Appendix A

Covariance Formulae

\[
\begin{align*}
\frac{n}{S_n} \rightarrow G(s) \rightarrow \frac{x}{\sigma_x^2}
\end{align*}
\]

\(n\) : white noise \quad \(x\) : colored noise

Spectral density \(S_n[(\text{dim } n)^2/\text{Hz}]\) \quad Variance \(\sigma_x^2[(\text{dim } x)^2]\)

<table>
<thead>
<tr>
<th>System</th>
<th>Formula for (G(s))</th>
<th>Formula for (\sigma_x^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-T(_1)</td>
<td>(G(s) = \frac{K}{1 + T_1 s})</td>
<td>(\sigma_x^2 = \frac{K^2}{2 T_1} S_n)</td>
</tr>
<tr>
<td>PD-T(_2)</td>
<td>(G(s) = K \frac{1 + T_D s}{(1 + T_1 s)(1 + T_2 s)})</td>
<td>(\sigma_x^2 = \frac{K^2}{2} \frac{1 + \frac{T_D^2}{T_1 T_2}}{T_1 + T_2} S_n)</td>
</tr>
<tr>
<td>P-T(_2)</td>
<td>(G(s) = \frac{K}{(1 + T_1 s)(1 + T_2 s)})</td>
<td>(\sigma_x^2 = \frac{K^2}{2(T_1 + T_2)} S_n)</td>
</tr>
<tr>
<td>D-T(_2)</td>
<td>(G(s) = \frac{K_D s}{(1 + T_1 s)(1 + T_2 s)})</td>
<td>(\sigma_x^2 = \frac{K_D^2}{2} \frac{1}{T_1 T_2 (T_1 + T_2)} S_n)</td>
</tr>
</tbody>
</table>

\[
G(s) = \frac{K \left(1 + T_{D_1}s \right) \left(1 + T_{D_2}s \right)}{(1 + T_1s)(1 + T_2s)(1 + T_3s)}
\]

\[
\sigma_x^2 = \frac{K^2}{2} \cdot \frac{T_1T_2 + T_1T_3 + T_2T_3 + \left(T_{D_1}^2 + T_{D_2}^2 \right) + T_{D_1}T_{D_2} \frac{T_1 + T_2 + T_3}{TT_2TT_3}}{S_n}
\]

\[
G(s) = \frac{K \left(1 + T_{D_1}s \right) \left(1 + T_{D_2}s \right)}{\left(1 + \frac{2D}{\omega_0} s + \frac{1}{\omega_0^2} s^2 \right)(1 + T_1s)}
\]

\[
\sigma_x^2 = \left(\frac{K}{2} \right)^2 \left[\frac{(1 + 2D\omega_0 T_1 + \omega_0^2 \left(T_{D_1}^2 + T_{D_2}^2 \right) + \left(T_{D_1}T_{D_2}\omega_0^4 \right)^2 \left(1 + \frac{2D}{\omega_0 T_1} \right)}{1 + 2D\omega_0 T_1 + \left(\omega_0 T_1 \right)^2} \right] \frac{T_1T_2 + T_1T_3 + T_2T_3 + \left(2D_z^2 - 1\right)}{TT_2TT_3 \omega_0^4} \frac{T_1 + T_2 + T_3}{S_n}
\]

\[
G(s) = \frac{K \left(1 + \frac{2D}{\omega_0 z} s + \frac{1}{\omega_0^2 z} s^2 \right)}{\left(1 + \frac{2D}{\omega_0} s + \frac{1}{\omega_0^2} s^2 \right)(1 + T_1s)}
\]

\[
\sigma_x^2 = \left(\frac{K}{2} \right)^2 \left[\frac{(1 + 2D\omega_0 T_1 + 2 \left(\frac{\omega_0}{\omega_0 z} \right)^2 \left(2D_z^2 - 1\right) + \left(\frac{\omega_0}{\omega_0 z} \right)^4 \left(1 + \frac{2D}{\omega_0 T_1} \right)}{1 + 2D\omega_0 T_1 + \left(\omega_0 T_1 \right)^2} \right] \frac{T_1T_2 + T_1T_3 + T_2T_3 + \left(2D_z^2 - 1\right)}{TT_2TT_3 \omega_0^4} \frac{T_1 + T_2 + T_3}{S_n}
\]
\[G(s) = \frac{K}{(1 + T_1 s)(1 + T_2 s)(1 + T_3 s)} \]

\[\sigma_x^2 = \frac{K^2}{2} \cdot \frac{T_1 T_2 + T_1 T_3 + T_2 T_3}{(T_1 + T_2)(T_1 + T_3)(T_2 + T_3)} S_n \]

\[G(s) = \frac{K}{\left(1 + \frac{2D}{\omega_0} s + \frac{1}{\omega_0^2} s^2 \right) \left(1 + T_1 s \right)} \]

\[\sigma_x^2 = \left(\frac{K}{2} \right)^2 \frac{\omega_0}{D} \cdot \frac{1 + 2D\omega_0 T_1}{1 + 2D\omega_0 T_1 + \left(\omega_0 T_1 \right)^2} S_n \]
Index

A
acausal 112
acceleration feedback 692
accelerometer 375
 piezoelectric 478
active stabilization 657
actuator 281
adaptive optics 17
admittance feedback 335, 343
aggregation 57
aliasing 586
 digital control 717
 oscillatory systems 596
 resonant frequency 598
AMPÈRE’s law 497
anti-aliasing filter 588
anti-notch filter 665
antiresonance 267, 273, 275, 325
architecture diagram 62
autocorrelation 737

B
back-effect 107
band pass see anti-notch filter
band stop see notch filter
band-selective amplification 665
bifurcation 426
bond graph 102
book navigator 37
budgeting
 design optimization 784
 heterogeneous metrics 780
 linear superposition 770
 max-summation 773
 metrological 782
 nonlinear 774
 quadratic summation 772
 sensivity coefficient 774
 bus access modes 621

C
camera 31
 autofocus 64
 line 33
 matrix 35
capacitance 394
CAUCHY-SCHWARZ inequality 732, 773
co-energy 75, 300
 kinetic 75
 potential 75
coil losses 531, 534
collocated MBS control 674
collocated measurement and actuation 264
colocation 29, 264, 384
colored noise 744
comb transducer
 electrostatic double comb 435
 electrostatic, longitudinal 440
electrostatic, transverse 426
communication topology 618
compensating controller 24, 639
consistent initial values 200
constitutive equation 76, 290, 294
electrodynamic (ED) transducer equations 559
electromagnetic (EM) transducer equations 508
electrostatic transducer equations 395
ELM transducer equations 300
piezoelectric material equations 454
piezoelectric transducer equations 460
reconstruction 298
constraint 223
 example 227
 holonomic 81
context diagram 64
control in relative coordinates 704
control strategy
 robust 656, 669, 675, 680
controller design
 manual 641
converter word length 614
correlation 33
correlation function 737
correlation time 748
COULOMB force 397
covariance analysis 754
 analytical covariance computation 754
covariance formulae 795
critical stability region 650
cross-correlation 738
current drive
electrodynamic (ED) transducer 563
electromagnetic (EM) transducer 526, 536, 541, 546
electrostatic transducer 420, 421, 439
piezoelectric transducer 466, 471
differential transducer
 electromagnetic 539
electrostatic 423
digital control 578, 711
 aliasing 717, 719
design steps 713
 rigid-body-dominated systems 714
digital controller 601
discontinuity 201
disk transducer 468
displacement excitation 251, 553
dissipation
 mechanical 245, 254, 330
dominant pair of poles 667
dynamic model
 analytical 20

de
DAE system 83, 118, 131
damping
 active, control loop 657
delay effects 645
design degrees of freedom 632
design optimization 14, 28, 342
design rules
 control loop, loop shaping 637
design variants 67
development process 14
dehy current losses 523
eigenfrequency 238
eigenmode 239
 common mode 242
 rigid body 242, 709
eigenvector 239
electric weight manipulator 234
electrodynamic voice coil transducer 569
electromagnetic actuator
 example 538
electromagnetic softening 516, 528
electromechanical coupling factor 350
calculation model 352
electrodynamic (ED) 565
electromagnetic 515
electromagnetic (EM) transducer 528
piezoelectric, unloaded 463
two-port parameters 357
electrostatic bearing 431
electrostatic field 392
electrostatic saddle bearing 84
electrostatic softening 401
electrostatically suspended gyro 433
energy 75, 295
 kinetic 75
 potential 75
energy conversion 350, 373
energy harvesting 374
equation of motion 232, 311, 333
equilibrium 316
EULER method 177, 188
EULER’s equations 220
EULER-LAGRANGE equations
 second kind 311
event detection 202

F
feedback
 admittance 335, 343
 analog electrical 349
 general impedance- 343
 impedance 335, 339, 367
 resistive 330
field coil 523
flow variable 90
flux linkage 294, 503
force
 COULOMB 397
 electrostatic 396
force map 318
force-displacement curve 522
frequency response 156
 experimental 160
 measurement 161
 multibody system 254
functional material 8
functional structure 5

G
gain stabilization 658
gain-phase plot see NICHOLS diagram
generalized coordinate 80
generalized coordinates 223
 electrical 290
 mechanical 288
generalized energy variables 74
generic mechatronic transducer 38
generic transducer 280
 electrodynamic (ED) 558
 electromagnetic (EM) 507
 electrostatic 394
 loaded 286, 311
 piezoelectric 459
 unloaded 284, 288
gyrator 100, 101

H
HAMILTON’s equations 87
Hamiltonian 88
harmonic oscillator 185
hierachy 58
hold element 589
hybrid phenomena 141
 simulation 201
hybrid system 140

I
impedance
 electrical 327
 mechanical 326
impedance feedback 335, 343, 385, 555
 piezoelectric 477
index
 differential 132
 reduction 138
 test 133
index-1 system 133, 195, 198
index-2 system 135, 195, 198, 199
index-3 system 125, 136, 198
inductance 504
 mechanical (electrodynamical) 565
integrability condition 226, 296, 461
interpreted Petri net 145

J

Jacobian 150, 181, 197, 226
 singularity 199

K

kinematics 216
KIRCHHOFF network 79, 89, 131

L

LAGRANGE formalism 79, 117, 299
LAGRANGE multiplier 83
Lagrangian 82, 299, 311, 462
LEGENDRE transform 76, 88, 299
line current 499
linear electrical dynamics 292, 316
linear electromechanical dynamics 292
linearization
 exact 149
 local 181, 304, 306, 399, 512
LISSAJOUS figure 486
loop shaping 656
LORENTZ force 496, 506, 561
LORENTZ transducer 558
low-pass 662

M

magnetic bearing 539
 example 544
magnetic flux 499
magnetization curve 500
magnetomotive force 499
max-norm 770

MAXWELL’s equation 392, 497
MBS zeros 260, 268
mechanical network 96
mechatronic system 3
migration 244, 268
minimal coordinates 224, 232
mirror frequency 586
modal coordinates 243
modal matrix 243
model
 analytical 13
 causality 112
 computer 13, 22
 equation-based 208
 function-oriented 56
 high-fidelity 54
 low-fidelity 54
 modular 118
 multi-port 89, 101, 120
 object-oriented 125, 208
 qualitative 53, 55
 quantitative 53
 signal-based 206
 signal-oriented 123
model accuracy 54
model hierarchy 52
model reduction 644
Modelica 126, 129
modeling paradigm 53, 72
multibody load 362
multibody system 213
 conservative 233
multi-domain model 99
multimode damping 370
multi-phase drive 555
multiple-mass oscillator 259

N

negative phase shifter 662
net-state model 144, 148
network
 analogous electrical 100
 electrical 93
KIRCHHOFF 89
mechanical 96
multi-domain 99
network element 89
NEWTON-RAPHSON iteration 197, 199
NICHOLS diagram 650
noise source 749
wide-band 755
non-collocated MBS control 680
non-collocated measurement and actuation 266
notch filter 663
numerical integration 173
DAE systems 194
differential equation 173
explicit 174
implicit 174, 196
numerical stability 177
absolute 179
NYQUIST band 598
NYQUIST criterion 645
intersection formulation 648
NYQUIST frequency 586

O
object-oriented modeling 125
observability 700
open-loop transfer function 637
operating point 399, 408, 431, 437, 504, 513, 542, 545, 554
optomechatronics 31
oscillating generator 373
oscillation damping 370
oscillation node 710

P
PARSEVAL’s theorem 739
permanent magnet 512
Petri net 145
PFAFFIAN Form 81, 225
phase contraction 665
phase separation 663, 665
phase stabilization 658
phase-lead stabilization 671
PID controller 660
compensating 24, 662, 669
robust 27
piezo actuator 34
piezo platform 35
piezo ultrasonic motor 35, 484
piezoelectric effect 452
piezoelectric materials 457
laminated structures 458
plate capacitor 394
polynomial electromechanical dynamics 293
positive phase shifter 664
power back-effect 279
power density 751
power flow 106
power port 104
power spectral density 164, 739
pre-filter 634
design 673
product accuracy 779
proof mass damper 700
pull-in
 electromagnetic 533
 lateral 441
 phenomenon 406
Q
q-transfer function 606
q-transform 604
quantization 614
quantization curve 615
R
random process 736
 ergodic 736
random variable 730
RAYLEIGH damping 248
real-time 622
reciprocal transducer 298
redundant coordinate 81
Index

reluctance 501
 transducer 506
reluctance force 496, 509
reluctance stepper motor 549
 example 556
 multi-phase drive 555
 single-phase drive 552
resistive coil losses 523
resistive feedback 330
resistive shunting 343
resonator 370
rest position 419, 436, 442, 548
rigid body 217
rigid-body eigenmode 706
rigid-body-dominated systems 714
RMS value 750
rotational electrodynamic (ED)
 transducer 567
RUNGE-KUTTA 174, 201

S
sampled frequency response 593
sampling 581
saturation curve 617
self-sensing 376
 actuator 377
 principle 376
sensitivity coefficient 774
sensor 281
serial bus systems 619
set of states 142
signal coupling 107
signal generator 193
signal-coupled model 108
simulation 48, 172
 computer-aided 172
single-mass oscillator 250
 control 21, 639, 668
single-phase drive 552
single-step method 174, 190
skyhook principle 688
 design rules 694
small-signal response 320
spillover 644
stability
 robust 654
stability region
 critical 650
 robust 654
stabilization
 active 657
standard deviation 733
state controllability 702
state observability 702
state space model
 multibody system 237
state transition diagram 66
state transition matrix 186
Statecharts 146
statistical certainty 735
statistical independence 732
stepper motor
 reluctance 549
stiff system 181, 256
stiffness
 electrodynamic 562
 electromagnetic 513, 516
 electrostatic 401
 piezoelectric 464
stochastic dynamic analysis 27, 727
stochastic input 728
structured analysis 728
structured analysis 55
system 56
system model 63
systems design 9

T
three-mass oscillator 261, 263
tilting armature 519
time delay element 592
transducer 30
 current-drive 322
 electromagnetic (EM) 514
lossy 330
multibody loads 362
piezoelectric 449
sensitivity 328
stability 329
voice coil, electrodynamic (ED) 569
voltage-drive 321
transducer stiffness
differential 317
transfer function 154
multibody system 252
transfer matrix 323
controllability and observability 703
electrodynamic (ED) transducer 563
electromagnetic (EM) transducer 527, 533
electrostatic plate transducer 409, 422
generic transducer 323
generic transducer, lossy 338
multibody system 257
piezoelectric transducer 464
transformed frequency domain 604
transformer 94, 101
transmissivity 687
trapezoid method 179, 182, 196
traveling wave 485
TUSTIN transform 602	uncontrollability 707, 710
unmodeled eigenmodes 644, 679, 717

V
validation 50
analytical model 51
experimental model 50
velocity feedback 689
velocity measurement 691
verification 10, 50
computer model 13
design verification 10
simulation model 50
UML model 70
vibration control 570
vibration isolation 686
passive 686
voice coil transducer 570
voltage drive
electrodynamic (ED) transducer 564
electromagnetic (EM) transducer 525, 532, 548
electrostatic transducer 406, 438
piezoelectric transducer 464
V-process model 17

W
WHEATSTONE bridge 379
WHEATSTONE self-sensing 381
white noise 742
discrete 744
quasi-continuous 743
WIENER-KHINCHIN relation 739

Z
z-transfer function 602

U
ultrasonic transducer 483
uncertainty 642, 656