta}[\mu]$, $\check{\Delta}[\mu, \rho(r)]$, $N(r, \mu)$, $\rho_N[\mu]$, $\delta M(\mathbb{R}^m)$.

2.9 $H(z, \cos \gamma, m)$, $G(x, y, \mathbb{R}^m)$, $D_k(x, y)$, $H(z, \cos \gamma, m, p)$, $G_p(x, y, m)$, $G_p(z, \zeta, 2)$, $\Pi(x, \mu, p)$, $\delta S H(\rho)$, $\Pi R_x(x, \nu, \rho - 1)$, $\Pi R_x(x, \nu, \rho)$, $\delta R(x, \nu, \rho)$, $\delta R(z, \nu, \rho)$, $\delta R(x, u, \rho)$, $M(r, \delta)$, $\Delta[\mu, \rho(r)]$, $\Omega[u, \rho(r)]$, $T(r, \lambda, >)$, $T(r, \lambda, <)$.

3.1 V_t, P_t, $S H(\mathbb{R}^m, \rho, \rho(r))$, $S H(\rho(r))$, $u_t(x)$, $\text{Fr}[u, \rho(r)]$, V_*, \mathbb{R}^m, $U[\rho, \sigma]$, $U[\rho]$, $U[\rho, \nu[t]]$, $M(\mathbb{R}^m, \rho(r))$, $\mu \in M(\rho(r))$, $\text{Fr}[\mu, \rho(r)]$, $\text{Fr}[\mu, \rho(r), V_*, \mathbb{R}^m]$, $\text{Fr}[\mu]$, $M[\rho, \Delta]$, $M[\rho], \nu[t]$.

3.2 $h(x, u)$, $h(x, u)$, $l_\omega(x)$, $x^0(x)$, T_ρ, $G_1(\phi, \psi)$, $\Pi_1(\phi, ds)$, TC_ρ, C_Ω.

3.3 $\bar{\Delta}(G, \mu)$, $\bar{\Delta}(E, \mu)$, $\check{\Delta}(K, \mu)$, $\check{\Delta}(E, \mu)$, $C_\Omega(I)$, $\bar{\Delta}^c(E)$, $\check{\Delta}^{\text{cl}}(E)$, $\Omega(E)$, $\Omega^c(\epsilon)$.

4.1 T^t, (T^*, M), $d(\bullet, \bullet)$, $\Omega(T^*)$, $C(m)$, $\Omega(m)$, $A(m)$, T_{iv}.
4.2 $U_0, \beta(x), b_0, k(s), R(x), Str(\delta), v(x|t), v(\bullet, t)$

4.3 $w(\bullet|t), w(\bullet|\bullet)$.

4.4 $u, (u)_t, Fr[u], U[p]$.

5.1 $M(r, f), T(r, f), \rho_T[f], \rho_M[f], \sigma_T[f, \rho(r)], \sigma_M[f, \rho(r)], n(K_r), n(r), \rho[n], \Delta[n], N(r, n), \rho_N[n], \Delta_N[n], p[n], Fr[f], Fr[n], Mer(\rho, \rho(r))$.

5.2 $\alpha - \text{mes} C, C_0^0, C_0^0$.

5.3 $\|g\|_p$.

5.4 $h_1(\phi, f), h_2(\phi, f), h(\phi, f)$.

5.5 $N(\delta, \chi), (\chi) \int f d\delta, (\chi) \int_F f d\delta, \delta(\Theta^F), D_{r, \Theta}, \delta_z(D_{r, \Theta}), A^{cl}(\delta, \chi\Theta)$.

5.7 $F(u), H(u), T(u), M(\alpha(u), M(u), I_{\alpha}(u), I(u, g), F[f], F[f], \chi H, \chi I, \chi_F, \chi_F')$.

5.8 $K_{S_1}, S_1, G(t, \gamma, \rho), \hat{G}(s, S_1 - S), (Fv)(s)$.

6.1 $H(z), m(z, v, H), G_H, D_H, U_{\text{ind}}, \hat{U}_{\text{ind}}$.

6.2 $T_\rho^T, D'(T_\rho^T), q(z), L_\rho, E_\rho(\bullet - \zeta), E'_\rho(\bullet - \zeta), q_D, G_\rho(z, \zeta, D), H_\rho(q)$.

6.3 $\Lambda, \Phi_\Lambda(\lambda), \exp \Lambda, A(G), h_\Lambda(\phi), G_\Lambda, \alpha G_1 + \beta G_2, \Theta_\Lambda, I_\Lambda, d_\Lambda, h_G(\phi), m(\lambda, G, v), H(\lambda), q_\Lambda(z), D(G, \Lambda), \rho(\Lambda, G), g_Gq, G_G, D_G, \text{MIN}, J_G(\Lambda), \text{HARM}, m(\phi, G, h), E(\phi)$.

Notation
List of Terms

2.1 upper semicontinuous regularization
upper semicontinuous function
lower semicontinuous function

2.2 measure
mass distribution
support of μ
μ is concentrated on $E \in \sigma(G)$
restriction of μ onto $F \in \sigma(G)$
charge
positive and negative, respectively, variations of ν
full variation of ν
variation
Borel function
restriction of μ on the set E
product of measures

2.3 linear space
topological space
linear continuous functional on \mathcal{D}
Schwartz distribution
Dirac delta-function
the nth derivative of the Dirac delta-function
regular distribution
positive distribution
product of a distribution f by
an infinitely differentiable function $\alpha(x)$
sum of distributions f_1 and f_2
partial derivative of distribution
sequence of distributions f_n converges to a distribution f
regularization of the distribution f
restriction of distribution $f \in \mathcal{D}'(G)$ to $G_1 \subset G$
fundamental solution of L at the point y

spherical operator

2.4 harmonic distribution
Lipschitz boundary, Lipschitz domain
harmonic measure
spherical function of a degree ρ
Green potential of μ relative to D
Newton potential
logarithmic potential

2.5 balayage, sweeping
Green capacity of the compact set K relative to the domain D
Wiener capacity
external and inner capacity of any set E
capacible set
logarithmic capacity
irregular point
equilibrium mass distribution
h-Hausdorff measure
Carleson measure

2.6 mean value of $u(x)$ on the sphere $S_{x,r} := \{ y : |y - x| = r \}$
subharmonic function
the least harmonic majorant of u in K
Riesz measure of the subharmonic function u

2.7 precompact family of functions
a sequence f_n of locally summable functions converges in L_{loc}
 quasi-everywhere convergence
a sequence of functions u_n converges to a function u relative to
α-Carleson measure
a point $x \in \mathbb{R}^m$ $(\alpha, \alpha', \epsilon)$-normal with respect to the measure μ

2.8 order of $a(r)$
type number of $a(r)$
a(r) of minimal type
a(r) of normal type
a(r) of maximal type
convergence exponent for the sequence $\{r_j\}$
a proximate order with respect to order ρ
equivalent proximate orders
type number with respect to a proximate order
proper proximate order
Nevanlinna characteristic
order of \(u(x)\) with respect to \(T(r)\)
characteristics \(\rho_M[u], \sigma_M[u], \sigma_M[u, \rho(r)]\)
convergence exponent of \(\mu\)
upper density of \(\mu\)
genus of \(\mu\)
\(N\)-order of \(\mu\)
\(N\)-type of \(\mu\)

2.9 Gegenbauer polynomials
Chebyshev polynomials
primary kernel
canonical potential
zero distribution
canonical Weierstrass product

3.1 limit set of the function \(u(x)\)
limit set of the mass distribution \(\mu\)

3.2 indicator of growth of \(u\)
lower indicator
\(\rho\)-subspherical function
\(\rho\)-trigonometrically convex (\(\rho\)-t.c.)
fundamental relation of indicator

3.3 upper (lower) density of \(\mu\)
subadditivity of \(\Delta(E, \bullet)\)
superadditivity of \(\Delta(E, \bullet)\)
semi-additivity
generalized semi-additivity
monotonic function of \(E \in \mathbb{R}^m\)
t-extension of \(E\)
to be dense in
angular densities

4.1 dynamical system
\((\epsilon, s)\)-chain from \(m\) to \(m'\)
chain recurrent dynamical system
non-wandering point
attractor
completely regular growth
polygonally connected set
periodic dynamical system
4.2 partition of unit

4.3 pseudo-trajectory
 asymptotically dynamical pseudo-trajectory
 with dynamical asymptotics T_\bullet (a.d.p.t.)
 piecewise continuous pseudo-trajectory $w(\bullet|\bullet)$
 ω-dense pseudo-trajectory

4.4 subharmonic curve

5.1 entire function of order ρ and normal type
 with respect to proximate order $\rho(r)$
 entire function with prescribed limit set
 meromorphic function of order ρ and normal type
 with respect to a proximate order $\rho(r)$

5.2 relative Carleson α-measure

5.3 lower indicator of entire function

5.4 maximal interval of ρ-trigonometricity
 strictly ρ-t.c.f.
 concordant h and g

5.5 upper density of zeros of entire function
 (\mathcal{X})-integral with respect to a nonnegative measure δ

5.6 completely regular growth function
 CRG-function
 regular zero distribution
 regular zero distribution with integer ρ
 completely regular growth functions
 along curves of regular rotation
 curve of regular rotation

5.7 growth characteristic
 continuity, positive homogeneity
 asymptotic characteristics of growth
 total family of growth characteristics
 non-rarefied set
 rarefied set
 thinly closed set
 independent family of characteristic
6.1 ideally complementing H-multiplicator
entire function is of minimal type
with respect to a proximate order $\rho(r), \rho(r) \to \rho$
limit set of indicators
the maximum principle for $U[\rho]$ is valid in the domain G

6.2 automorphic
connected on spirals
spectrum
strictly monotonic
minimal $v \in U[\rho]$

6.3 function of exponential type
completeness
maximality
extremal overcompleteness
maximal domain of completeness
extremely overcomplete system $\exp \Lambda$
trigonometrically convex function (t.c.f)
conjugate indicator diagram
regular set
G_Λ is enclosed in G
enclosed with sliding
enclosed hardly
enclosed freely
indicator limit set
indicator set
zero with tangency
Λ is periodic
$w \in U[1]$ is minimal
$U \subset U[1]$ is minimal
Bibliography

Giner, V.B., *On approximation limit sets of subharmonic and entire functions in \(\mathbb{C} \) by periodic limit sets*, Manuscript No. 1033-Ukr87 deposited at the UkrNIINTI (1987), (Russian).

[Oz] Ozawa, M., On an estimate for $\int_0^\infty m(t, E(-z,q))t^{-1} - \beta dt$, Kodai Math. J. 8 (1985), 33–35.

The workshops organized by the *Mathematisches Forschungsinstitut Oberwolfach* are intended to introduce students and young mathematicians to current fields of research. By means of these well-organized seminars, also scientists from other fields will be introduced to new mathematical ideas. The publication of these workshops in the series *Oberwolfach Seminars* (formerly *DMV seminar*) makes the material available to an even larger audience.

Discrete differential geometry is an active mathematical terrain where differential geometry and discrete geometry meet and interact. It provides discrete equivalents of the geometric notions and methods of differential geometry, such as notions of curvature and integrability for polyhedral surfaces. Current progress in this field is to a large extent stimulated by its relevance for computer graphics and mathematical physics. This collection of essays, which documents the main lectures of the 2004 Oberwolfach Seminar on the topic, as well as a number of additional contributions by key participants, gives a lively, multi-faceted introduction to this emerging field.

Topological K-theory is one of the most important invariants for noncommutative algebras. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. We describe a bivariant K-theory for bornological algebras, which provides a vast generalization of topological K-theory. In addition, we discuss other approaches to bivariant K-theories for operator algebras. As applications, we study K-theory of crossed products, the Baum-Connes assembly map, twisted K-theory with some of its applications, and some variants of the Atiyah-Singer Index Theorem.

Tropical geometry is algebraic geometry over the semifield of tropical numbers, i.e., the real numbers and negative infinity enhanced with the (max,+)-arithmetic. Geometrically, tropical varieties are much simpler than their classical counterparts. Yet they carry information about complex and real varieties. These notes present an introduction to tropical geometry and contain some applications of this rapidly developing and attractive subject. It consists of three chapters which complete each other and give a possibility for non-specialists to make the first steps in the subject which is not yet well represented in the literature. The intended audience is graduate, post-graduate, and Ph.D. students as well as established researchers in mathematics.

This series presents, at an advanced level, introductions to some of the fields of current interest in mathematics. Starting with basic concepts, fundamental results and techniques are covered, and important applications and new developments discussed. The textbooks are suitable as an introduction for students and non-specialists, and they can also be used as background material for advanced courses and seminars.

Azarin, V.
ISBN 978-3-7643-8885-0

Quittner, P. / Souplet, P.
This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The book is self-contained and up-to-date, it has a high didactic quality. It is devoted to problems that are intensively studied but have not been treated so far in depth in the book literature. The intended audience includes graduate and postgraduate students and researchers working in the field of partial differential equations and applied mathematics.
ISBN 978-3-7643-8441-8

Drábek, P. / Milota, J.
In this book, fundamental methods of nonlinear analysis are introduced, discussed and illustrated in straightforward examples. Every method considered is motivated and explained in its general form, but presented in an abstract framework as comprehensively as possible. Applications and generalizations are shown. In particular, a large number of methods is applied to boundary value problems for partial differential equations.

The text is structured in two levels: a self-contained basic level and an advanced level – organized in appendices – for the more experienced reader. It thus serves as both a textbook for graduate-level courses and a reference book for mathematicians, engineers and applied scientists.
ISBN 978-3-7643-8146-2

Krantz, S.G. / Parks, H.R.
A Primer of Real Analytic Functions (2002)
ISBN 978-0-8176-4264-8

DiBenedetto, E.
Real Analysis (2002).
ISBN 978-0-8176-4231-0

Estrada, R. / Kanwal, R.P.

Chipot, M.
ℓ goes to plus Infinity (2001).
ISBN 978-3-7643-6646-9

Sohr, H.
ISBN 978-3-7643-6545-5

Conlon, L.
ISBN 978-0-8176-4134-4

Chipot, M.
ISBN 978-3-7643-6406-9

Gracia-Bondia, J.M. / Varilly, J.C. / Figueroa,H.
Elements of Noncommutative Geometry (2000).