Appendix

Collected Color Plates
Color Plate 1. The first component of the flux $a(x/\varepsilon)\nabla u^\varepsilon$ obtained by the generalized FEM based on oversampling (top) and by scale resolution (bottom); $\hat{Q} = (0, 2\pi)^2$, $\varepsilon = 1/(40\pi)$. (See Fig. 7 on page 227.)
Color Plate 2. The second component of the flux $a(x/\varepsilon)\nabla u^\varepsilon$ obtained by the generalized FEM based on oversampling (top) and by direct FEM computation (bottom); $\hat{Q} = (0,2\pi)^2$, $\varepsilon = 1/(40\pi)$. (See Fig. 8 on page 228.)
Color Plate 3. The numerical solutions obtained by the generalized FEM based on oversampling (top) and by direct FEM computation (bottom); $\tilde{Q} = (0, 2\pi)^2, \epsilon = 1/(40\pi)$. (See Fig. 9 on page 229.)
Color Plate 4. Multiresolution median transform of NGC2997. (See Fig. 4 on page 251.)

Color Plate 5. Comparison between the “a trous” wavelet transform (left) and the multiresolution transform (right) of the above signal. Resolution scale is represented versus time. We note the separation between the source and the glitch is improved using the MMT. (See Fig. 6 on page 252.)
Color Plate 6. (a) galaxy NGC2997, (b) objects detected from scale 1 to 2, (c) objects detected from scale 3 to 6, and (d) difference between (a) and (b). (See Fig. 11 on page 266.)
Color Plate 7. 4-contact configuration: High Resolution numerical approximation to the density obtained with the Multilevel-Marquina scheme. (a) and (b) $t = 0.8$, (c) and (d) $t = 1$. (a) and (c) 512×512 mesh-points, (b) and (c) 1024×1024 mesh-points. (See Fig. 4 on page 292.)
Color Plate 8. Two dimensional tensor product $\eta_{\gamma,\delta}(x)\eta_{\gamma,\delta}(y)$ with $\gamma = 0.05$ and $\delta = 0.5$. (See Fig. 2 on page 327.)
Color Plate 9. $\widetilde{F}_H^{1}(u_h)$, $\overline{F}_H^{1}(u_h)$ and \widetilde{F}_q^{1}. (See Fig. 3 on page 328.)

Color Plate 10. Extrapolated modeling residual \tilde{F}_h. (See Fig. 4 on page 328.)
Color Plate 11. A visualization of the geometry and electrical current flow in a model of the human thorax for a single time step in the cardiac cycle. (See Fig. 1 on page 333.)
Editorial Policy

§1. Volumes in the following four categories will be published in LNCSE:

i) Research monographs
ii) Lecture and seminar notes
iii) Conference proceedings
iv) Textbooks

Those considering a book which might be suitable for the series are strongly advised to contact the publisher or the series editors at an early stage.

§2. Categories i) and ii). These categories will be emphasized by Lecture Notes in Computational Science and Engineering. Submissions by interdisciplinary teams of authors are encouraged. The goal is to report new developments quickly, informally, and in a way that will make them accessible to non-specialists. In the evaluation of submissions, timeliness of the work is an important criterion. Texts should be well-rounded, well-written, and reasonably self-contained. In most cases, the work will contain results of others as well as those of the author(s). In each case, the author(s) should provide sufficient motivation, examples, and applications. In this respect, Ph.D. theses will usually be deemed unsuitable for the Lecture Notes series. Proposals for volumes in these categories should be submitted either to one of the series editors or to Springer-Verlag, Heidelberg, and will be refereed. A provisional judgment on the acceptability of a project can be based on partial information about the work: a detailed outline describing the contents of each chapter, the estimated length, a bibliography, and one or two sample chapters – or a first draft. A final decision whether to accept will rest on an evaluation of the completed work which should include

- at least 100 pages of text;
- a table of contents;
- an informative introduction perhaps with some historical remarks which should be accessible to readers unfamiliar with the topic treated;
- a subject index.

§3. Category iii). Conference proceedings will be considered for publication provided that they are of exceptional interest and devoted to a single topic. One (or more) expert participants will act as the scientific editor(s) of the volume. They select the papers which are suitable for inclusion and have them individually refereed as for a journal. Papers not closely related to the central topic are to be excluded. Organizers should contact Lecture Notes in Computational Science and Engineering at the planning stage.

In exceptional cases, some other multi-author-volumes may be considered in this category.

§4. Category iv) Textbooks on topics in the field of computational science and engineering will be considered. They should be written for courses in CSE education. Both graduate and undergraduate level are appropriate. Multidisciplinary topics are especially welcome.

§5. Format. Only works in English are considered. They should be submitted in camera-ready form according to Springer-Verlag's specifications. Electronic material can be included if appropriate. Please contact the publisher. Technical instructions and/or LaTeX macros are available via http://www.springer.de/author/latex/help-tex.html; the name of the macro package is “LNCSE – LaTeX2e class for Lecture Notes in Computational Science and Engineering”. The macros can also be sent on request.
General Remarks

Lecture Notes are printed by photo-offset from the master-copy delivered in camera-ready form by the authors. For this purpose Springer-Verlag provides technical instructions for the preparation of manuscripts. See also Editorial Policy.

Careful preparation of manuscripts will help keep production time short and ensure a satisfactory appearance of the finished book. The actual production of a Lecture Notes volume normally takes approximately 12 weeks.

The following terms and conditions hold:

Categories i), ii), and iii):
Authors receive 50 free copies of their book. No royalty is paid. Commitment to publish is made by letter of intent rather than by signing a formal contract. Springer-Verlag secures the copyright for each volume.

For conference proceedings, editors receive a total of 50 free copies of their volume for distribution to the contributing authors.

Category iv):
Regarding free copies and royalties, the standard terms for Springer mathematics monographs and textbooks hold. Please write to Peters@springer.de for details. The standard contracts are used for publishing agreements.

All categories:
Authors are entitled to purchase further copies of their book and other Springer mathematics books for their personal use, at a discount of 33.3 % directly from Springer-Verlag.

Addresses:

Professor M. Griebel
Institut für Angewandte Mathematik
der Universität Bonn
Wegelerstr. 6
D-53115 Bonn, Germany
e-mail: griebel@iam.uni-bonn.de

Professor D. E. Keyes
Computer Science Department
Old Dominion University
Norfolk, VA 23529-0162, USA
e-mail: keyes@cs.odu.edu

Professor R. M. Nieminen
Laboratory of Physics
Helsinki University of Technology
02150 Espoo, Finland
e-mail: rni@fyslab.hut.fi

Professor D. Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
e-mail: dirk.roose@cs.kuleuven.ac.be

Professor T. Schlick
Department of Chemistry and
Courant Institute of Mathematical Sciences
New York University
and Howard Hughes Medical Institute
251 Mercer Street, Rm 509
New York, NY 10012-1548, USA
e-mail: schlick@nyu.edu

Springer-Verlag, Mathematics Editorial
Tiergartenstrasse 17
D-69121 Heidelberg, Germany
Tel.: *49 (6221) 487-185
e-mail: peters@springer.de
http://www.springer.de/math/
peters.html
Lecture Notes in Computational Science and Engineering

For further information on these books please have a look at our mathematics catalogue at the following URL: http://www.springer.de/math/index.html