References

15. E. Volterra, E.C. Zachmanoglou, *Dynamics of Vibrations* (Charles E. Merrill Books Inc, Columbus, Ohio, 1965)
References

29. 3rd International Congress on Intensity Techniques (CETIM, Senlis, France, 1990)
30. 4th International Congress on Intensity Techniques (CETIM, Senlis, France, 1993)
46. SWEDAC Product Catalogue, (Göteborg, Sweden, 1990)
50. L. Feng, A. Nilsson, Characterisation methods and ranking of mechanical joints. ISMA 25, Leuven, Belgium, 2000
52. M. Åbom, Measurement of the scattering-matrix of acoustical two-ports. Inter-Noise 90 (1990)
54. L. Feng, Vibration reduction through joints in finite systems. *Inter-Noise 98*, Auckland, 1998
Index

A
Absorption, junction, 203
Angular frequency
- complex, 219
Antiphase motion
- plate, 125
Attenuation
- F-waves (beams), 158
- L-waves (beams), 153
Auto correlation function, 36
- harmonic signal, 37
- random signal, 36

B
Beam
- bending moment, 91
- bending stiffness, 91
- Bernoulli-Euler, 89
- flexural waves, 89
- I-beam, 146
- longitudinal waves, 82
- moment of inertia, 90
- neutral axis, 90, 174
- point excited, 264
- sandwich, 138
- strain, 75
- Timoshenko, 121
- thick, 132
Bending
- I-beams, 146
- sandwich beams, 146
- thick beam, 121
Bending of plate
- boundary conditions, 103
- isotropic, 99
- orthotropic, 105
- strain, 100
- thick, 132
Bending stiffness
- apparent, 145
- beam, 90
- complex, 122, 159
- plate, 101
- plate and layer, 174
- plate, constrained, 179
- sandwich, 144
Bending waves. See Flexural waves
Bernoulli-Euler beam. See Euler beam
Bessel function, 162
Bessel inequality, 229
Boundary conditions
- bending, beam, 252
- bending, plate, 103
- closed-, 252
- L-waves, beam, 218
Bulk modulus, 73

C
Characteristic frequency, 8
Clamped edge, beam
- F-waves, 158
- L-waves, 153
Coherence function, 44
Completeness relation, 229
Complex E-modulus, 155
Complex notation, 25
Composite structure, 292
Contour integration, 50
Convolution integral, 13, 33
Correction, L-waves, 136
Correlation function, 36
Coupling
Index

-F- and L-waves, 182
-L- and T-waves, 123
Critically damped motion, 7
Cross correlation function, 37
Curvature, plate, 338

D
Damped oscillatory motion, 6
Damping, added, 153
Density, 80
Dirac pulse/function, 11, 33, 223
Dispersion, thick plate
- bending, 126
- longitudinal waves, 126, 134
Dispersive waves, 92
Displacement, solids, 75
Divergence free, 113

E
Eigenfrequency
- F-waves, beam, 261
- F-waves, plate, 303, 327, 328, 356
- L-waves, beam, 218
- plate, curvature, 338
Eigenfunctions
- F-waves, beam, 260
- F-waves, plate, 299
- L-waves, beam, 308
- norm, 260
- orthogonal, 215
- orthonormal, 215
Eigenvalue
- F-waves, beam, 260
- F-waves, plate, 299
- L-waves, beam, 218
Elastic interlayer, 198, 199
E-modulus, See Young’s modulus
- complex, 109
Energy
- decay, 28, 222, 304
- time average, 45
Energy flow, 56, 107, 319
Equi-partition of energy, 233, 312
Euler beam, 89
Euler constant, 163
Evanescent waves, 92
Expected value, 36

F
Flexural waves, beams, 260
- displacement, 251
- eigenfunctions, 257
- eigenvalue, 256
- energy flow, 94
- group velocity, 92
- intensity, 108
- kinetic energy, 93
- phase velocity, 92
- potential energy, 93
- wavenumber, 92
- wave equation, 92
Flexural waves, plates, 99
- eigenfunctions, 292, 297
Floating floor, 347
Floquet theorem, 282
Forced response
- 1-DOF system, 22
- F-waves, beams, 261
- F-waves, plate, 306
- L-waves, beams, 223
- periodic structure, 285
Form factor, T-waves, 83
Fourier series, 23
Fourier transform
- spatial, 166
- temporal, 31
Free end, beam
- F-waves, 253
- L-waves, 218
Free vibrations
- 1-DOF system, 4
Frequency Response Function, 34, 50, 157

G
Generalized wave equation, 111
Green’s function, 264
- F-waves, beam, 264
- F-waves, plate, 309
- L-waves, beam, 223
Group velocity, 92, 132

H
Half band frequency method, 58
Hankel function, 163
Harmonic excitation, 25
Heavily damped system, 7
Hooke’s generalized law, 72
Hooke’s law, 68

I
Impedance, 118
Inphase motion, 125
Intensity
- flexural waves, 127
- infinite solids, 69, 114
- longitudinal waves, 82
- thick plates, 131
- transverse waves, 79
Irrotational field, 112

K
Kelvin Voigt model, 76
Kinetic energy
- 1-DOF system, 8
- flexural waves, 92
- in solid, 75
- longitudinal waves, 250
- plate, bending, 105
- random excitation, 47
- time, average, 40
- transverse waves, 79
Kirchhoff plate, 99
Kronecker delta, 215

L
Lamé constant, 73
Locally reacting, 292
Longitudinal waves, 82
- correction, 136
- finite beam, 213
- free vibration, beam, 213
- intensity, 82
- kinetic energy, 85
- phase velocity, 84
- potential energy, 85
- quasi, 84
- wave equation, 81, 111
Losses
- Coulomb/frictional, 2
- hysteretic, 2, 4
- solids, 75
- structural, 3
- viscous, 2
Loss factor
- constrained layer, 179
- complex, spring, 28
- internal, 75
- junctions, 201
- measurements of, 56
- plate, damped, 173
- sandwich plate, 178
- spacer, 175
- structures, 199, 238
- total, 178

M
Mass–spring system, 1
Maximum displacement, 18
Maxwell model, 76
Memory function, 75
Mindlin plate, 123
Mineral wool, 348
Modal density
- F-waves, beam, 260
- F-waves, plate, 306
- L-waves, beam, 220
Modal force, 271, 312
Modal loss factor, 269, 313
Modal mass, 269, 312
Modal stiffness, 269, 312
Mode summation, 228, 268
Modes, plate, 325, 330
Moment of inertia, 86, 87
- beam, 91
- plate, 103
Moment, bending beam, 91
Moment, bending plate, 102

N
Natural frequency, 21, 326
Neumann function, 162
Neutral axis, bending, 140, 174
Non-oscillatory motion, 8
Norm, eigenfunctions, 260
Normal stress
- thick plates, 127
Nyquist diagram, 52

O
Orthogonal eigenfunctions, 215, 260
Orthonormal eigenfunctions, 215
Orthotropic plate, 105

P
Periodic boundary conditions, 217
Periodic force, 19
Periodic structure, 282
Perturbation, 341, 344
Phase angle, 8, 52, 54
- mobility, 54
- response, 20, 52
Phase velocity, 79
- flexural waves, 92, 132
Index

- longitudinal waves, 84
- transverse waves, 84

Plate
- added mass, 340
- bending stiffness, 103
- boundary condition, 103
- circular, 354
- clamped edges, 103, 329
- eigenfrequency, 304
- eigenfunctions, 301
- flexural waves, 99
- free edges, 329
- isotropic, 99
- moment of inertia, 104
- non-flat, 338
- orthotropic, 353
- point excited, 162
- ribbed, 331
- sandwich, 138
- simply-supported, 303
- stiffened, 335
- thick, 121

Point mobility
- 1-DOF system, 51
- beam, F-waves, 158, 268
- beam, L-waves, 156
- plate, F-waves, 158, 315

Poisson's ratio, 68, 79

Potential
- scalar, 112
- vector, 112

Potential energy, 73
- 1-DOF system, 8
- bending, 104
- flexural waves, 92
- in solid, 67, 114
- longitudinal waves, 84
- random excitation, 110
- time average, 45
- transverse waves, 81

Power
- 1-DOF system, 22
- time average, 22

Power spectral density
- examples, 40
- one sided, 39
- two sided, 40

Pulse excitation, 14

Q
Quasi-longitudinal waves, 84, 134

R
Radius of curvature, 89
Rain on the roof, 312
Random forces, 278
Random function, 31
- ergodic, 31
- stationary, 31
Rayleigh method, 326
Rayleigh–Ritz method, 326
Rayleigh waves, 135
- phase velocity, 132
- wavenumber, 131
Reciprocity, 226, 309
Reflection
- coefficient, 185
- L-waves, 118
- T-waves, 118
Reinforced plate, 146
Relaxation function, 75
Resilient layer, 251
Resonance
- double construction, 295
Response, 1-DOF, 60
Reverberation time, 58
Rod, 240
Rotation, angle of, 85
Rotation free field, 112
Rubber element, 77, 241

S
Sandwich plate, 138
- bending, 139
- bending stiffness, 145
- dilatation frequency, 145
- losses, 179
- wavenumbers, 141
Scalar potential, 112
Shape/form function, 87
Shear force, plate, 70
Shear modulus, 70, 73, 106
- plexiglas, 77
- rubber, 77
Shear parameters, 73, 178
Shear stress
- bending plate, 127
- thick plate, 131
Simply supported
- F-waves beam, 260
Sliding edge, 303
Spacer, 175
Spectral density, 38
- cross, 37
Index

-one-sided, 40
-power, 40
-two-sided, 41
Spring constant, 1
Standard linear model, 76
Static deflection
-mass-spring system, 1
Strain, 67
-bending, beam, 89
-bending, plate, 99
-infinite body, 70
-thin beam, 69
-thin plate, 69
Stress, 67
-bending beam, 101
-infinite body, 70
-thin beam, 70
-thin plate, 69
String, 87

T
Timoshenko beam, 122
Timoshenko constant, 122
Torsional rigidity, 107
Torsional waves, 85
Transfer function. See Frequency response function
Transfer matrix, F-waves, 278
Transfer matrix, L-waves, 244
-mass, 246
-spring, 246
Transfer mobility
-beam, 237
-plate, 316
Transient vibrations
-1-DOF system, 11
Transmissibility, 244
Transmission coefficient, 185, 191, 201, 206
Transmission loss, 199
-elastic interlayer, 198
-junctions, 186, 193
-measurements, 202
-rib, 199
Transverse waves, 79
-intensity, 82
-kinetic energy, 81
-phase velocity, 81
-potential energy, 81
-wave equation, 81, 111
Trial function, 326, 328

V
Vector potential, 113
Viscoelastic layers, 179
-constrained, 179

W
Wave equation
-F-waves, beams, 90
-F-waves, plates, 101, 354
-L-waves, 82, 111
-string, 87
-T-waves, 79, 111
torsional waves, 85
Wavenumber
-complex, F-waves, 158
-complex, L-waves, 153
-error, 127, 134
-flexural waves, 92, 93
-longitudinal waves, 82
-Rayleigh waves, 130
-thick plate, 131
-Timoshenko beam, 129
transverse waves, 82
White noise, 47
-band pass, 43
-low pass, 43

Y
Young’s modulus, 68, 79