Index

A
Abras de Mantequilla wetland criteria for, 157
economic factor, 157
environmental factor, 158
factor and actors, 157
Guayas river basin, 155, 156
political factor, 156–157
social factor, 158
Alacant basin, 198, 199
Alluvial deposits, 303
Ancon system, 216
Antillana de Acero. See Vento aquifer, vulnerability to contamination of
Aquifer recharge capacity (Mexico)
conceptual model
Darcy’s equation, 192
isohyets, map of, 191
rainfall estimation, 192
geohydrological condition, 189, 190
hydrological variables, 189, 190
hydrologic analysis, 188
location area, 187–188
surface water, situation of, 189, 191
water balance, basin of, 189, 190
watersheds, 188, 189
Aquifer vulnerability
Salamanca
contamination, 41–42
pollution map, 44
SUW, 44
Santo Tomás watershed (Viñales National Park), 95
description, 96–97
determination coefficient, 100
karst landforms, 99
methodology, 97–98
PaPRIKa method, 95–100
vulnerability maps, 98–99
Vento basin contamination (see Vento aquifer, vulnerability to contamination of)
Aquifer Vulnerability Index (AVI) method, 78–79
ArcGIS 9.2, 162
Artemisa formation, 341
AVI method. See Aquifer Vulnerability Index (AVI) method

B
Bacteriological water quality (Cuba)
composition of water, 272, 273
control, 273
environmental refugees, 272
harmful effects, 272
for human and animal consumption, 274
MPN technique, 274–275
waterborne disease, 272
water quality management, 272
water shortage, 272–273
Balance evaluation
dissolved oxygen, 260
DQO–permanganate, 260
iron, 258
manganese, 258
nitrates, 259
sulphates, 259
Balance evaluation (cont.)
thermotolerant bacteria, 260
total phosphorus, 259
Bellamar formation, 344

C
Calcite Saturation Ratio (CSR), 64
Campo de Dalías coastal wetlands (Spain), SW-GW interaction
box-plot diagrams, 148, 149
characteristics, 146
datasets, 148
location, 146
methods, 147–148
SO$_4^{2-}$ and Cl$^-$, 148, 150
triangle diagram, 150, 151
Canilla system, 216
Canimar formation, 343–344
Carbonates dissolution, 227
Cartography stage, proposal for, 8
Chelsea Water Company (London), 30
Chemical denudation, in coastal limestone aquifer (Havana Southern Plane), 47
carbonate dissolution, 53
CO$_2$ soil contents, 53, 54
at discharge zone, 51
in Guía-Quivicán basin, 49–51
human activity and karst aquifer, 53
in karst regions, 48, 51, 52
recharge of aquifer, in discharge zone, 51
at recharge zone, 49–51
water hardness, 48
Chiapas, wastewater treatment in.
See Wastewater treatment: system design (Chiapas)
Coastal (limestone) aquifer
chemical denudation in (Cuba), 47
carbonate dissolution, 53
CO$_2$ soil contents, 53, 54
at discharge zone, 51
Guía-Quivicán basin, 49–51
human activity and karst aquifer, 53
in karst regions, 48, 51, 52
recharge of aquifer, in discharge zone, 51
at recharge zone, 49–51
water hardness, 48
of Guanahacabibes, seawater intrusion in (Cuba)
alluvial deposits, 303
analytical error calculation, 306
ecosystems, 302
feeding zone, 303
geomorphological characteristics, 302
geophysical surveys, 302
Great Basin of the Northwest
Caribbean, 303
guane basin sub-zone, 304–305
hydraulic gradients, 303
hydrogeological basin, 302
hydrological results, interpretation of, 305–307
inverse model, 306, 307
lithological view, 303
marine deposits, 303
materials, 305
mean annual temperature, 302
methods, 305
natural water, 302
neogene, 303
pro-alluvial deposits, 303
sector study, 308
transit and storage zone, 303–304
Guía-Quivicán basin, hydrogeochemical process effect, 57–65
Coastal lagoons, 278
Cojimar formation, 343
Contamination
of groundwater (see Groundwater pollution, vulnerability of)
of surface water (Czech Republic)
balance evaluation, 258–260
cost recovery, 254
European legislation, 255
hydrographic basin, 254
Kruzberk water reservoir, 255–256
water and aquatic ecosystems, 254
water quality profiles, 256, 257
vulnerability to, 41–42
of Vento aquifer, 69–76
CO$_2$ soil contents, in Havana Southern Plane, 53, 54
CSR. See Calcite Saturation Ratio (CSR)
Cuyaguateje river basin, 213

D
DEM. See Digital elevation model (DEM)
Diagnostic stage, proposal for, 6, 7
Diffraction of ray-X (RRD), 295, 299
Digital elevation model (DEM), 98, 163
Discharge zone
chemical denudation at, 51
recharge of aquifer in, 51
Distributed Parameter Model, 124
Distributed water balance method. See Water balance method (Cuenca-Ecuador)
Drinkable water system, 132
Dry season, land application in, 23

E
EIA. See Environmental Impact Assessment (EIA)
Electrical resistivity tomography (ERT), 83–84
Emporda basin, 83–84
ENS. See Environmental National Strategy (ENS)
Environmental impact, of human activity (Salamanca)
contamination map, aquifer vulnerability to, 41–42
EIA, 40
geomorphological parameter, 42–43
geotechnical parameter, 43
GIS techniques, 40
impact characterisation map, 43, 44
impact identification map, 43, 44
natural space, management of, 40
pollution maps, aquifer vulnerability to, 43, 44
protected natural areas, management of, 45
stormwater aggressiveness map, 43
surface water quality map, 40–41, 43
SUW, vulnerability to, 42, 44
territorial land use planning, 44
Environmental Impact Assessment (EIA), 40
Environmental National Strategy (ENS), 320
EPIK method, 88, 92, 93
ERT. See Electrical resistivity tomography (ERT)
Escherichia coli, 264, 267–268
Evapotranspiration potential (ETP), 14, 24, 25, 27, 122, 124

F
Fecal coliforms
E. coli, 268
FC ratio, 268
Pearson correlation coefficient, 267
specific media, 267
statistical analysis, 268
Fecal contamination (Las Terrazas)
aquatic ecosystems, 268
Escherichia coli, 267–268
experimental methods
Cochran-Bartlett test, 265
colony forming units, 264
E. coli, 264
Kolmogorov-Smirnov test, 265
membrane filtration technique, 264
sampling stations, 264, 265
fecal coliforms (see Fecal coliforms)
microbiological quality of aquatic ecosystems, 265–267
fecal coliform, logarithms of, 266
predictive diagnosis, 267
tropical environmental conditions, 266
Tukey HSD test, 266
of waters, 266, 267
sampling stations, 264, 265
Filter maturing period, 30
Flood risk assessment, of Yeltes river basin (Salamanca), 113
geomorphological method, 117
historical method, 115–116
hydraulic modeling, 116, 119
hydrologic-hydraulic method, 116
industrialization, 114
results, 117–119
Francisco formation, 341
Fuentes formation, 223

G
Gallinera basin, 199
Garajonay National Park
APHIG, 244
Canary Islands, 244
cluster analysis, 245
hydrochemical data analyses, 245
La Gomera, 246
Mg2+ element, 247
Na+-Cl- ionic ratio, 247
PCA results, 247, 248
Piper diagram, 245, 246
spring-group distribution, 247, 249
spring-waters compositional data, 246
Geographic Information System (GIS), 40, 42, 72, 74, 75, 98, 124, 127, 162, 166, 197, 279, 281, 338
Geological patrimony, 331
Geology, of western Cuba. See Western Cuba, geology of
Geomorphological method, 117
GEOSITES programme, 331
GIS. See Geographic Information System (GIS)
Gravity filters, 30
Green filter (Mexico), See Land application system (LAS)

Groundwater pollution, vulnerability of, 77
AVI method, 78–79
Dar Zarrouk (DZ) parameters, 79
electrical surveys, purpose of, 79
equivalence principle, 80, 82
ERT, at Emporda basin, 83–84
genophysical approach, 79–80
in Guanahacabibes National Park
EPIK method, 88, 92, 93
factors, 89–90
geological and geomorphological setting, 88–89
high vulnerability, 91
karst aquifers, characteristics of, 87–88
map removal sensitivity analysis, 90, 92
moderate vulnerability, 91
morphological feature, 88–89
single parameter sensitivity analysis, 90–92
very high vulnerability, 91
vulnerability maps, 87, 91, 93
in karst aquifers, 96
land management, 78
mapping, 80
methodology, 80
protection, 78
resistivity sounding method, 80
soil parameters vs. electrical resistivity, 80
VES survey, at Valls basin, 81–83

Groundwater protection zones, in Viñales National Park (Cuba), 106–108
gemorphology, 105
Karst aquifers, 103–104
location, 104–105
stages, 105–106
vulnerability map, 106

Guanahacabibes National Park (Cuba),
groundwater vulnerability in
EPIK method, 88, 92, 93
factors, 89–90
geological and geomorphological setting, 88–89
high vulnerability, 91
karst aquifers, characteristics of, 87–88
map removal sensitivity analysis, 90–92
moderate vulnerability, 91
morphological feature, 88–89
single parameter sensitivity analysis, 90, 92
very high vulnerability, 91
vulnerability maps, 87, 91, 93
Guasasa formation, 340–341
Guayas river basin, 155, 156
Güínes formation, 343

Güira-Quivicán basin, water quality in
geologic framework, 59–60
material and methods, 58
water capacity, change in, 65
water physicochemical characteristics, 60–65

H

Hanábana catchment (Cuba)
location, 204
precipitations variability, 206
rainfall
Mann-Kendall statistical parameter, 207
statistics, 207
variability, 205–207
runoff analysis
analogy between the rivers, 205
Batista’s formula, 205–206
Damuji River, 208
lineal simple regression, 208–209
regional formula for, 205
values for, 209, 210
study area, 204

Havana Southern Plane
chemical denudation, 47
carbonate dissolution, 53
CO2 soil contents, 53, 54
at discharge zone, 51
human activity and karst aquifer, 53
in karst regions, 48, 51, 52
recharge of aquifer, in discharge zone, 51
at recharge zone, 49–51
water hardness, 48

Güira-Quivicán basin, water quality in
geographic framework, 58–59
geologic framework, 59
hydrogeologic framework, 59–60
material and methods, 58
water physicochemical characteristics, 60–65
Heavy metals contamination (Vento basin), 73–74
Historical method, 115–116
Human activity
 environmental impact (see Environmental impact, of human activity (Salamanca))
 and karstic aquifer, 53
Human consumption, water supply for, 29
Hydraulic modeling, 116, 119
Hydraulic resources management. See Sagua la Grande basin, hydraulic resources management (Cuba)
Hydraulic system, formulation of, 132
Hydrogeochemical processes effect, over water quality (Guirá-Quivicán basin), 57
 extracted water, chemical composition of, 57
 geographic framework, 58–59
 geologic framework, 59
 hydrogeochemical zones, 63–64
 hydrogeologic framework, 59–60
 material and methods, 58
 water capacity, change in, 64
 water physicochemical characteristics, 60–65
Hydrological indicators
 Alacant basin, 198, 199
 basins analysis, 197
data collection, 197
 Gallinera basin, 199
 location, 196
 preliminary processing, 197
 rainfall event, 198
 rainfall runoff relationship, 198
 study area, 196–197
Hydrological patrimony, 330, 331
Hydrologic-hydraulic method, 116
Hydrologic karst system, 141–142

I
Intrinsic vulnerability (Vento basin), 74–75
Inverse mass-balance model
 application
 Aguascalientes Valley/Graben, 238
 chemical composition for, 240
 hydrogeochemical inverse, 240
 study area, 238, 239
balance error, 236
BALANCE program, 234
hydrochemical patron, 235–236
ionic delta calculation, 236
mixture analysis, 237–238
MODELAGUA, 234
 concentration factor, 235
 conservative ion, 235
 NETPATH program, 234
 water-rock process, 236
Irrigation system. See Watering system
 “Island of Cuba,” Alexander von Humboldt work on
 description, 348–349
 final considerations, 350
grographer, 348
 Karst features, 349–350
 physical studies of nature, 348
 rock formations, 349
water resources, 350

J
Jaimanitas formation, 342
Jarama Aquifer 3D model
 boreholes cross-sections, 165
data and methodology
 ArcGIS, 162
digital elevation model, 163
 vertical electrical soundings, 163
environmental significance, 164
 GIS techniques, 166
groundwater resource evaluation, 162
 isopiezometric model, 166
 location map, 162, 163
 visuals, 165
Jaruco formation, 343

K
Karst aquifer(s)
 characteristics, 87–88
groundwater
 protection, 103
 vulnerability, 96
 and human activity, 53
Karstic waters
 chemical denudation processes, 215–216
 chemical evolution and empirical relationships
 CO₂-H₂O-CaCO₃ concentrations, 213
 Guajabíon karst massif, 215
 Mil Cumbres stream, 214, 215
 Cuyaguateje river basin, 213
 hydrogeochemical study, 213
 physical-chemical parameters, 212
Karst landforms, 342
Karst mountain system
biogeochemical hydrodynamics, 142–143
features, 138–139
hydraulic connections, 142
location map, 139
physical hydrodynamics, 142–143
social and economic development, 143
social vulnerability and natural risks, 143–144
surface runoff, 141

L
La Gomera acquifers. See Garajonay National Park
l’Albufera de Valencia Natural Park
ecosystems, 278
illegal drugs, 281
overlapping, 283
Spain, 277
traditional irrigation system, 281
water quality, 278
Land application system (LAS), 12. See also Wastewater treatment
advantages, 24
dimension, 24
in dry season, 23
extensive system of treatment, 22
forest system, 23
interactions, 23
methodological framework
financial analysis, 15
technical analysis and main design variables, 14
microorganisms, 23
results
financial analysis, 16–18
technical analysis and main design variables, 15–16
size determination, 23
Spanish and European Legislation, 12
surface, 23–24
vegetation, 23
water balance, 23
in wet season, 23
LAS. See Land application system (LAS)
Las Batuecas-Sierra de Francia
flood risk assessment (see Yeltes river basin, flood risk assessment of (Salamanca))
water resources (see Environmental impact, of human activity (Salamanca))
Las Terrazas fecal contamination. See Fecal contamination (Las Terrazas)

Liquid chromatography tandem mass spectrometry (LC-MS/MS), 281
Los Carneros lagoon, seasonal dynamic of vegetation (Cuba)
abundance curve, 313
aquatic and swampy plants, 310
Bacopa monnieri, 313
drought season, abundance curve, 314
ecosystem, 310
geoelements, 311
humidity process, 312
methodology, 311
phytoregionalization, 310
precipitation, 312
in Sabanalamar-San Ubaldo Handled Floral Reserve, 311
seasonal dynamics stages, 312–314
taxones and districts, 311
work area, 311

M
Map removal sensitivity analysis, 90, 92
Marine deposits, 303
Mean annual total recharge (MATR), 50
Miner-metallurgic activity (Cuba)
chemical analysis
iron sulphate, 297
microorganisms, 298
microphotograph, 299
pH determinations, 297, 298
polluting elements, 297, 298
primary ores, 297
RRD, 299
Santa Lucia, 297
chemical-physical evaluation, 294
materials and methods, 296
castellano, 296
castellano, 296
chemical analysis, 296
MEB, 295–296
mineralogical analysis, 296
samples, 294, 295
results
chemical analysis, 297–299
current environmental situation, 296
Most probable number (MPN) technique, 274–275

N
National Park(s). See Specific National Parks
National Park Guanahacabibes
deep aquifer structure, 185
investigation
Index

conceptual pattern, 183
Cuyaguateje basin, 183
submarine discharges, 183–184
Paso Real formation, 186
regional hydrogeologic frame
inferior cretacic aquifer complex
guasasa and Esperanza, 181–182
neogene-quaternary complex
(N1-Q III), 181
National System of Protected Areas (SNAP), 321, 322
Natural Depuration Systems (NDS)
vs. conventional techniques, of wastewater
treatment, 4–5
protected spaces management, integration
with, 5
Natural space, management of, 40
NDS. See Natural Depuration Systems (NDS)
Neogene, 303
Normative stage, proposal for, 7–8

P
PaPRIKa method
for aquifer vulnerability assessment, 95–100
attributes, 97–98
Paso Real formation, 88, 181, 186, 342
Pinalilla formation, 341–342
Polluting agents removal, sand
filtration in, 33–34
Potential evapotranspiration. See Evapotranspiration
potential (ETP)
Pro-alluvial deposits, 303
Programmatic stage, proposal for, 8
Promontorio de Cabrera
dry period, 175
gеолог and geomorphologic
characteristics, 172–173
hydrodynamics, 174
hydrology and hydrogeology
dry period, 175
elements, 174
mountainous massif, 173
physical-chemical parameters, 175, 176
wet period, 175, 176
study zone location, 171, 172
Protected natural areas, management of, 45
Protected natural space, 5, 330, 331
Protected natural wetlands
l’Albufera de Valencia Natural Park
coastal lagoons, 278
hydrology, 278
illicit drugs, 281, 282
LC-MS/MS, 281
marshland, 278
SPE, 281
urban and agricultural
contextualization, 280
surface waters, illicit drugs in
coastal lagoons, 278
fragile systems, 278
mediterranean coastal wetlands, 278
methodology, 279–281
Q
Quick filter, 30
Quilamas
flood risk assessment (see Yeltes river
basin, flood risk assessment of
(Salamanca))
water resources (see Environmental impact,
of human activity (Salamanca))
R
Ramsar wetland management (Ecuador)
decision-making process, 154, 158
economic factor, 157
environmental factor, 158
methodology
Abras de Mantequilla, case study,
155–157
cellectual and analytical framework,
155, 156
Guayas river basin, location of, 156
political factor, 156–157
research, 154
role, 158
social factor, 158
Recharge zone, chemical denudation at, 49–51
Regional hydrogeologic model, 182
RRD. See Diffraction of ray-X (RRD)
Rural community wastewater treatment. See Wastewater treatment:in
rural communities
S
Sagua la Grande basin, hydraulic resources
management (Cuba)
Causal diagram, 131
drinkable water system, 132
Forrester diagram, 132
hydraulic system, formulation of, 132
hydrographical basin, 130
Sagua la Grande basin (cont.)
location, 130
negative output, 131–132
positive output, 131
recommendations, 134
simulation model, 132
situation of water, 133–134
socio-economic point of view, 130
Vensim 5.9 software, usage of, 132
watering system, 132
Sand filtration
materials and methods, 30–32
potentialities of use, 34
recommendations, 35
in removal of polluting agents, 33–34
schmutzdecke biological layer, formation of, 30, 35
water supply, for human consumption, 29
Santa Lucia, 297
Santo Tomas cave system (Cuba)
Arroyo Peñate, 140, 141
environmental management, 137–138
karst mountain system
biogeochemical hydrodynamics, 142–143
features, 138–139
hydraulic connections, 142
location map, 139
physical hydrodynamics, 142–143
social and economic development, 143
social vulnerability and natural risks, 143–144
surface runoff, 141
Sierra de Quemado, southeast partial view of, 140
Santo Tomás watershed (Cuba)
aquifer vulnerability in, 95
description, 96–97
determination coefficient, 100
karst landforms, 99
methodology, 97–98
PaPRIKa method, 95–100
vulnerability maps, 98–99
deposits in, 96–97
Saturation Index (SI), 224, 225
Schmutzdecke biological layer, formation of, 30, 35
SEA. See Strategic Environmental Assessment (SEA)
Seasonal dynamic of vegetation, at Los Carneros lagoon (Cuba)
abundance curve, 313
aquatic and swampy plants, 310
Bacopa monnieri, 313
drought season, abundance curve, 314
ecosystem, 310
geoelements, 311
humidity process, 312
methodology, 311
phytoregionalization, 310
precipitation, 312
in Sabanalamar-San Ubaldo Handled Floral Reserve, 311
seasonal dynamics stages, 312–314
taxones and districts, 311
work area, 311
Seawater intrusion, in Guanahacabibes.
See Coastal (limestone) aquifer
SI. See Saturation Index (SI)
Sierra de Gredos mountain
biodiversity, 330
didactic divulgation of patrimony, 334–335
essential features, 332
godiversity, 330
geological patrimony, 331
GEOSITES programme, 331
hydrological patrimony, 330, 331
inventory of A/L/PGI H, 336–337
landscape quality, 330
mediterranean climate, 330
methodology, 330–332
natural patrimony map, 335
origin, 330
PGI H, 333
protected natural space, 330, 331
quaternary neotectonics, 332
spatial planning tool, 338
typologies, 332
variation of A/L/PGI H, 333
world heritage, 331
Sierra de Quemado, southeast partial view of, 140
Simplified Water Quality Index (SWQI), 40
Simpson, James, 30
Single parameter sensitivity analysis, 90–92
Slow filter, 30
Slow sand filtration. See Sand filtration
SNAP. See National System of Protected Areas (SNAP)
Solid-phase extraction (SPE), 281
Solid Urban Waste (SUW), 42, 44
Spanish and European legislation, on LAS, 12
SPE. See Solid-phase extraction (SPE)
Stchouzkoy-Muxart, 224
Strategic Environmental Assessment (SEA), 40
Superficial hydrology
dry period, 175
elements, 174
mountainous massif, 173
physical-chemical parameters, 175, 176
wet period, 175, 176
Surface water, contamination and protection of (Czech Republic)
balance evaluation
dissolved oxygen, 260
DQO–permanganate, 260
iron, 258
manganese, 258
nitrates, 259
sulphates, 259
thermotolerant bacteria, 260
total phosphorus, 259
cost recovery, 254
European legislation, 255
hydrographic basin, 254
Kruzberk water reservoir, 255–256
water and aquatic ecosystems, 254
water quality profiles, 256, 257
Surface water and groundwater (SW-GW) interaction (SE Spain)
andarax catchment
aquifer geology, 286
data, 287
detritic aquifer, 286
ecosystems, 291
hydrological peculiarities, 286
longitudinal evolution, 288
national park, 286
natural enclave, 286
nitrate content vs electrical conductivity, 289
physico-chemical parameters, 287
schematic representation, 287
semi-arid areas, 286
watercourses, 286–287
water quality, 285
andarax river
electrical conductivity, 288, 289
groundwater, 288
longitudinal evolution, 288–289
nitrate content, 288, 289
sulphate concentrations, 288
surfacewater, 288
triangle diagram, 289
in Campo de Dalíàs coastal wetlands
box-plot diagrams, 148, 149
characteristics, 146
datasets, 148
location, 146
methods, 147–148
SO²2-and Cl -, 148, 150
triangle diagram, 150, 151
nacimiento river
magnesium sulphate and conductivity, 289
perennial surface flow, 289
traditional farming activities, 290
rambla de tabernas river, 290
Surface water quality map, 40–41, 43
Sustainable management, of hydraulic resources (Sagua la Grande basin)
Causal diagram, 131
drinkable water system, 132
Forrester diagram, 132
hydraulic system, formulation of, 132
hydrographical basin, 130
location, 130
negative output, 131–132
positive output, 131
recommendations, 134
simulation model, 132
situation of water, 133–134
socio-economic point of view, 130
Vensim 5.9 software, usage of, 132
watering system, 132
Sustainable water resources (Cuba), 320–321
annual volume, 324
appreciable variations, 324–325
capacity, 319
commercial exchange, 324
conventional indicators, 323
ecological stress, 324
environmental flow, 324
Environmental National Strategy, 320
factors, 321
fresh water potential, 320
homo sapiens, 320
management, 325–326
National System of Protected Areas, 321–322
problems
conventional indicators, 323
reports, 322–325
punctual experiences, 326
radical and quick decrease of water, 325
re-circulation, 326
reports, 322–323
water efficiency, 325
water saving, 325
work lines, 326
SUW. See Solid Urban Waste (SUW)
Sweeping electronic microscope model, 295–296
SW-GW interaction. See Surface water and groundwater (SW-GW) interaction
SWQI. See Simplified Water Quality Index (SWQI)
System CO₂-H₂O-carbonates
experimental simulation, 226–227
karst processes, 228
paleoclimatic research, 223
thermodynamic and kinetic aspects
carbon dioxide, 225
Saturation Index, 224
Stchouzkoy-Muxart, 224

T
Thematic Map (TM), 184
Thermotolerant. See Fecal coliforms
Thornthwaite, 122
3D boreholes, 164
3D reconstruction, 162

V
Valls basin, VES survey at, 81–83
Vedado formation, 342–343
Vento aquifer, vulnerability to contamination of
environmental magnetism, 71–72
geoelectrical methods, 71
geologic interpretation, of seismic information
Antillana de Acero, area of, 72
Lenin School, area of, 72
gemorphologic interpretation, 73
gephysical investigation, 69
heavy metals contamination, 73–74
intrinsic and specific vulnerabilities, 74–75
lithologic composition, 70
seismic method, 71
Vertical electrical sounding (VES), 71, 163
at regional scale, 85
Valls basin, survey at, 81–83
Vinéales National Park (Cuba)
groundwater protection zones in, 106–108
gemorphology, 105
Karst aquifers, 103–104
location, 104–105
stages, 105–106
vulnerability map, 106

W
Wastewater treatment. See also Water treatment, in homes, sand filtration for
in rural communities, 3
cartography stage, proposal for, 8
diagnostic stage, proposal for, 6, 7
environmental point of view, 5
NDS vs. conventional techniques, 4–5
normative stage, proposal for, 7–8

Santo Tomás watershed, aquifer
vulnerability in, 95
description, 96–97
determination coefficient, 100
karst landforms, 99
methodology, 97–98
PaPRIKa method, 95–100
vulnerability maps, 98–99
Vocational School Lenin. See Vento aquifer, vulnerability to contamination of
Vulnerability
of aquifers, 96
in Santo Tomás watershed (see Santo Tomás watershed (Cuba))
to contamination, 41–42
of Vento aquifer (see Vento aquifer, vulnerability to contamination of)
of groundwater pollution, 77
AVI method, 78–79
Dar Zarrour (DZ) parameters, 79
electrical surveys, purpose of, 79
equivalence principle, 80, 82
ERT, at Emporda basin, 83–84
gophysical approach, 79–80
in Guanahacabibes National Park (see Guanahacabibes National Park (Cuba))
land management, 78
methodology, 80
protection, 78
resistivity sounding method, 80
soil parameters vs. electrical resistivity, 80
VES survey, at Valls basin, 81–83
to pollution maps, 43, 44
to SUW, 42, 44
Vulnerability map
Guanahacabibes National Park, 87, 91, 93
Santo Tomás watershed, 98–99
Viñéales National Park, 106
programmatic stage, proposal for, 8
protected spaces management, NDS
integration with, 5
sanitation problems, 5
for social and environmental improvement, 11
financial analysis, 15–18
land application system, 12
location map, 13
Spanish and European legislation on LAS, 12
study area, description of, 12
technical analysis and main design variables, 14–16
system design (Chiapas)
development, 22
La Angostura, climatologic data of, 24
land application system, 22–24
methodology, 22
parameters, 25
results, 24–27
water balance of treatment system, 26
Water balance method (Cuenca-Ecuador), 121
Distributed Parameter Model, 124
ETP, 122
factors, 122
GIS, 124
hydrological balance, 121–122
methodology, 123–126
precipitation, 124, 125
results, 127
soil type, 124
study area, 122–123
superficial covering, 124, 125
temperature, 124
water excess, 126–127
watershed hydrological balance, 123, 124
Water framework directive (WFD), 146, 152
Watering system, 132
Water treatment, in homes, sand filtration for.
See also Wastewater treatment
materials and methods, 30–32
potentialities of use, 34
recommendations, 35
in removal of polluting agents, 33–34
schmutzdecke biological layer, formation of, 30, 35
water supply, for human consumption, 29
Western Cuba, geology of
aquifers, 340–344
archipelago, 340
geological formations, of aquifers
Artemisa, 341
Bellamar, 344
Canimar, 343–344
Cojimar, 343
Francisco, 341
Guasasa, 340–341
Güines, 343
Isla de la Juventud, 344–345
Jaimanitas, 342
Jaruco, 343
karst landforms, 342
metamorphic rocks, 344
Paso Real, 342
Pinalilla, 341–342
Vedado, 342–343
gеology map, 340
Wet season, land application in, 23
WFD. See Water framework directive (WFD)
World heritage, 331

Y
Yanuncay river, water excess in, 126–127.
See also Water balance method (Cuenca-Ecuador)
Yeltes river basin, flood risk assessment of (Salamanca), 113
geomorphological method, 117
historical method, 115–116
hydraulic modeling, 116, 119
hydrologic-hydraulic method, 116
industrialization, 114
results, 117–119