Biographies

Khalid Ali Al-Hosani is currently Deputy-Director of the Department of Geology and Mineral Resources at the Ministry of Energy of the United Arab Emirates in Abu Dhabi. He joined the Ministry in 1992 after his Bachelor degree in Geosciences at the UAE University.

Khalid has participated to the organizing committees of many international conferences on geological and mineral resources. He is a member of the Advisory Committee on geology and mineral resources for the Arab Industrial Development and Mining Organization.

Since 2002, he participates in the supervision of the regional geology and geophysics programmes commissioned by the Ministry, and was the main organizer of the 2009 ILP Conference in Abu Dhabi.

Dr. François Roure is currently Senior Geoscience Advisor at IFPEN, extraordinary Professor at the University of Utrecht, and chair of the ILP Task Force on Sedimentary Basins. He joined the CNRS (Centre National de la Recherche Scientifique) in 1980. After a PhD aiming at the study of the Mesozoic geodynamic evolution of the North American Cordillera in N California and Oregon, he moved to IFP in 1984. From then until 1995, his main focus was the study of the crustal architecture of the Alps, Pyrénées and Apennines, as well as the petroleum systems in foothills and foreland domains in the Carpathians, Albanides, Sicily, Alaska and Venezuela.

After a sabbatical leave in 1994–1995 at the USGS in Menlo Park, California, François has initiated numerous research projects on the subthrust reservoirs in the Himalayan foothills in Pakistan, as well as in sub-Andean basins and in the North American Cordillera again, i.e. in Venezuela, Colombia, Mexico and Canadian Rockies. His last projects aimed at the study of the crustal architecture and petroleum evaluation of the United Arab Emirates, North Algeria, and the Mediterranean offshore.

Dr Stephen Lokier is an assistant professor at the Petroleum Institute (Abu Dhabi, United Arab Emirates). His PhD, awarded by the University of London in 2000, focused on the deposition and stratigraphy of Cenozoic carbonate systems in settings with a significant volcaniclastic influx. On completion of his PhD he joined the Middle East Team of Badley Ashton and Associated Ltd. where he gained
expertise in sedimentological, sequence stratigraphic and reservoir quality studies of a wide range of reservoir intervals throughout the Middle East.

Stephen returned to academia in 2004 when he joined the Petroleum Geosciences Department of the recently-founded Petroleum Institute of Abu Dhabi. His research interests concentrate on the complex carbonate reservoir systems of the Middle East. He is specifically focusing on furthering the understanding of modern regional depositional analogues, particularly for mixed carbonate—evaporite systems. More recently, he has initiated a study of Neogene sea level history for the Arabian Gulf and the implications for sequence stratigraphic architecture in the region. Stephen remains interested in carbonate sedimentation and sequence development in mixed siliciclastic—carbonate depositional settings, particularly in terms of biotic responses to elevated siliciclastic influx.

Richard Ellison is currently Head of International Business Co-ordination at the British Geological Survey (BGS) in Keyworth, UK where he has worked since graduating from Southampton University in 1972.

His particular areas of expertise include geological mapping, stratigraphical and structural analysis, and work on sedimentary sequences, volcanic terranes and Quaternary processes. He has worked widely in the UK, Peru, Hong Kong, Afghanistan, Tajikistan, Oman, and the United Arab Emirates.

Richard has held a range of posts in the BGS ranging from researcher into coal fractures, head of best practice in the use of IT, Secretary to an external review on the future of the BGS Geological Mapping Programme, manager of Urban Geoscience, Chief Geologist for South East England and the London Basin, and Chief Geologist for South-West England, and Regional Manager for the Middle East, Asia and the Far East. In the past 20 years he has been responsible for the management of multi-disciplinary geoscience projects in the UK and overseas, including external commissioned contracts for UK Government Departments, the World Bank, DFID and companies in the civil engineering, environment and water sectors. These include institutional strengthening in Afghanistan, and geological projects in Ghana and Ethiopia and currently a major multidisciplinary project in the United Arab Emirates.
Index

A
AAE. See Addis-Ababa, Ethiopia
Abu Dhabi, 3, 4
Abu Dhabi, 3, 4
Arabia’s Late Precambrian, 11
Arabian basement, 4–5
Arabian oil and gas accumulations, 15, 16–17
Cambro–Precambrian Ara, 8–10
carbonate-rich Permo-Triassic Khuff Formation, 14
Emirates and Persian/Arabian Gulf outline, 12
Hormuz groups, 8–10
intrashef Cretaceous Mishrif and Bab basins, 16
Late Permian to Mesozoic of NE Arabia, 11, 12–13
Late Quaternary polar glaciations effects, 17
later Palaeozoic sedimentary sequences, 10
neo-Proterozoic glaciations, 5
Oman Mountain formation, 15
Phanerozoic peregrinations, 11
post-glacial Nafun group, 8
sea level curves, 18
Silurian hydrocarbon source rocks, 11
Addis-Ababa, Ethiopia (AAE), 282
Aden and Sheba Ridge system, 418
Alula-Fartak transform zone, 419
Gulf of Aden opening, 419
Gulf of Aden reconstruction, 420
Aden–Abyan basin, 369
Afar plume, 376, 383
AFT. See Apatite fission track
Al-Mahwit area, 379, 380
extensional stress regimes, 380
geological and structural map, 381
poles of dykes, 382
Alkaline basaltic volcanic rocks, 94
Alula-Fartak fault zone, 430
Amplitude versus offset (AVO), 56
ANTELOPE, 284
Antelope Real Time System (ARTS), 284
Antelope Seismic Information System (ASIS), 284
Apatite fission track (AFT), 159, 160
Aptian unconformity. See Base Wasia group unconformity
Ar Rayn (RAYN), 285
Arabia, 4
Arabia’s Late Precambrian, 11
Arabian basement, 4–5
Precambrian ages, 5
Arabian Gulf
seismicity, 310
tectonic setting, 309
Arabian margin in Zagros. See also Kermanshah crush
zone (Kermanshah CZ)
Bisotoun block, 232
Bisotoun units, 229, 230
tectonic allochthons, 231–232
gabbros and pelagic carbonates relationships, 227, 228, 229
geological setting, 224–226
ophiolite, 230–231
paleogeographic reconstruction, 232–234
pelagics/radiolnarites, 231
Arabian passive margin, 182
Arabian Peninsula
Arabian Plate, 281
Dead Sea transform system, 281
tectonic setting, 281
KACST stations, 283, 284, 286
noise spectra at station AFFS, 286, 287
SANDSN
data, 287
seismic noise measurements, 285, 286
seismic techniques
focal mechanism solutions, 284
GSN seismic station, 285
KACST seismographic network, 285
seismographic networks, 284–285
travel time calibration, 283–284
velocity model refinement, 284
statistical characterization, 289
velocity model evaluation, 291–292
Arabian Plate, 281, 282
Arabian plate geodynamic evolution
Late Permian to Maastrichtian, 386–387
tectonic activity, 387
Arabian Platform, 281
Arabian Shield, 281
crustal thickness in, 283
Arts. See Antelope Real Time System
Aruma foredeep development, 198
Aruma foreland basin, 130
ASIS. See Antelope Seismic Information System
Ausaq Conglomerate Formation, 76
AVO. See Amplitude versus Offset

B
Basal Chah Khan Thrust zone, 253
Base Aruma group unconformity, 87
Base Thamama group unconformity, 86–87
B (cont.)
Base Wasia group unconformity, 87
Bashakerd Thrust Zone, 245, 254
Basin formation, 458
 Peierls creep, 458, 459
 syn-rift sedimentation, 459
Basinal sedimentary and volcanic rocks, 69, 83
Bih Formations, 212
Birkat al Mawz section, 72
Bisotoun unit, 225, 230, 231, 232
Boulder Real Time Technologies (BRTT), 285, 284
Bristish Geological Survey, 147
 ophiolite in the United Arab Emirates, 24
BRTT. See Boulder Real Time Technologies

C
C. See Calcite cement
Calcite cement (C), 210
Cambro-Precambrian Ara, 8
 Ara group, 8
 Ara/Hormuz salt distribution map, 9
 Cambro-Precambrian time boundary, 8, 9
 Hormuz salt, 10
 Hormuz salt basins, 8
Caprinid rudist facies, 72
Carbonate compensation depth (CCD), 74, 79
Carbonate platform margin sedimentary sequence
 Ausaq Conglomerate Formation, 76
 Mayhah Formation, 74, 75, 76
Carbonate platform succession, 66, 68
 features, 64–65
 Musandam Group, 68
 Thamama Group, 68, 69, 72
 Wasia Group, 72, 73, 74
 Cartesian coordinates, 443
 Cathodoluminescence (CL), 207
 CCD. See Carbonate compensation depth
Cenomanian Natih Formation, 96
Cenozoic basins, 369, 371. See also Mesozoic basins; Paleozoic basins
 Aden–Abyan basin, 369
 Gulf of Aden rift system, 369
 Hawrah–Ahwar basin, 369
 Mukalla–Sayhut basin, 369
 petroleum systems, 370
 stratigraphic chart, 370
 Tihamah basin, 369, 371
Central Arabian Graben Zone
 seismicity, 309
 tectonic setting, 308–309
Central Iranian micro-plate (CIMC), 431
Ceres fluid flow modeling. See also Paleo-fluid flow
 Aruma foredeep development, 198
 Cenomanian, 197–198
 Ceres2D, 192
 post-deformational stage, 198
 pre-deformation stage, 197
 regional transect D4, 192, 194
 tectonic features, 193
 thrustpack, 192
 water saturation, 198–199
Chanf Thrust sheet, 247
CIMC. See Central Iranian micro-plate
CL. See Cathodoluminescence
CMP. See Common midpoint
Coastal Makran, 242, 253

C (cont.)
folds, 253
 lower hemisphere projection, 254
 normal faults, 253–254, 255
Cold meteoric water, 189
Colored mélange, 225, 240
Common midpoint (CMP), 49, 53
Comprehensive Test Ban Treaty Organization (CTBTO), 288
Continental margins, 385
 Gulf of Aden, 386
 lithospheric extension, 386
 Red Sea, 386
 rifted-margins, 385
 volcanic margins, 385
Cover folds, 115, 116, 117
 cross’ folds, 115
 Jebel Hinwa anticline, 115
 Jebel Rawdha syncline, 115
 origin, 115, 116
Cretaceous–Cenozoic foreland, 147
Critical reflection, 50
Cross’ folds, 115
CTBTO. See Comprehensive Test Ban Treaty Organization

D
Dc1. See Dolomite cements
Dead Sea transform system, 281
Deep seismic profiles, 160. See also Depth seismic imaging; Northern Emirates
 depth velocity model, 151
 final depth velocity model, 154
 joint reflection tomography, 149
 location map, 148
 reflection tomographic inversion in, 150, 151
 reflection tomography, 149
 RMS value, 152
 Semail Ophiolite, 154
 strong amplitude reflectors, 149
 synthetic data, 152
 time migrated stack of, 150
 time stack sections, 152
 top Wasia, 152
 velocity model, 149
Deep seismic survey, 147
Depth seismic imaging. See also Deep seismic profile
 inversion process, 147
 ray-tracing modelling, 146
 tomography evaluation, 153–156
 traveltome tomographic inverse problem, 145–146
 velocity model representation, 146
Dhala area, 378, 379
Dhera Limestone Formation, 79, 82
 calcirudites beds, 80
 Dhiba Zone, 80
 Jebel Dhera viewing, 82
 outer platform margin to basin sedimentary sequence, 67
Dhofar 430 431
 northern margin, 398, 399
 post-rift successions in, 401, 403
 pre-rift successions in, 399, 401
 Quaternary deposits in, 401, 402
 syn-rift series in, 399, 401
 vertical movements on, 402, 404
Dhiba Limestone Formation, 79, 80, 82
Dibba zone, 62, 85, 179
Dibba-Bandar Abas region, 313
Diffusion creep, 445
Dislocation creep, 445
Dolomite cements (Dc1), 208
Drucker–Prager criterion, 447
Dunite, 27
Dykes, 379
 NE–SW, 380
 N–S trending, 382
 NW–SE trending, 380
 poles, 382

E
EAAO. See East-African-Antarctic-Orogen
Early-middle tertiary foreland basin sequence. See Pabdeh group
sequence
Earthquake focal mechanism, 284
East Sheba Ridge, 314
East-African-Antarctic-Orogen (EAAO), 335
Eastern Yemen
 seismicity, 312
 tectonic setting, 311–312
Electron microprobe analysis (EPMA), 33
Ellipsis code, 443
EMSC. See European Mediterranean Seismological Center
Encens-Sheba zone, 416, 418
 segmentation, 417
 structural pattern, 418
ENE–WSW-trending set, 108
EPMA. See Electron microprobe analysis
European Mediterranean Seismological Center (EMSC), 295
E–W extension, 381–382
E–W-trending set, 108

F
Fars group sequence, 136
Fast Fourier transform (FFT), 287
Fast Lagrangian Analysis of Continua (FLAC), 442
Fault and stress analysis. See also Makran Fold-and-Thrust Belt in Iran
calcite fibres, 266
 compressional tectonic regime site, 268, 269
 earthquake focal mechanisms, 274
 extension, 272, 273
 extensional stress tensor at site, 271
 extensional tectonic regime site, 273
 fault and tensor data, 270
 fault sites from MAW, 267–268
 focal mechanisms, 271, 273
 investigation method and data, 264, 266
 principal stress axes, 269
 recent stress field, 273, 275
 transpressional tectonic regime site, 271, 272
 triangular classification, 269
 vertical principal stress, 269
Fault Slip Analysis (FSA) software, 266
FBA-23, 285
Felsic rocks, 351–352
FFT. See Fast Fourier Transform
Field stations (STN), 47
First arrival tomography. See also Deep seismic profile
FLAC. See Fast Lagrangian Analysis of Continua
Fluid inclusion analysis, 210, 212. See also Permo-Triassic Khuff
 Formation
calcite cement, 212
dolomite, 211
 saddle dolomite, 212
Fluid system diagenesis
 cold meteoric water, 189
 hot dolomitizing fluid, 188–189
 hydraulic fracturing, 189
Focal mechanism
 in central MAW, 271
 with defined axes, 272
 earthquake focal mechanisms, 274
 with inferred fault plane, 272
 in tensor, 273
Foreland autochthon, 178
Frontal triangle zone, 179
FSA software. See Fault Slip Analysis software

G
Gabbro, 28
Geodynamic modeling, 441. See also Samovar
 elastic approximation, 441
 numerical codes, 442
Ghail Formation, 212
Ghasr Ghand Thrust sheet, 247, 248
Graphoglyptid trace fossil paleodictyon, 88
Ground motion simulation. See also SW Arabian Shield and Southern
 Red Sea region
 local site effect, 325
 path effect, 324, 325
 PGA contour map, 326
 relative amplification, 326
 source parameters, 324
 stochastic method, 323, 324
Ground truth events (GT events), 288
Gulf of Aden, 375, 429
 continental rifting, 387, 388
 analogue modelling, 396, 397, 398
 central part, 392, 393
 crustal thickness and stresses, 393, 395, 396
 eastern part, 393, 394
 transfer fault zones, 396, 397
 western part, 388, 389, 392, 393
 crustal thickness, 395
Dhofar
 post-rift successions in, 401, 403
 quaternary deposits in, 401, 402
 syn-rift series in, 399, 401
 vertical movements on, 402, 404
 eastern part, 398
 geological sketch map, 394
 northern margin Dhofar, 398–399
 Pre-Rift successions in Dhofar, 399
 Socotra Island fault, 397
 tectonic and sedimentary evolution, 405
 geodynamic context, 376
 geological map, 377
 geological sketch map, 389
 Hadibo transfer zone, 397
 paleogeographic maps, 391
 plate reconstruction, 390
 proximal margins, sedimentary architecture of, 397, 398
 rift system, 369
 stereogram synthesis, 393
 stratigraphic formations, 400
 western part
 Al Masilah basin, 409, 411
G (cont.)

Al-Mukalla, 411
El Sheikh-Guban, 411
Jeza-Qamar basin, 409
stratigraphic and tectonic relationships, 410
Yemen basins data correlations, 392

Guralp CMG-40TD, 431
Guwayza Formation, 77
calcarenites and calcilutites, 77
outer platform margin to basin sedimentary sequence, 67

H

Hadibo transfer zone (HTZ), 396
Hagab thrust, 194
Hagil Formation, 212
Hamrat Duru group, 95
Harsin Mélangé, 225, 226
Harsin–Sanhe transect, 229
Harzburgite, 26
Hawasina-Makran Thrust region
seismicity, 314
tectonic setting, 313–314
Hawasina–Sumeini formation, 149
Hawasina–Sumeini allochthon, 164
Hawrah–Ahwar basin, 369
Heat Flow Density (HFD), 317, 320
Hercynian Event, 10
HFD. See Heat Flow Density
HLW. See Helwan, Egypt
Hormuz salt, 10
Hot dolomitizing fluid, 188–189
HTZ. See Hadibo transfer zone
Helwan (HLW), Egypt, 282

I

I2ELVIS code, 443
iasp9I model, 283
IFPEN’s traveltime tomography software, 147
Imbricate zone
Bashakerd Thrust zone, 245, 246
fault planes and slicken lines measurements, 246
Bashakerd Thrust zone, 245
North-Makran unit, 246
Impregnated dunite, 27
Incorporated Research Institutions for Seismology (IRIS-GSN), 293
Inner Makran, 242, 247
footwall flat–hanging wall ramp, 249
Ghasr Ghand thrust, 248, 249, 250
lower hemisphere, 248
S-dipping cleavage in, 247
strike-slip faults, 251
structural subdivision, 247
thrust zones, 248–251
Integrated reflection, 57
Internal Gativan Thrust sheet, 251
International seismological center (ISC), 288, 291–292, 295, 319
Iranian Makran, 257
IRIS-GSN. See Incorporated Research Institutions for Seismology
ISC. See International Seismological Center

J

Jebel Salakh, 74
Jebel Hinwa anticline, 115

Jebel Rawdha area, 102, 104. See also Northern Oman Mountains of SE Arabia
basement blocks, 113–115
ENE–WSW-trending set, 108
E–W-trending set, 108
fault geometries, 105
fault set interpretation, 110–112
folding mechanism, 118–119
forced folding evidence, 119, 121
geological map, 104
NNW–SSE-trending right-lateral faults, 110
normal fault zones, 112
N–S-trending right-lateral faults, 110
NW–SE-trending sets, 107, 108
stratigraphic succession of rocks, 106
tectonic regime, 112–113
thicknesses and facies changes, 119–122
thrusts, 109–110
transpressional deformation, 118
WNW–ESE-trending set, 107

JER. See Jerusalem
Jerusalem (JER), 282
Jurassic–Cretaceous Tethys, 224

K

KACST. See King Abdullahize City for Science and Technology
KACST stations, 286
Kahorkan Thrust Sheet, 247
Kermanshah crush zone (Kermanshah CZ), 223
Kuh-e Bisotoun, 225
Nappe stack, 225
OCT, 224
Radiolaritic Nappe, 224
residual Tethys, 224–225, 231, 234
structural sketch map, 224
cross-section, 232
Kermanshah CZ. See Kermanshah crush zone
Kharaih formation, 73
Kuuff, 17
King Abdullahize City for Science and Technology (KACST), 284
digital seismographic stations network, 286
location map of, 285
KNSN. See Kuwait National Seismological Network
KS-54000, 285
Kuh-e Bisotoun, 225, 226
Kuhlan Formation, 367
Kuwait National Seismological Network (KNSN), 295

L

LAPEX-2D code, 443
Large-Ion Lithophile Element (LILE), 346
Lashar thrust sheet, 247
Late Cretaceous Aruma Group, 62
Late Devonian-Mid Permian, 429
Late Jurassic, 376
Late Jurassic unconformity. See Base Thamama group unconformity
Late Ordovician, 10
Late Tertiary sequence. See Fars group sequence
Layer stripping approach, 149
LILE. See Large-Ion Lithophile Element
Linear move out (LMO), 50
Lithosphere, 283
Lithospheric extension, 456
deformation pattern, 457, 458
free slip motion boundary condition, 457
model setup, 458
topographic time profile, 457
LMO. See Linear move out
Loss on ignition (LOI), 346

M
Madbi Formation, 367
Mafic rocks, 346
LOI, 346
total alkali silica, 351
trace element compositions, 347–351
Magnitude N–S anisotropy, 430
Major thrusts, 248
Makran (MAW), 239, 240, 262
Makran Accretionary Wedge (MAW), 239
central Makran in Iran, 241
strike-slip faults, 251
Makran Fold-and-Thrust Belt in Iran
coastal Makran, fault data in, 263
fault slip measurement, 263, 265
geological framework, 262
geomorphology-controlling strike-slip faults, 266
map and synthetic section, 263
MAW accretionary complex setting, 262
Middle East region velocity, 263
S-vergent chevron folds, 265
Makran Tertiary accretionary complex in SE-Iran
deformation age of, 256
general structure, 254–256
normal faulting, 256–257
protracted deformation, 256
regional setting, 240
tectonic context, 262
uplift processes, 256
Masirah Fault system
seismicity, 314–315
tectonic setting, 314
Mass conservation equation, 442
Massif of gabbros, 227
Massive dunite layer, 27
MAW. See Makran; Makran Accretionary Wedge
Mayhah Formation
informal members, 74
Jebal Sumeini sequence, 75–76
lithological log at Jebal Sumeini, 75
thinly planar bedded micrites, 76
Mesozoic basins, 367, 369. See also Cenozoic basins; Paleozoic basins
Kuhlan Formation, 367
Madbi Formation, 367
petroleum systems, 368
pre-rift sedimentary sequences, 367
stratigraphic chart, 368
structural differentiations, 367
Mesozoic reservoirs, 17
Microbial boundstones, 72
Mid Permain-Late Cretaceous, 429
Mid-Bih breccia diagenesis. See also Ru’us al Jibal group diagenesis
fluid inclusions, 213, 214
petrographic phases, 213, 216
stable isotopic analyses, 213
stable isotopic composition, 216
Mixed unit, 27, 28
Moho Transition Zone (MTZ), 24, 27
gabbro, 28
impregnated dunite, 27
massive dunite layer, 27
Mixed Unit, 27, 28
MTZ. See Moho Transition Zone
Mukalla–Sayhut basin, 369
Musandam group, 66, 68
Musandam Peninsula, 61
Musandam platform unit, 166–167, 182

N
Nahr Umr Formation, 73
Najd Fault Zone
seismicity, 307, 308
tectonic setting, 306, 307
Nappe stack, 225
Natih Formation, 72
National Earthquake Information Center (NEIC), 288
National Earthquake Information Service (NIES), 319
Nayid Formation, 79, 80
NE extension, 382
NEIC. See National Earthquake Information Center
Neo-Proterozoic glaciations, 5, 6
Dhofar, 5
Jabal al Akhdar area, 6
Mirbat area, 5
Oman’s Nafun group, 6
Precambrian polar glacial, 8
Neotethys Ocean, 83. See also Northern Oman basinal sedimentary sequence features, 69
carbonate platform margin features, 64–66
deposition within, 88, 89
oceanic within-plate volcanism, 96–97
outer platform margin features, 67–68
paleo water depth, 87, 88
paleogeographical settings, 63
sedimentary evolution, 89, 90
sedimentation, 96
stable passive margin sedimentation, 90–94
syn-obduction sedimentation, 97
uplift and erosion and instability, 94–96
NE–SW extension, 378
NE–SW-trending normal faults, 109
Newtonian creep. See Diffusion creep
NIES. See National Earthquake Information Service
NMO. See Normal move out
NNE–SSW-trending normal faults, 109
NNW extension, 382
NNW–SSE-trending right-lateral faults, 110
Non-planar (NPl) texture, 208
Normal faulting, 256–257
Normal move out (NMO), 50, 53
North Makran, 242, 243
E–W segment, fault data from, 244
Jaz Murian depression, contact with, 243–244
imbricate zone, 243, 244
lower Cretaceous pillow, 243
shallow-water limestones, 244
Upper Cretaceous shallow-water, 243
Northern Emirates, 147. See also Thrustpack forward kinematic modeling
apatite fission track
age determinations, 166, 169
dating, 164
Cenozoic up-thrusts, 163
N (cont.)
crustal architecture of Oman range, 171
deep seismic profiles, 160
depth migration of structural section, 170
erosional summital truncation, 166
Hawasina–Sumeini allochthon, 164
Late Cretaceous–Cenozoic fold-and-thrust belt, 161
Late Cretaceous–Cenozoic foreland basin, 161
Late Cretaceous–Cenozoic hinterland basin, 162
Musandam platform unit, 166–167
Neogene unconformity, 165–166
Paleozoic and Mesozoic series, 160–161
present-day architecture, 164
Semail Ophiolite plagiogranites, 168, 170
stratigraphic codes, 165
structural map, 161–162
Sumeini and Paleozoic blocks, of Dibba zone, 167, 168
synorogenic series, 165
tectono-stratigraphic unit architecture, 163
Northern Oman. See also Neotethys Ocean
carbonate platform succession, 66, 67
geological setting, 61, 62
Jurassic to Cretaceous sedimentary succession, 63
lithostratigraphical unit correlation, 63
Northern Oman Mountains of SE Arabia. See also Jebel Rawdha area
geological map of Hatta Zone, 103
neoautochthonous sediment folding, 102
stratigraphic and tectonic relationships, 103
tectonics, 101, 102
tectonostratigraphic units, 101, 102
WNW–ESE-trending fault zone, 102
NPI texture. See Non-planar texture
N–S-trending normal faults, 109
N–S-trending right-lateral faults, 110
NW–SE-trending sets, 107, 108

O
Oman–UAE ophiolite, 96–97
Object Ring Buffer (ORB), 284
Ocean-continent transition (OCT), 224
Alula-Fartak and Socotra-fracture zones, 413, 414
Ashawq-Salahah, 412, 413, 414, 415, 416
ENCENS cruises, 411, 413
rifted continental margin segment, 414, 415, 416
OCT. See Ocean–continent transition
OFZ. See Owen Fracture Zone
Oligo–Miocene extensions
E–W extension, 381
NE extension, 382
NNW extension, 382
Olistostrome, 253
Oman
basement exposures in, 4
Permo-Carboniferous Al Khlata Formation in, 10
Oman–United Arab Emirates ophiolite, 24, 25
analytical methods, 33
Aswad block, 25
early crustal section gabbros, 28–29
Fizh block, 25
geochronology, 32
geological setting, 25
Khor Fakkan block, 25
later magmatic sequence in, 29–31
mantle section, 26–27
Mg# in clinopyroxenes versus An% in plagioclase, 35
mineral chemistry, 34
MORB, 37, 39
MTZ, 27–28
obduction of, 96–97
petrography, 31–32
sheeted dyke complex and pillow lavas, 29
Ti versus V plot for lavas and dykes, 38
TiO2 versus mafic index plot, 36
U–Pb concordia plots, 35
U–Pb isotopic analyses, 34
microgabbro dykes, 31
Ophiolite, 62, 230–231
Ophiolite unit geochemistry, 36
MORB, 37, 39
Ti versus V plot for lavas and dykes, 38
TiO2 versus mafic index plot, 36
Ophiolite-bearing imbricate zone, 240
ORB. See Object Ring Buffer
Orbassoc, 284–285
Orbgenloc, 284
Orbmag, 284
Outer Makran, 242, 251, 252
Gativan Thrust zone, 252
large rounded syncline folding, 251
Outer platform margin, to basin sedimentary sequence, 76, 77
Dhera Limestone Formation, 79, 80
Dibba Limestone Formation, 79, 80, 82
Guwayza Formation, 77
Nayid Formation, 79
Sid’r Chert Formation, 79
Wahrah Formation, 78–79
Owen Fracture Zone (OFZ), 299
Paleo-fluid flow, 178
Arabian passive margin, 182
cemented veins, 189
cold meteoric water, 189
dolomite formation, 188–189
fluid inclusions properties, 183–185
homogenisation temperature, 189
hot dolomitizing fluid, 188–189
karstification, 186
lithostratigraphic units, 181
Musandam unit, 182
Northern Emirates, 179
Oman range, 179
petrographic diagenetic event, 183–185
Sumeini units, 186
tectonic regime, 182
tectono-statigraphic units, 179, 180
Paleostress analysis, 378, 382
Paleozoic basins, 364, 367. See also Cenozoic basins;
Mesozoic basins
petroleum systems, 366
Rub’ Al-Khali basin, 364
San’a basin, 364
stratigraphic chart, 366
Paravoz code, 442, 443
Pardiso solver, 478
Particle in cell method, 442
PDE. See Preliminary Determination of Epicenters
Saudi Arabian broadband deployment, 283
Scattered salt domes, 4
Section modeling, with Ceres2D. See also Ceres fluid flow modeling
erosional remnants, 195
fluid flow in thrust unit, 197
Hagab thrust, 194
lithology distribution, 195, 196
paleogene extension, 194
pore-fluid pressure simulation, 195
pre-rift deposition, 193
Semail Ophiolite, 194
water flow modeling, 195
workflow, 193

Sedimentary rocks, 74

Seismic Analysis Code (SAC), 286
Seismic hazard assessment. See also SW Arabian Shield and Southern Red Sea region
ground motion simulation, 323
Gutenberg-Richter relation, 320, 321, 322
historical seismicity, 318, 319
instrumental seismicity, 319, 320
maximum expected magnitude, 322–323
Middle Red Sea zone, 320
Northern Yemen zone, 320
regionalization, 323
seismic source zone identification, 319, 320
southern Arabian Shield zone, 320
southern Red Sea zone, 320

Seismic imaging, of ophiolite, 46
AVO effects, 56
high-incidence angle reflection stack, 53–54
merged reflection stack, in two-way time, 52, 54
near-critical incidence reflection, 51
outcropping ophiolite rocks, 47
quarry shot, 48, 49, 50
refraction stack, 50–52
standard reflection stack, 52

Seismic modeling correlation, 302
crustal depth, 304
earthquake frequency, 302
faulting mechanics, 302
magnitude frequency relation, 303
probability of occurrence, 304
reappearance time, 303
seismic and tectonic data, 302
seismic moment, 302

Seismic noise, 285

Seismic Studies Center (SSC), 295
Seismic zoning rationalization
extrusion mechanisms, 305
earthquake disaster, occurrence of, 304
earthquake hazards, reduction, 304
seismicity approach, 305
tectonic approach, 305

Seismicity
Arabian Gulf, 310
Central Arabian Graben Zone, 309
Dibba-Bandar Abas region, 313
East Sheba Ridge, 314
Eastern Yemen, 312
Hawasina-Makran Thrust region, 314
Masirah Fault system, 314–315
Najd fault zone, 307, 308

S (cont.)
Rub Al Khali-Ghudun basins, 312
Sanadaj-Sirjan ranges, 311
Zagros fold zone, 310
Seismogenic source zone identification
seismological parameter, 295
Seismogenic source zone methodology
data sources, 300, 301
data treatment, 301
database completeness, 301
missing magnitudes, 301–302
Seismotectonics setting
regional seismicity, 298, 299
regional tectonics, 296, 298
Semail Mélange (SM), 114
Semail Ophiolite, 159, 194
Northern Emirates, 45
regional geological background, 45, 46
tectonostratigraphic units, 45, 46
Semail Ophiolite plagiogranites, 168, 170
Serpentinites, 230
SIR. See Shiraz
Shiraz (SHI), 282
Short-term average-to-long-term average (STA/LTA), 285
Sidr Chert Formation, 79
Sirhan-Turayf-Widyan basins, 306
SLIM3D code, 443
SloMo code, 443
SM. See Semail Mélange
SMOW. See Standard Mean Ocean Water
Socotra Island, 404, 408. See also Gulf of Aden
kinematic reconstruction, 406
Late Eocene to Early Miocene syn-rift deposits, 408, 409
Mid Miocene to Quaternary syn-OCT, 409
Mirbat Neoproterozoic basement, 336
Mont-Haggier basement, 336
Paleocene to Mid Eocene pre-rift deposits, 408
rifting, 336
Sherubrub area, 339
Socotra Neoproterozoic basement, 336
syn-OCT sediments, 407
synthetic geological sections, 406
tectonic and sedimentary evolution, 408
topographic contours, 338
vertical movements on Socotra margin, 409
Socotra neoproterozoic basement, 336
cryogenian high-K Calc-alkaline intrusions, 357–358
East-African-Antarctic-Orogen, 358–359
granites, 342–344
Haggier dike swarm, 343, 344, 345, 346
high-temperature metamorphic stage, 356
layered gabbros, 341, 342
mafic intrusions, 356–357
mafic to intermediate plutonic sheets, 339, 341
metamorphic basement, 338, 339
Sherubrub area, 339, 340
topographic contours, 338
volcanic series, 339
Socotra-Hadbeen fault zone, 430
Socotra-Hadbeen oceanic transform fault zone, 436
South Oman, 431
Southeast Arabia passive margin
anisotropy map, 435
anisotropy orientation, 430
Arabian lithosphere evolution, 429
azimuthal-equidistant map, 432
Valanginian Sid’r Chert Formation, 95
Viscous rheology, 445
dry olivine, deformation mechanism map of, 445, 446
diffusion creep, 445, 446
dislocation creep, 445, 446
effective viscosity, 445, 446
Peierls creep, 445, 446

W
Wadi Mi’aidin, 72
Wahrah Formation, 78–79
Wasia group. See also Neotethys Ocean
ammonites, 74
Birkat al Mawz section, 72
Jebal Salakh, 74
Kharib Formation, 73
Nahr Umr Formation, 73
Nath Formation, 72
planktonic foraminifera, 74
Wadi Mi’aidin, 72
WDF. See Western Deformation Front
Western Deformation Front (WDF), 436
Western foreland area, 149
WNW–ESE-trending set, 107

Y
Yemen Infra-Cambrian sediments, 364
Yemen sedimentary basins, 362, 363
basement tectonics, 362–363

Y (cont.)
Cenozoic basins, 369, 371
infra-Cambrian sediments, 364
Mesozoic basins, 367, 369
Paleozoic basins, 364, 367
tectonic development, 363
Yemen volcanic margin, 377, 383
Yemen volcanics, 376
Al-Mahwit area, 379–381
Dhala area, 378, 379
evolution stages, 383
E–W extension, 378
extension, 377–378
faulting event chronology, 381–382
geodynamic context, 376
geology, 376–377
hotspot and plate movement relation, 382
magmatism, 377–378
paleostress analysis, 378
poles of dykes, 382
Taiz area, 378, 380

Z
Zagros, 282
Zagros belt, 223, 224
Zagros fold, 299
Zagros fold zone, 310, 435–436
Zagros Fold-and-Thrust Belt (ZFTB), 224, 233
Zagros orogenic system, 224
ZFTB. See Zagros Fold-and-Thrust Belts
Zoophycos, 88