Glossary

Acronyms

- LCMP: Linearly constrained minimum power
- LCMV: Linearly constrained minimum variance
- MPDR: Minimum power distortionless response
- MVDR: Minimum variance distortionless response
- QCQP: Quadratically-constrained quadratic program
- SNR: Signal-to-noise ratio
- SOCP: Second-order cone programming
- WNG: White noise gain

Mathematical operators

- $\| \cdot \|$: 2-norm
- $(\cdot)^*$: Complex conjugate
- $(\cdot)^T$: Transpose
- $(\cdot)^H$: Hermitian or complex transpose
- $(\cdot)^\dagger$: Pseudo matrix inverse
- $(\cdot)!$: Factorial
- ∇: Gradient
- ∇^2: Laplacian in Cartesian coordinates
- ∇^2_r: Laplacian in spherical coordinates
- $E[\cdot]$: Expectation
- $Im\{\cdot\}$: Imaginary part
- $\kappa(\cdot)$: Condition number of a matrix
- $Re\{\cdot\}$: Real part
- $\Lambda(\cdot)$: Rotation operator

Greek symbols

- α_q, α_q^{nm}: Sampling weights
- α: Vector of sampling weights
δ_{nm}, δ_{n}
Kronecker delta function

δ(·)
Dirac delta function

θ
Elevation angle

φ
Azimuth angle

Ω
Solid angle

Symbols

\(a(·)\)
Plane-wave decomposition in the space domain

\(a_{nm}\)
Plane-wave decomposition in the spherical-harmonics domain

\(b_{n}(·)\)
Function relating pressure to plane-wave decomposition

\(DF\)
Directivity factor

\(DI\)
Directivity index

\(d_{n}\)
Axis-symmetric beamforming weighting function

\(d_{nm}^{n}(·)\)
Wigner-d function

\(D_{nm}^{n}(·)\)
Wigner-D function

\(d_{n}\)
Axis-symmetric beamforming weighting vector

\(F\)
Front-back ratio

\(h_{n}(·)\)
Spherical Hankel function of the first kind

\(h_{n}^{(2)}(·)\)
Spherical Hankel function of the second kind

\(I\)
Unit matrix

\(j_{n}(·)\)
Spherical Bessel function of the first kind

\(k\)
Wave number

\(\tilde{k}\)
Wave vector denoting arrival direction

\(k\)
Wave vector denoting propagation direction

\(L_{2}(·)\)
Space of square-integrable functions

\(N\)
Order of spherical harmonics

\(\mathbb{N}\)
Set of all natural numbers

\(n\)
Noise vector in the space domain

\(n_{nm}\)
Noise vector in the spherical harmonics domain

\(P_{n}(·)\)
Legendre polynomial

\(P_{n}^{m}(·)\)
Associated Legendre function

\(p\)
Sound pressure in the space domain

\(p_{nm}\)
Sound pressure in the spherical-harmonics domain

\(p\)
Sound pressure vector

\(p_{nm}\)
Sound pressure vector in the spherical-harmonics domain

\(Q\)
Number of samples or microphones

\(\mathbb{R}\)
One-dimensional space of real numbers

\(\mathbb{R}^{3}\)
Three-dimensional space of real numbers

\(r\)
Vector of spherical coordinates

\(R_{y}\)
Euler rotation matrix for rotations about the y axis

\(R_{z}\)
Euler rotation matrix for rotations about the z axis

\(S^{2}\)
Unit sphere

\(S\)
Spherical Fourier transform matrix

\(S_{xx}\)
Cross-spectrum matrix in the space domain
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{xnm}x_{nm}$</td>
<td>Cross-spectrum matrix in the spherical-harmonics domain</td>
</tr>
<tr>
<td>S_{nn}</td>
<td>Noise cross-spectrum matrix in the space domain</td>
</tr>
<tr>
<td>S_{nmmnm}</td>
<td>Noise cross-spectrum matrix in the spherical-harmonics domain</td>
</tr>
<tr>
<td>$T_M(\cdot)$</td>
<td>Chebyshev polynomial</td>
</tr>
<tr>
<td>v</td>
<td>Steering vector in the space domain</td>
</tr>
<tr>
<td>v_{nm}</td>
<td>Steering vector in the spherical-harmonics domain</td>
</tr>
<tr>
<td>WNG</td>
<td>White noise gain</td>
</tr>
<tr>
<td>$w(\cdot)$</td>
<td>Beamforming weighting function in the space domain</td>
</tr>
<tr>
<td>w_{nm}</td>
<td>Beamforming weighting function in the spherical-harmonics domain</td>
</tr>
<tr>
<td>w</td>
<td>Beamforming weighting vector in the space domain</td>
</tr>
<tr>
<td>w_{nm}</td>
<td>Beamforming weighting vector in the spherical-harmonics domain</td>
</tr>
<tr>
<td>$y_n(\cdot)$</td>
<td>Spherical Bessel function of the second kind</td>
</tr>
<tr>
<td>$Y_m(\cdot)$</td>
<td>Spherical harmonics</td>
</tr>
<tr>
<td>Y</td>
<td>Matrix of spherical harmonics</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>Set of all integers</td>
</tr>
</tbody>
</table>
References

1. Spherical harmonics, low order differentiation with respect to θ (2013). http://functions.wolfram.com/05.10.20.0001.01
Index

A
Aliasing, 62, 73–77, 80–82, 89, 94–97, 99, 103, 117–119, 128, 133
Associated Legendre differential equation, 33
Associated Legendre function, 4, 7, 9, 12–15, 33, 62

B
Bessel function, spherical Bessel function, 34–38, 41, 46, 53, 54, 80, 82, 83
zeros, 37, 44, 49, 50, 79, 80, 82–85, 87–90, 93–95, 99, 135

C
Cartesian coordinate, 1, 2, 4, 25, 27, 29, 31, 32, 38
Chebyshev polynomial, 142–145
Concentric spheres, 79, 87, 95, 99
Condition number, 92–97
Convolution, 1, 28, 29, 63

D
Delay and sum, 101, 114, 115, 132, 133, 162
Derivative constraint, 170, 176–182
Diffuse sound, 109, 135, 136, 142, 155, 157, 159, 160, 163, 171
Directivity, 85, 86, 103, 109–111, 126, 128, 135, 139, 148
factor, 109, 110, 125, 127–129, 138, 139, 152, 153

E
Equal-angle sampling, 57, 59, 60, 62–65, 68, 71, 72, 74–77, 93, 94, 106, 118, 157
Euler angles, 24, 25, 121

F
Front-back ratio, 140, 141

G
Gaussian sampling, 57, 64, 65, 68, 71, 72, 74–77, 81, 89, 93, 94, 106

H
Hankel function, spherical Hankel function, 31, 34–38, 46, 48, 54
Helmholtz equation, 32–34
Hemispherical array, 79, 99
Hermitian marix, 131, 148
Hilbert space, 1, 16, 20
Hyper-cardioid, 128, 129
<table>
<thead>
<tr>
<th>Index</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Isotropic noise, 109, 135, 136</td>
</tr>
<tr>
<td>L</td>
<td>Lagrange multiplier, 126, 129, 170</td>
</tr>
<tr>
<td></td>
<td>Laplacian, 31, 32</td>
</tr>
<tr>
<td></td>
<td>Legendre polynomial, 9, 12–16, 23, 128, 140, 144, 145, 177</td>
</tr>
<tr>
<td></td>
<td>Linearly constrained minimum power, 171</td>
</tr>
<tr>
<td>M</td>
<td>Main lobe, 121, 128, 142–144, 146, 147, 149, 164, 170, 174–176, 179–181</td>
</tr>
<tr>
<td></td>
<td>Manifold vector, 103</td>
</tr>
<tr>
<td></td>
<td>Microphone cardioid, 85–87, 90, 92, 93, 95, 96, 99 mismatch, 81, 93 pressure, 79–81, 85–87, 90, 93, 103, 109, 111</td>
</tr>
<tr>
<td></td>
<td>Minimum power distortionless response, 161</td>
</tr>
<tr>
<td></td>
<td>Minimum variance distortionless response, 155, 160–167, 169, 171, 172</td>
</tr>
<tr>
<td>N</td>
<td>Null constraint, 170, 172–176, 178–181</td>
</tr>
<tr>
<td>P</td>
<td>Perturbation, 92, 93</td>
</tr>
<tr>
<td></td>
<td>Platonic solids, 65–67</td>
</tr>
<tr>
<td></td>
<td>Point source, 31, 34, 45–48, 53</td>
</tr>
<tr>
<td>Q</td>
<td>Quadratically-constrained quadratic program, 148</td>
</tr>
<tr>
<td></td>
<td>Quadrature, 58, 63, 65, 71</td>
</tr>
<tr>
<td>R</td>
<td>Rank, 92, 94, 130, 157, 161</td>
</tr>
<tr>
<td></td>
<td>Rayleigh formula, 34</td>
</tr>
<tr>
<td></td>
<td>Rayleigh quotient, 112, 141 generalized, 109, 112, 130</td>
</tr>
<tr>
<td></td>
<td>Rayleigh resolution, 128, 129</td>
</tr>
<tr>
<td></td>
<td>Regular beamformer, 116</td>
</tr>
<tr>
<td></td>
<td>Robustness, 72, 87, 90, 92, 93, 97–99, 111, 114, 115, 125, 130, 132, 135, 139, 148, 170, 180</td>
</tr>
<tr>
<td></td>
<td>Rotation, 24–30, 64, 121, 122</td>
</tr>
<tr>
<td>S</td>
<td>Sampling weights, 58, 59, 66–72, 74, 77, 80, 90</td>
</tr>
<tr>
<td></td>
<td>Second-order cone programming, 148</td>
</tr>
<tr>
<td></td>
<td>Side lobe, 125, 128, 142–144, 146, 147, 149, 150, 152, 153, 165, 182</td>
</tr>
<tr>
<td></td>
<td>Spatial resolution, 81, 128, 129</td>
</tr>
<tr>
<td></td>
<td>Spherical Bessel equation, 34</td>
</tr>
<tr>
<td></td>
<td>Spherical cap, 22–24, 27, 28</td>
</tr>
<tr>
<td></td>
<td>Spherical coordinate, 1–3, 29, 31, 32, 34, 38, 47, 48, 52</td>
</tr>
<tr>
<td></td>
<td>Spherical harmonics addition theorem, 12, 21, 39, 108, 110, 113, 137, 163 completeness, 12, 17 complex conjugate, 7, 18, 20, 121 definition, 4, 5, 60, 176</td>
</tr>
</tbody>
</table>
Index

derivative, 177
illustration, 6, 8, 9
orthogonality, 11–13, 17, 21, 58, 63, 72,
103, 109, 110, 112, 136, 159
symmetry, 9, 10, 20
zeros, 7
Spherical shell, 93, 96–99
Spindle torus, 99
Steering, 101, 108, 121, 122
matrix, 172–174
vector, 103, 105, 106, 108, 111, 126, 132,
138, 161, 162, 164, 170–173, 176, 177

T
T-design, 66–68, 116
Translation, 31, 52, 53

U
Uniform sampling, nearly-uniform sampling, 57, 65, 67, 68, 71–75, 77, 93–
96, 106, 112, 113, 117, 131, 133–135,
137–139, 149, 151, 152, 159, 163,
164, 166, 171

V
Velocity, 47

W
Wave equation, 31–35, 38, 46
Wave number, 32, 42, 80, 81, 88–90, 94, 102,
116, 118, 156, 158
Wave vector, 32, 38, 86
White noise gain, 101, 111–113, 130, 132–
135, 138, 139, 148, 152, 153
maximum, 114, 125, 130–135, 138, 139,
147, 148, 152, 162–164
Wigner 3-j symbol, 54
Wigner-D function, 26, 122