Appendix A
Enzyme Kinetics

As a catalyst, an enzyme accelerates the reaction of a substrate but does not affect equilibrium. The increase in the substrate concentration results in increasing the rate of the reaction estimated by the accumulation of the final product. Contrary to common chemical reactions, the rate of the enzymatic process reaches saturation, indicating a complicated mechanism of the conversion. Numerous investigations and discussions about possible mechanisms ended at the turn of the nineteenth and twentieth centuries when the German biochemist L. Michaelis and the Canadian physician M. Menten suggested the simplest empirical description of the dependence of the rate of an enzymatic reaction on the substrate concentration for invertase. Later on, in 1925, the integral form of the Eq. (A.1) was suggested (Keleti 1986).

\[E + S \xrightleftharpoons[k_{-1}]{k_1} ES \xrightarrow{k_2} E + P \] \hspace{1cm} (A.1)

\(E, S \) and \(P \) denote free enzyme, substrate and product molecules, respectively. The \(k_i \) are the rate constants of the elemental steps of the reaction. The rate of the formation of the product \(P \) of reaction (A.1) is expressed by the Michaelis–Menten Eq. (A.2).

\[v = \frac{dc_P}{dt} = \frac{v_{\text{max}}c_S}{K_m + c_S} \] \hspace{1cm} (A.2)

The reaction rate \(v \) is commonly determined as a slope of a tangent line drawn to the kinetic curve \(c_S (c_P) - t \) at the reaction beginning \((t = 0) \) (Fig. A.1).

The Eq. (A.2) follows from the steady-state assumption where the rate of the \(ES \) complex formation is equal to its conversion, so that the concentration of the enzyme-substrate complex remains about constant and time-independent. For general reaction (A.1), rearrangement yields an expression (A.3) for Michaelis constant \(K_m \) (so-called Briggs-Haldane conditions).

\[K_m = \frac{k_{-1} + k_2}{k_1} \] \hspace{1cm} (A.3)
If the total enzyme reaction is limited by the breakdown of the ES complex ($k_{-1} \gg k_2$, Michaelis–Menten conditions), the K_m is equal to the dissociation constant K_S of the enzyme-substrate complex. The K_m corresponds also to the substrate concentration giving the reaction rate equal to half of its maximal value ($v = 1/2v_{max}$). In homogeneous conditions, K_m is an upper limit of the substrate concentration that can be determined from the linear piece of calibration curve in v–C_S plots.

The Eq. (A.2) can be simplified by the assumption of $K_m \gg C_S$. The rate of an enzymatic reaction linearly depends on the substrate concentration in the range of its low values (A.4).

$$v \approx \frac{v_{max}C_S}{K_m} = \frac{v_{max}}{K_m}C_S$$

(A.4)

This makes it possible to determine the substrate concentration by the rate of its conversion.

The Eq. (A.2) gives a hyperbolic shape of the reaction curve (Fig. A.2), which coincides well enough with most experimental data. The Eq. (A.2) is often transformed to obtain a linear dependence of the experimental parameters that simplify the calculation of the main kinetic parameters of the reaction.

Fig. A.1 Kinetic curve of the accumulation of the product P of enzymatic reaction

Fig. A.2 The graphs corresponding to the Michaelis–Menten kinetics and its graphical representation on a double reciprocal plot
A double reciprocal plot (Line weaver-Burk plot) is most often used for both the graphical representation of enzyme kinetics and their quantification. Though rather popular, the Line weaver-Burk plot does not provide the most accurate estimation of the K_m and v_{max} values because of the non-linear transformation of experimental data. Instead, some other approaches can be recommended, e.g., Eadie-Hofstee or Hanes-Wolf plots. In all these methods, the kinetic parameters are determined by the x- and y-intercepts and the slope of the linear piece of the curve. These values are presented in Table A.1.

In addition to steady-state kinetics, the K_m value can be derived from the progress curve indicating temporal changes of the substrate concentration. In this case, the Eq. (A.2) is transformed to (A.5), or, in an integral form, to (A.6).

$$v = -\frac{dc_S}{dt} = \frac{v_{\text{max}}c_S}{K_m + c_S} \quad \text{(A.5)}$$

$$K_m \ln \frac{c_S^0}{c_S} + \left(c_S^0 - c_S^t \right) = v_{\text{max}}t, \quad \text{(A.6)}$$

in which c_S^0 and c_S^t are the substrate concentration at the time points 0 (zero) and t, respectively. For graphical presentation, the Eq. (A.6) is rearranged into (A.7) (Taylor 2002).

$$\frac{1}{t} \ln \frac{c_S^0}{c_S^t} = \left(\frac{c_S^0 - c_S^t}{K_m t} \right) + \frac{v_{\text{max}}}{K_m}, \quad \text{(A.7)}$$

Table A.1 Linearization of the experimental data and determination of kinetic parameters of the enzyme reaction

<table>
<thead>
<tr>
<th>Method</th>
<th>Linearization equation</th>
<th>Slope</th>
<th>Axes intercepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineweaver-Burk plot</td>
<td>$\frac{1}{c_S} - \frac{1}{v_{\text{max}}}$</td>
<td>K_m</td>
<td>$\frac{1}{v_{\text{max}}}$</td>
</tr>
<tr>
<td>Eadie-Hofstee plot</td>
<td>$\frac{1}{v} - \frac{v}{c_S}$</td>
<td>$-\frac{1}{K_m}$</td>
<td>v_{max}</td>
</tr>
<tr>
<td>Hanes-Wolf plot</td>
<td>$c_S - c_S^t$</td>
<td>$\frac{1}{v_{\text{max}}}$</td>
<td>$-K_m$</td>
</tr>
</tbody>
</table>

![Fig. A.3 Determination of kinetic parameters v_{max} and K_m from a progressive curve](image)
The kinetic parameters of the reaction are determined from the straight line in the plots $t^{-1} \ln \left(\frac{c_0^n}{c_S^n} \right)$ versus $\frac{[c_0^n - c_S^n]}{t}$ (Fig. A.3).

All the equations describing the Michaelis–Menten kinetics are based on the simplest scheme of the reaction with a single substrate and a single active site in the enzyme molecule that interact in the 1:1 ratio. Multi-substrate reactions, as well as allosteric enzymes, often exhibit a formally similar behavior, at least within a limited range of substrate concentration. This allows calculating the kinetic parameters called an effective (or experimental) Michaelis constant and maximal reaction rate. They can be expressed by a combination of the constant rates of elemental stages, which is more complicated than that in Eq. (A.3).
Appendix B
Inhibition Kinetics

Formal kinetics offers rather simple and reliable protocols for establishing the mechanism of inhibition. As other kinetic approaches, they are valid for a certain set of primary conditions (concentrations of a substrate, inhibitor and enzyme active sites). Changes in the conditions of the experiments as well as immobilization of an enzyme can shift the relative rate of the stages of the complex reaction scheme so that the criteria of the mechanisms would be not valid or contradict with the chemical backgrounds of the process. Nevertheless, kinetic analysis of inhibition is very useful to establish the limits of the inhibitor concentrations that are determined by appropriate enzymes in ideal conditions. The mechanism of inhibition determines the requirements of the optimal conditions of inhibition detection as the substrate concentration and necessity in intermediate incubation and/or washing immobilized enzyme preparations.

An irreversible inhibition can be monitored by the relative decay of enzyme activity. For the inhibitor concentration significantly exceeding that of the enzyme active site, the Aldridge Eq. (B.1) is used (Aldridge 1950).

\[\ln \frac{v_0}{v_t} = k_{II} c_I \tau \] \hspace{1cm} (B.1)

Here, \(v_0\) and \(v_t\) are the rates of enzymatic reaction prior to and after the incubation step, \(c_I\) is the inhibitor concentration, and \(\tau\) is the incubation time. The \(k_{II}\), bimolecular inhibition constant, describes the efficiency of the enzyme-inhibitor interaction. This depends on the nature of the reactants and reaction conditions but not on the quantity of the enzyme and inhibitor as such. The bimolecular inhibition constant can be expressed by a combination of rate constants of various steps of the reaction.

Reversible inhibitors exert a great variety of interaction mechanisms, all of which refer to the true equilibria of the stages with enzyme participation (Keleti 1986). For Michaelis-Menten conditions (one \(ES\) complex, 1:1 interaction of an enzyme active site and substrate molecule) the general scheme of reversible inhibition can be presented as follows (B.2):
The scheme takes into account the formation of an enzyme-inhibitor complex and a triple enzyme-substrate-inhibitor $E-S-I$ complex. Contrary to irreversible inhibition, such complexes retain their possibility of participating in the formation of the final product P. This implies that the inclusion of an inhibitor does not fully block the active site that can interact with a substrate even though the efficiency of such an interaction decreases. Empirical coefficients α and β account for the influence of an inhibitor on the target reaction of the substrate conversion. Here, capital letters K_I and αK_I correspond to equilibrium constants, whereas lower case letters $k_1, k_{-1}, k_2, \alpha k_{-1},$ and βk_2 involve the rate constants of the appropriate stage of the reaction.

The scheme (B.2) is described by the Eq. (B.3). However, its application to real cases of inhibition is complicated by many parameters.

The rate of enzymatic reaction in the absence and the presence of an inhibitor is denoted as v_i and v_0, respectively. The K_m value also corresponds to the zero concentration of the reversible inhibitor. Usually the $\alpha > 1$ and $\beta < 1$ values are typical for reversible inhibitors.

Although the reaction scheme (B.2) involves accurate development, some simplified cases are popular. They are classified in accordance with relation between various parameters and are called competitive, non-competitive and uncompetitive inhibition (Leskovac 2004).

For competitive inhibition, $\alpha \to \infty$. This results in the following reaction scheme (B.4).

The inhibitor and substrate both compete for the same active site of an enzyme and the enzyme-inhibitor complex cannot catalyze the substrate conversion. For such a reaction, the following equation can be given for the reaction rate (B.5):

The comparison of the Eq. (B.5) with the Michaelis-Menten equation makes it possible to conclude that the presence of competitive inhibitors increases the experimental K_m value proportionally to the inhibitor concentration. Meanwhile, the formal expression of the dependencies remains the same in the competitive
inhibition and cannot be confirmed by the kinetics analysis. An example of appropriate linear curves is given in Fig. B.1.

The maximal rate of the reaction, v_{max}, does not depend on the concentration of the competitive inhibitor. It corresponds to the saturation of enzyme-active sites with a substrate when all the inhibitor molecules are supplanted by a substrate.

It should be noted that competitive inhibition describes the interaction of a fully irreversible inhibitor with an enzyme active site in the presence of the substrate.

Non-competitive inhibition ($\alpha = 1$, $\beta = 0$) corresponds to the case where the substrate and inhibitor do not interfere with each other in enzyme binding, and the interaction with an inhibitor affects the affinity of an enzyme towards a substrate but not the reactivity of the ES complex. In this case, the general scheme (B.2) is reduced to (B.6).

$$E + S \rightleftharpoons E-S \rightarrow E + P \quad + I \quad \downarrow \quad + I \quad \downarrow \quad E-I + S \rightleftharpoons E-S-I \quad (B.6)$$

From the theoretical point of view, there are three possible mechanisms of non-competitive inhibition:

- inhibitor and substrate binding sites of the enzyme are different;
- inhibitor and substrate bind to the same binding site but via different functional groups; or
- inhibitor does not bind with an active site of an enzyme but affects the protein confirmation. This changes the charge distribution and/or acid-base properties of functional groups involved in the ES complex formation.

In non-competitive inhibition, the K_m constant remains the same as in the absence of the inhibitor, but the maximal reaction rate decays proportionally to the inhibitor concentration (B.7).

$$v_i = \frac{v_{\text{max}}}{1 + c_I/K'_I} \frac{c_S}{K_m + c_S} \quad (B.7)$$
The appropriate graphic illustrations of non-competitive inhibition are presented in Fig. B.2.

Uncompetitive inhibition \((\alpha = \beta; \alpha, \beta < 1)\) assumes the interaction of an inhibitor with the \(E–S\) complex, but not with a free enzyme active site \((B.8)\). In this case, both \(K_m\) and \(v_{\text{max}}\) experience a change, so that the curves in the Line weaver-Burk plot obtained for various inhibitor concentrations form parallel lines (Fig. B.3). The appropriate equation is given in (B.9).

\[
v_i = \frac{v_{\text{max}}}{\left(1 + c_I/K_I''\right)K_m\left(1 + c_I/K_I''\right) + c_S}
\]

The Eq. (B.9) can be used for the estimation of the inhibition constant and confirmation of the mechanism of uncompetitive inhibition. It can be shown that the \(v_{\text{max}}\) and \(K_m\) change proportionally and to a degree that depends on the inhibitor concentration and inhibition constant \((B.10)\).

\[
\frac{(v_{\text{max}})_{\text{exp}}}{(v_{\text{max}})_{c_I=0}} = \frac{(K_m)_{\text{exp}}}{(K_m)_{c_I=0}} = \frac{\alpha(K_I' + c_I)}{\alpha K_m + c_I}
\]
Mixed inhibition ($\alpha, \beta \neq 1$) describes the dependence of the enzymatic activity on substrate/inhibition concentration as a superposition of the special cases described above. Thus, the changes in the reaction rate in many cases can be presented as a combination of competitive and non-competitive inhibition (B.11) with K_I and K'_I corresponding to the inhibition constants describing competitive and non-competitive inhibition, respectively. The total inhibition can be expressed in this case by the so-called reduced inhibition constant \bar{K}_I (B.12).

\[
\frac{1}{v_i} = \frac{K_m}{v_{\text{max}}c_S} \left(1 + \frac{c_I}{K_I}\right) + \frac{1}{v_{\text{max}}} \left(1 + \frac{c_I}{K'_I}\right)
\]

(B.11)

\[
\frac{v_0}{v_i} = \frac{K_m(1 + c_I/K_I) + c_S(1 + c_I/K'_I)}{K_m}
\]

\[
\bar{K}_I = \frac{K_I K'_I}{K_I + K'_I}
\]

(B.12)

In all the mechanisms of reversible inhibition, the increase in the inhibition constant decreases the sensitivity of an enzyme towards an inhibitor. The value of a constant corresponds to the inhibition concentration resulting in a 50 % decrease of the rate of the enzymatic reaction. This rule makes it possible to compare the relative strength of inhibitors that react with an enzyme by different reaction paths. For the same reasons, other empirical estimates based on simplified experiments involve a reduced number of measurements. Thus for simple cases, I_{50} (concentration of an inhibitor yielding a 50 % decrease in the rate of enzymatic reaction) represents the K_I value. To some extent, this refers to other similar variables like I_{50}. The only, but serious, limitation of such empirical characteristics is that they do not provide any information on the possible mechanism of inhibition.

For “true” inhibition constants, the conclusions about possible mechanisms are made together with the inhibition constants’ calculation from a series of experiments with varied concentrations of the substrate/inhibitor. As could be seen from Figs. B.1–B.3, the x- and y-intercepts, as well as line concurrence points, are of most importance. The appropriate examples are given for the Line weaver-Burk plot but can be easily extended to other linearization methods mentioned above (see Table B.1).

<table>
<thead>
<tr>
<th>Inhibition mechanism</th>
<th>Relative decay of the rate of enzymatic reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purely competitive</td>
<td>$\frac{v_0 - v_i}{v_i} = \frac{K_a}{K_a(K_a + c_S)} c_I$</td>
</tr>
<tr>
<td>Purely non-competitive</td>
<td>$\frac{v_0 - v_i}{v_i} = \frac{c_I}{K'_I}$</td>
</tr>
<tr>
<td>Purely uncompetitive</td>
<td>$\frac{v_0 - v_i}{v_i} = \frac{c_I}{2K'_I(K'_I + c_S)} c_I$</td>
</tr>
<tr>
<td>Mixed</td>
<td>$\frac{v_0 - v_i}{v_i} = \frac{2K_a + c_S}{2K'_I(K'_I + c_S)} c_I$</td>
</tr>
</tbody>
</table>
The description of the mechanisms of reversible inhibition presented here is to some extent the idealized presentation of much more complicated reactions. Some of the restrictions on the enzyme/substrate/inhibitor interactions specifying a particular reaction scheme can be non-obligatory. Thus, instead of the full inactivation of some intermediates, they can decrease their reactivity. For this reason, apart from the “pure”, or “complete” mechanisms presented above, partially non-reversible, uncompetitive, etc., mechanisms are denoted. They are certainly more complicated in formal kinetics than those presented here but do not change the general criteria and empirical rules necessary for establishing the specificity of inhibitor action.

The relation between the K_m and c_S is the principal criterion of the substrate influence on the inhibition measurement. For example, competitive inhibition offers the reciprocal dependence of the inhibition degree and substrate concentration for $c_S \gg K_m$. For this case,

$$\frac{v_0 - v_i}{v_i} = \frac{K_m c_I}{K_I c_S} \quad (B.13)$$

so that the lower the substrate concentration, the lower the inhibitor concentration corresponding to the same inhibition degree. However, the opposite relation ($c_S \ll K_m$)

$$\frac{v_0 - v_i}{v_i} = \frac{c_I}{K_I} \quad (B.14)$$

makes the inhibition independent of the substrate concentration similarly to non-competitive inhibition and uncompetitive inhibition in the case of $c_S \gg K_m$.

References

Keleti T (1986) Basic enzyme kinetics. Akadémiia Kiadó, Budapest

Index

A
Acetamiprid, 60
Acetobacter xylinum, 62
Acetochlor, 222
Acetylcholine, 37, 109, 138
Acetylcholinesterase, 30, 37, 50, 75, 138, 161, 172, 193, 213–220
Acetylthiocholine, 214
Actuator, 194
Adriamycin, 144
Affine immobilization, 81
Affinity biosensors, 10
Alcohol oxidase, 161
Alkaline phosphatase, 139
Allosteric enzyme regulation, 28
Allosteric site, 28
Amino acids, 22
3-Amino-9-ethylcarbazole, 166
4-Aminophenyl phosphate, 155
Ammonia, 111
Amperometric (bio)sensors, 11, 126
Amplyte, 3
Antibodies, 42
monoclonal, 44
Anticholinesterases, 212
Antigens, 42
antibody complex, 42
Antioxidants, 88, 150–153
Apoenzyme, 25
Aptamers, 58
Aptasensors, 8
Ascorbic acid, 112
Asparaginase, 161
Attenuated total reflection sensors, 171
Au nanoparticles, 62, 73, 90, 147, 157, 180, 188, 214, 249
Avidin, 81–90, 183, 188

B
Bacillus cereus, 156
Background current, 117
Bacterial toxicity tests, 230
Baicalin, 151
Batch conditions, 15
Betaine, 138
Bi-enzyme sensors, 137
Bifunctional reagents, 23, 84
Biochemical components, 21
Biochemical recognition, 3
Bioluminescence, 13, 174, 236
Biosensors, classification, 7
definitions, 3
enzymatic (enzyme sensors/electrodes), 7
implantable, 18
invasive, 18
microbial, 9, 248
signals (response), 3
Biotin, 57, 82, 89, 178, 188
Bipyridyl Ru(II), 177
BOD sensors, 233
Bromothymol blue, 172
Bulk acoustic wave (BAW) sensors, 185
Butyrylcholinesterase, 213

C
Calorimetric biosensors, 190
Cantilever array/biosensors, 195
Carbamate inhibitors, 161
Carbodiimides, 23, 84, 88, 115, 214, 223
Carbon nanotubes, 52, 71, 90, 157, 188, 211, 248
Carboplatin, 151
Catechin, 153
Catechol, 112
Charge coupled devices (CCDs), 169
Chemical sensor, 3
Chemiluminescence, 13, 174
4-Chlorophenol, 161
Chlorophenol Red, 172
Chlorpyrifos-oxon, 219
Cholesterol, 32, 134, 138, 193, 212
Choline, 109
Cholinesterases, 37, 212

Chronoamperometry, 121
Cisplatin, 151
Co tris(phenanthroline) complex, 145
Coenzymes, 25
Cofactors, 25
Computational modeling, 52
Concanavalin A, 214
Conductivity, 158
Conductometric devices, 12, 158, 162, 211
Conductometry, 12, 160
Constant phase element (CPE), 164
Convection, 120
Creatinase, 161
Creatininase, 161
Creatinine, 161
Cross-reactivity, 44
Cucurbituril, 184
Cyclic voltammetry, 122
Cysteine, 22
Cytochrome P450, 31, 136

D
Daunomycin, 144
Dehydrogenases, 30, 121
Dendrimers, 76
Deoxyribozymes (DNAzymes), 9, 61, 248
Diabetes, 208
Dichlorvos, 219
Differential pulse voltammetry (DPV), 126
Diffusion, 120
Displacement immunoassay, 224
Disulfide bridges, 27
DNA, 53

Chips, 14, 147, 226
damage, 152
damaging factors, 151
hybridization, impedimetric detection, 165
intercalation, 143
sensors/probes, 8, 57, 68, 115, 148, 179, 248

E
DNA Anti-DNA Ab interaction, 156
DNA-anti-DNA Ab interaction, 156
DNAlzymes, 9, 61, 247
Dynamic systems, 17

E
Effectors, 28
Electrocatalysts, 126
Electrochemical impedance spectroscopy (EIS), 13, 156
Electrochemical transduction, 99
Electrochemiluminescence/electrogenerated luminescence (ECL), 174, 177
Electrophoresis, 23
Electropolymerization, 77
Energy transfer quantum yield, 175
Enthalpimetric biosensors, 193
Enzymatic biosensors (enzyme sensors/enzyme electrodes), 7
Enzymatic conversions, consecutive, 138 parallel, 139 rate, 33
Enzyme-linked immuno sorbent assay (ELISA), 8, 47, 50, 68, 147, 156, 183, 193, 221, 247
Enzyme-substrate complex, 27
Enzymes, 22, 253
activity, 31, 32
effectors, 35
electrode, 4
inhibitors, 35
irreversible, 36
kinetics, 253
reconstructed (holoenzymes), 26
sensors/biosensors, 110, 244
amperometric, 133
fiber-optic, 171
Epigallocatechin gallate (EGCG), 153
Epitopes, 44
Ethidium bromide, 145
Ethylendiaminofluorescein, 222

F
FADH2, 129–135
Faradaic currents, 117
Faraday’s Law, 117
Ferricyanide ions, 13
redox probe, 165
Ferrocenyl β-cyclodextrin, 146
Ferrocenyl naphthyl diimide, 144
Index

Fiber-optic enzyme sensors, 171
Fick’s Law, 120
Field effect transistors (FETs), 12, 112
Fixed interference method, 108
Flavine adenine dinucleotide (FAD), 27
Flow immunoreactors, 193
Flow-through conditions, 16
Fluoresceine, 172
Fluorescence, 13, 62, 170, 233
 quantum yield, 175
 quenching, 170
Fluorescence resonant energy transfer (FRET), 247
Formaldehyde, 161
Fourier-transformed infrared spectroscopy (FTIR), 13

G
Galvanic cell, 101
Gel immunofiltration, 225
Gemcitabine, 150
Gene expression, 175
 profiling, 229
Genosensors, 8
Genotoxicity testing, 235
Gluconic acid, 4
Glucose, 30, 62, 208
 meters, 208, 244
 sensing, noninvasive, 211
Glucose dehydrogenase, 114, 139, 153, 210
Glucose oxidase, 4, 30, 62, 88, 114, 133, 153,
 209–211
Glutamate dehydrogenase, 136
Glutaraldehyde, 84
Glycoproteins, 88
Glycylaminofluorescein, 222
Graphene, 248
Grating coupler sensor, 170
Guanine, oxidation, 143

H
Haptens, 43, 221
HIV-1 protease, 229
Horseradish peroxidase, 135
Human chorionic gonadotropin, 156
Human growth factor, 174
Hydrogen electrodes, 103
Hydrolases, 30, 32, 72, 114, 127, 139
Hydroquinone, 112
 benzoquinone, 157

I
IMASS (integrated multiplex assay and sampling system), 226
Immobilization, 65
 covalent, 84
 efficiency, 67
 physical, 71
Immunoadsorbants, 42
Immunofiltration, 224
Immunoglobulins, 42
Immunoinmobilization, 83
Immunosensors, 8, 42, 68, 221, 247
 redox-labeled, 153
 voltammetric, 153
Impedance, 162
Impedimetric biosensors/devices, 158, 162
Implantable biosensors, 18
Indoxyl acetate, 172
Inhibition, competitive/noncompetitive/uncompetitive, 258
 kinetics, 257
 mixed, 261
 reversible/irreversible, 257
Insecticides, 215
Insulin, 208
Integration, 245
Intercalation, DNA, 143
Invasive biosensors, 18
Invertase, 138
Ion mobility, 160
Ion-selective electrodes, 11, 102
Isomerases, 30

L
Lab-on-chips, 249
Laccase, 30, 136, 153
Lactate, 25, 136, 138
 dehydrogenase, 25, 30, 139, 177, 190–194
Langmuir-Blodgett (LB) films, 80
Lateral flow tests, 225
Layer-by-layer (LbL) immobilization, 78
Lead (Pb) ions, detection, 61
Lectins, 53
Light-emitting diods (LEDs), 169
Limit of detection (LOD), 109
Linkers, 87
Listeria monocytogenes, 156
Litmus dye, 172
Luciferase, 175, 237
Luciferin, 176
Luminol oxidation, 172
Lysozyme, 60

M
Mach-Zehnder interferometer, 173
Magnetic separation, 179
Malaoxon, 219
L-Malate, 136
Matched potential method (MPM), 108
Mediators of electron transfer, 119, 126
Methylene blue, 144, 148, 156
Metilviologen, 162
Michaelis-Menten kinetics, 31, 253
Microbial biosensors, 9, 248
Microbiosensors, 195
Microelectromechanical systems (MEMS), 15, 194
Microsensors, 195
Mifepristone, 145
Migration (electrochemical migration), 116
Miniaturization, 246
Mitomycin C, 237
Mitoxantrone, 145
Mobility, ion molar, 159
Molar conductivity, 159
Molecular imprinting, 52
Monoxygenases, 30
Mutorotase, 138

N
NAD(P)H, 135
Nanomaterials, 147, 249
Ni(II) ferrocyanide, 128
Nicotinamide adenine dinucleotide (NADH), 25
Nitrate reductase, 162
Nitrosomonas europaea, 237
Nogalamycin, 145
Normal hydrogen electrode (NHE), 103
Normal pulse voltammetry, 125
Nucleic acids, 2, 6, 8, 21, 53

O
Ochratoxin A, 60
Oligonucleotides, 2–9, 115
Optical biosensors, 13
Optical transducers, 168
Optosensors, 168
Organophosphates, 37, 215, 219
inhibitors, 161
Overvoltage (overpotential), 118
Oxidases, 30, 191, 215
Oxidoreductases, 29, 32, 63, 75, 127, 137, 170, 230
8-Oxoguanine, 143, 144, 150, 151
Oxygen, 234
probe, 4

P
Paraoxon, 219
Paraquat, 222
Pentafluorophenol, 111
Peptide nucleic acids (PNAs), 57
Peptides, synthetic, 51
 Peroxidases, 5, 8, 30, 88, 110, 135, 189
 sensors, 111
Pesticides, 35, 212, 226
 anticholinesterases, 212
 atrazine, 230
 carbamate, 30, 212
 chlorinated, 236
detection, 245
 thionic, 216
 triazine, 161
Phage display technology, 52
Phenanthrolines, 144
Phenol, 6, 75, 139, 234, 236
Phenolics, 30, 64, 246
Phenothiazines, 112
Photinus pyralis, 176
Photodetectors, 169
Photolithography, 228
Piezoelectric effect, 185
Point mutations, 229
Polyamidoamine (PAMAM) dendrimers, 76
Polyaniline, 106
Polychlorobiphenyls, 152
Polyelectrolyte complexes, 78
Polymerase chain reaction (PCR), 57
Polypyrrole, 79, 106
Polythiophene, 106
Potentiometric sensors, 101
Potentiostat, 116
Proenzyme (zymogen), 26
Protein nanotubes, 52
Protein structure, 29
Protein/peptide receptors, 51
Prussian blue, 129
Pseudo-reference electrodes, 104

Q
Quantum dots, 250
Quartz crystal microbalance (QCM), 14, 185
Quercetin, 153

R
Raman spectroscopy, 182
Randles circuit, 163
Reaction layer, 101
Reaction quantum yield, 175
Receptors, 3
Redox probe, 165
Reference electrode, 101
Ribozymes, 61
RNA, 54
Robotic microprinting, 228
Ru(bpy)$_2^{2+}$, 178
Rutin, 153

S
Sandwich immunoassay, 48, 147, 154, 165, 184, 189, 224–227
Sauerbray equation, 186
Scatchard equation, 46
Selectivity, 108
Self-assembled monolayers (SAMs), 80
Signal transduction, 99
Single nucleotide polymorphism, 229
Sol-gel immobilization, 76
Solid-contact electrodes, 105
SOS-chromotest, 235
SOS response, 236
Spacers, 87
Stationary conditions, 17
Streptavidin, 82
Substrate, 3
Sucrose, 138
Support (carrier), 66
Supporting electrolytes, 116
Surface acoustic wave (SAW) sensors, 186
Surface plasmon resonance (SPR) biosensors, 13, 180
Surface-enhanced Raman spectroscopy (SERS), 13, 182

T
Tetracyclines, 64
Thermistors, 191
Thermometric enzyme-linked immunosorbent assay (TELISA), 193
Thiophosphates, 215
Three-electrode cell, 116
Thrombin, 60, 179
Total internal reflection, 168
fluorescence (TIRF), 171
Toxicity bioassays, 230
Transducer, 3
Transduction, 99
Transferases, 30
Triazine pesticides, 161
Two-electrode cell, 116
Tyrosinase, 139

U
Umu-test, 235
Urea biosensor, 111
Urease, 30, 161

V
Voltammetric sensors, 115
Voltammograph, 116

W
Whole cells, 62