References

[59] Hecht, F., Borouchaki, H.: Mesh Adaption by Metric Control for Multi-scale Phenomena and Turbulence, AIAA-97-0859-
[81] Novozhilov, V.V.: The theory of thin shells. Walters Noordhoff Publ., Groningen (1959)
Characteristics of the Membrane System

In order to prove that the characteristic equation of the membrane system (1.68) expressed in terms of the displacements is equivalent to equation (1.71), we shall proceed as follows. First, let us replace system (1.68) by another equivalent one, by considering as unknowns \(u_1, u_2, u_3\), and the supplementary unknowns \((T_{11}, T_{22}, T_{12})\). Inverting the matrix of stiffness \(A^{\alpha\beta\lambda\mu}\) involved in (1.69), system (1.68) is clearly equivalent to:

\[
\begin{align*}
-D_1 T_{11} + b_{11} u_3 - B_{11\alpha\beta} T^{\alpha\beta} &= f_1 \\
-D_1 T_{12} + b_{12} u_3 - B_{12\alpha\beta} T^{\alpha\beta} &= f_2 \\
-b_{11} T_{11} - b_{22} T_{22} - 2b_{12} T_{12} &= f_3 \\
\end{align*}
\]

(A.1)

with

\[
\begin{align*}
D_1 u_1 - b_{11} u_3 - B_{11\alpha\beta} T^{\alpha\beta} &= 0 \\
D_2 u_2 - b_{22} u_3 - B_{22\alpha\beta} T^{\alpha\beta} &= 0 \\
\frac{1}{2} (D_1 u_2 + D_2 u_1) - b_{12} u_3 - B_{12\alpha\beta} T^{\alpha\beta} &= 0 \\
\end{align*}
\]

(A.2)

where \(B_{\alpha\beta\lambda\mu}\) are the coefficients of the compliance matrix (inverse of the stiffness matrix of \(A^{\alpha\beta\lambda\mu}\), see (1.57). With that order of the unknowns and equations, we obtain a system of 6 equations with the 6 unknowns \((u_1, u_2, u_3, T_{11}, T_{22}, T_{12})\). We recognize (see (1.65) and (1.44) for comparison) the membrane tension system in (A.1) and the rigidity system in (A.2), unless concerning the membrane tensions \(T^{\alpha\beta}\). By analogy with the results of sections 1.5.2 and 1.7.2, we should define the indices \((1, 1, 0, 0, 0, 0)\) both for unknowns and equations. Then replacing again the derivatives \(\partial_\alpha\) with \(dz_\alpha\), and taking the determinant of the system obtained, we have a determinant of order 6 with the structure:

\[
\begin{vmatrix}
0 & C_{12} \\
C_{21} & C_{22}
\end{vmatrix} = 0
\]

(A.3)
where the $C_{\alpha\beta}$ are 3x3 matrices, and where 0 denotes the zero 3x3 matrix. Moreover, C_{12} and C_{21} are precisely those of the membrane tension (1.65) and of the rigidity system (1.44), respectively. Obviously, C_{22} comes from the terms in $T^{\alpha\beta}$ of (A.2). But it follows immediately from the definition and elementary properties of determinants that the determinant of (A.3) is given by the product of the determinants of C_{11} and C_{22}. The conclusion follows immediately.
This appendix contains the detailed calculations which lead to the reduced formulation of the problem \[1.64\] comprising three PDEs respectively for \(u_1\), \(u_2\) and \(u_3\). A similar development is then carried out for the full Koiter problem (section \[B.2\]) but only for \(u_3\).

B.1 Membrane Problem

First, we start from membrane system (obtained after integration by parts of the variational formulation of the membrane problem):

\[
\begin{align*}
-D_\alpha T^{\alpha\beta} &= f^\beta \\
-b_\alpha^\beta T^{\alpha\beta} &= f^3
\end{align*}
\]

(B.1)

Using the constitutive law, we get:

\[
\begin{align*}
-D_\alpha \left(A^{\alpha\beta\lambda\mu} \gamma_{\lambda\mu} \right) &= f^\beta \\
-b_\alpha^\beta A^{\alpha\beta\lambda\mu} \gamma_{\lambda\mu} &= f^3
\end{align*}
\]

(B.2)

As our aim is to study the singularities and their propagations, according to the microlocal analysis \[43\], it is sufficient to keep only the higher order terms for the displacements \(u_1\), \(u_2\) and \(u_3\) and to consider the geometrical coefficients \(a_{\alpha\beta}\) and \(b_{\alpha\beta}\) as constants (at least locally at the point considered). Thus, we obtain the following system which only involves the displacements \(u_1\), \(u_2\) and \(u_3\):

\[
\begin{align*}
-A^{1\beta\gamma_1} \partial_\beta \partial_\gamma u_1 - A^{1\beta\gamma_2} \partial_\beta \partial_\gamma u_2 + A^{1\beta\gamma_3} b_{\gamma\delta} \partial_\beta u_3 + \cdots &= f^1 \\
-A^{2\beta\gamma_1} \partial_\beta \partial_\gamma u_1 - A^{2\beta\gamma_2} \partial_\beta \partial_\gamma u_2 + A^{2\beta\gamma_3} b_{\gamma\delta} \partial_\beta u_3 + \cdots &= f^2 \\
-A^{3\beta\gamma_1} b_{\gamma\delta} \partial_\beta u_1 - A^{2\beta\gamma_2} b_{\gamma\delta} \partial_\beta u_2 + A^{3\beta\gamma_3} b_{\alpha\beta} b_{\gamma\delta} u_3 + \cdots &= f^3
\end{align*}
\]

(B.3)
where \(+ \ldots \) denotes lower orders terms of the form \(\Gamma^\xi_{\mu\delta} \partial_\gamma u_\beta \) and \(\Gamma^\eta_{\mu\delta} \Gamma^\xi_{\beta\eta} u_\beta \) or \(\Gamma^\xi_{\mu\delta} b_{\eta\mu} u_3 \) in the first two lines of the system, and of the form \(\Gamma^\xi_{\mu\delta} b_{\eta\mu} u_\beta \) in the third one. In the sequel, we only keep the highest order derivatives.

Now, let us write the simplified system \((B.3)\) as follows:

\[
Au = f
\]

with

\[
A = \begin{pmatrix}
-A^1_{1\gamma 1} \partial_\beta \partial_\gamma & -A^1_{1\gamma 2} \partial_\beta \partial_\gamma & A^1_{1\gamma 3} b_{\gamma\delta} \partial_\beta \\
-A^2_{1\gamma 1} \partial_\beta \partial_\gamma & -A^2_{1\gamma 2} \partial_\beta \partial_\gamma & A^2_{1\gamma 3} b_{\gamma\delta} \partial_\beta \\
-A^1_{2\gamma 3} b_{\gamma\delta} \partial_\beta & -2A^2_{2\gamma 3} b_{\gamma\delta} \partial_\beta & A^0_{3\beta\gamma} b_{\alpha\beta} b_{\gamma\delta}
\end{pmatrix}
\]

(B.5)

Developing the terms of the matrix \(A\), we get:

\[
A = \begin{pmatrix}
-A^{1111} \partial_1^4 - A^{1212} \partial_1^2 \partial_2^2 & -A^{1122} \partial_1^2 - A^{1222} \partial_2^2 & B \partial_1 \\
-A^{1112} \partial_1^2 \partial_1 \partial_2 & -2A^{1112} \partial_1 \partial_2 - (A^{1122} + A^{1212}) \partial_1 \partial_2 & +C \partial_2 \\
-A^{1122} \partial_1^2 \partial_1 \partial_2 & -A^{1222} \partial_2^2 - A^{1212} \partial_1^2 & C \partial_1 \\
-(A^{1122} + A^{1212}) \partial_1 \partial_2 & -2A^{1222} \partial_1 \partial_2 & +D \partial_2 \\
-B \partial_1 & -C \partial_1 & B b_{11} + D b_{22} \\
-C \partial_2 & -D \partial_2 & +2C b_{12}
\end{pmatrix}
\]

(B.6)

with \(B = A^{11\alpha\beta} b_{\alpha\beta} \), \(C = A^{12\alpha\beta} b_{\alpha\beta} \) and \(D = A^{22\alpha\beta} b_{\alpha\beta} \), where the Einstein summation convention for the indexes \(\alpha \) and \(\beta \) is used.

B.1.1 Case of the Normal Displacement \(u_3 \)

In order to obtain a reduced equation for \(u_3 \), we need to compute the cofactor \(A_{33}^C \) (see section 2.5 of chapter 2). By definition, \(A_{33}^C = A_{11} A_{22} - A_{12} A_{21} \), so that:

\[
A_{33}^C = \left[A^{1111} A^{1212} - (A^{1112})^2 \right] \partial_1^4 + \left[A^{2222} A^{1212} - (A^{1222})^2 \right] \partial_2^4
\]

\[
+ \left[A^{1111} A^{2222} + (A^{1212})^2 + 4A^{1112} A^{1222} - 2A^{1112} A^{1222} - (A^{1112} + A^{1212})^2 \right] \partial_1^2 \partial_2^2
\]

\[
+ \left[2A^{1111} A^{1222} + 2A^{1112} A^{1212} - 2A^{1112} (A^{1112} + A^{1212}) \right] \partial_1 \partial_2^3
\]

\[
+ \left[2A^{2222} A^{1112} + 2A^{2222} A^{1212} - 2A^{1222} (A^{1112} + A^{1212}) \right] \partial_1^3 \partial_2
\]
It then follows that:

\[A_{33}^C = [A^{1111}A^{1212} - (A^{1112})^2] \partial_1^4 + [A^{2222}A^{1212} - (A^{1222})^2] \partial_2^4 \]

\[+ [A^{1111}A^{2222} + 2A^{1112}A^{1222} - (A^{1122})^2 - 2A^{1222}A^{1212}] \partial_1^2 \partial_2^2 \]

\[[2A^{1111}A^{1222} - 2A^{1112}A^{1122}] \partial_1^3 \partial_2 + [2A^{2222}A^{1112} - 2A^{1222}A^{1122}] \partial_1 \partial_2^3 \]

Let us now recall the expression of the coefficients of the linear elastic isotropic constitutive law:

\[A^{\alpha\beta\lambda\delta} = \frac{E}{2(1+\nu)} \left[a^{\alpha\lambda}a^{\beta\delta} + a^{\alpha\delta}a^{\beta\lambda} + Ja^{\alpha\beta}a^{\lambda\delta} \right] \quad \text{with} \quad J = \frac{2\nu}{1-\nu} \quad (B.7) \]

Taking the symmetries into account, we have:

\[A^{1111} = \frac{E}{2(1+\nu)}(2 + J)(a^{11})^2 \quad (B.8) \]

\[A^{1112} = \frac{E}{2(1+\nu)}(2 + J)a^{11}a^{12} \quad (B.9) \]

\[A^{2222} = \frac{E}{2(1+\nu)}(2 + J)(a^{22})^2 \quad (B.10) \]

\[A^{1222} = \frac{E}{2(1+\nu)}(2 + J)a^{22}a^{12} \quad (B.11) \]

\[A^{1212} = \frac{E}{2(1+\nu)}((1 + J)(a^{12})^2 + a^{11}a^{22}) \quad (B.12) \]

\[A^{1122} = \frac{E}{2(1+\nu)}((2)(a^{12})^2 + Ja^{11}a^{22}) \quad (B.13) \]

In the expression of \(A_{33}^C \), we shall compute separately the different terms:

- Terms in \(\partial_1^4 \):

\[\frac{E^2}{4(1+\nu)^2} \left[(2 + J)(a^{11})^2 (a^{11}a^{22} + (1 + J)a^{12}a^{12}) - (2 + J)^2 (a^{11}a^{12})^2 \right] \]

\[= \frac{E^2}{4(1+\nu)^2} (2 + J)(a^{11})^2 \left(a^{11}a^{22} - (a^{12})^2 \right) \quad (B.14) \]

- Terms in \(\partial_2^4 \) (obtained symmetrically):

\[\frac{E^2}{4(1+\nu)^2} (2 + J)(a^{22})^2 \left(a^{11}a^{22} - (a^{12})^2 \right) \quad (B.15) \]
• Terms in $\partial_1^2 \partial_2^2$

$$
\frac{E^2}{4(1+\nu)^2} \left[(2 + J)^2 (a_1^{11} a_2^{22})^2 + 2(2 + J)^2 (a_1^{12} a_2^{22})^2 - \left(2a_1^{12} a_2^{12} + Ja_1^{11} a_2^{22} \right)^2 \right]
- 2 \left(2a_1^{12} a_2^{12} + Ja_1^{11} a_2^{22} \right) (a_1^{11} a_2^{22} + (1 + J)a_1^{12} a_2^{12})
= \frac{E^2}{4(1+\nu)^2} \left[(2 + J)^2 (a_1^{11} a_2^{22})^2 + 2(a_2^{12})^2 - \left(4(a_1^{12})^4 + 2Ja_1^{11} a_2^{22} (a_1^{12})^2 \right) \right]
- 2 \left(2a_1^{12} a_2^{22} (a_1^{12})^2 + 2(1 + J)(a_1^{12})^2 + Ja_1^{11} a_2^{22} (a_1^{12})^2 \right)
= \frac{E^2}{4(1+\nu)^2} \left[2(2 + J)(a_1^{11} a_2^{22})^2 - 4(2 + J)(a_1^{12})^2 \right]
+ 2(2 + J)a_1^{11} a_2^{22} (a_1^{12})^2
= \frac{E^2}{4(1+\nu)^2} \left[2(2 + J) \left(a_1^{11} a_2^{22} - (a_1^{12})^2 \right) (a_1^{11} a_2^{22} + 2(a_1^{12})^2) \right]
$$
\hfill (B.16)

• Terms in $\partial_1^3 \partial_2$

$$
\frac{E^2}{4(1+\nu)^2} \left[2(2 + J)(a_1^{11} a_2^{22})^2 - 2(2 + J)a_1^{11} a_2^{12} (a_2^{12} a_2^{12}) + Ja_1^{11} a_2^{22} \right]
= \frac{E^2}{4(1+\nu)^2} \left[4(2 + J)a_1^{11} a_2^{12} \left(a_1^{11} a_2^{22} - (a_1^{12})^2 \right) \right]
$$
\hfill (B.17)

• Terms in $\partial_1 \partial_2^3$ (obtained symmetrically)

$$
\frac{E^2}{4(1+\nu)^2} \left[4(2 + J)a_2^{22} a_1^{12} \left(a_1^{11} a_2^{22} - (a_1^{12})^2 \right) \right]
$$
\hfill (B.18)

After simplification, we obtain:

$$
A_{33}^C = \frac{E^2}{4(1+\nu)^2} (2 + J) \left(a_1^{11} a_2^{22} - (a_1^{12})^2 \right) \left[(a_1^{11})^2 \partial_1^4 + (a_2^{22})^2 \partial_2^4 + 2a_1^{11} a_2^{22} + 2(a_1^{12})^2 \right] \partial_1^2 \partial_2^2
+ 4a_1^{11} a_2^{12} \partial_1^3 \partial_2 + 4a_2^{22} a_1^{12} \partial_1 \partial_2^3
$$
\hfill (B.19)

Replacing J by its expression, we get finally:

$$
A_{33}^C = \frac{E^2}{2(1+\nu)^2 (1-\nu)} \left(a_1^{11} a_2^{22} - (a_1^{12})^2 \right) \left[a_1^{11} \partial_1^2 + a_2^{22} \partial_2^2 + 2a_1^{12} \partial_1 \partial_2 \right]^{(2)}
$$
\hfill (B.20)
As \(a^{11}a^{22} - (a^{12})^2 = (a_{11}a_{22} - (a_{12})^2)^{-1} = \frac{1}{a} \), expression (B.20) reduces to:

\[
A_{33}^C = \frac{E^2}{2(1 + \nu)(1 - \nu)a} \left[a^{11}\partial_1^2 + a^{22}\partial_2^2 + 2a^{12}\partial_1\partial_2 \right]^{(2)} \quad (B.21)
\]

On the other hand, the term \(\det(A) \) may be obtained in a similar way:

\[
\det(A) = \frac{E^3}{2(1 + \nu)(1 - \nu)a^3} \left[b_{22}\partial_1^2 + b_{11}\partial_2^2 - 2b_{12}\partial_1\partial_2 \right]^{(2)} \quad (B.22)
\]

Replacing the expressions (B.21) and (B.22) of \(A_{33}^C \) and \(\det(A) \) in equation (2.57), we obtain the reduced membrane PDE (2.60) accounting for the displacement \(u_3 \):

\[
E \left[b_{22}\partial_1^2 + b_{11}\partial_2^2 - 2b_{12}\partial_1\partial_2 \right]^{(2)} u_3 = a^2 \left[a^{11}\partial_1^2 + a^{22}\partial_2^2 + 2a^{12}\partial_1\partial_2 \right]^{(2)} f^3 \quad (B.23)
\]

B.1.2 Reduced Equation for the Tangential Displacements \(u_1 \) and \(u_2 \)

In the same way, we can exhibit two PDEs for the displacements \(u_1 \) and \(u_2 \). We present here the details for the case of \(u_1 \), that of \(u_2 \) being obtained symmetrically.

Let us start from the equation (2.62) characterizing \(u_1 \):

\[
\det(A)u_1 = A_{31}^C f^3 \quad (B.24)
\]

We only have to compute \(A_{31}^C \) whose expression is given by:

\[
A_{31}^C = A_{12}A_{23} - A_{22}A_{13}
= -A^{1112}C\partial_1^3 - A^{1222}C\partial_1\partial_2^2 - (A^{1122} + A^{1212})C\partial_1\partial_2^2 - A^{1112}D\partial_1^2\partial_2 - A^{1222}D\partial_2^3
-(A^{1122} + A^{1212})D\partial_1\partial_2^2 + A^{1212}B\partial_1^3 + A^{2222}C\partial_2^3 + A^{2222}B\partial_1\partial_2^2 + A^{1212}C\partial_1\partial_2^2
+2A^{1222}B\partial_1^2\partial_2 + 2A^{1222}C\partial_1\partial_2^2
= (-A^{1112}C + A^{1212}B)\partial_1^3 + (A^{2222}C - A^{1222}D)\partial_2^3
+(A^{1212}C + 2A^{1222}B - (A^{1212} + A^{1122})C - A^{1112}D)\partial_1^2\partial_2
+(A^{2222}B + 2A^{1222}C - (A^{1212} + A^{1122})D - A^{1222}C)\partial_1\partial_2^2 \quad (B.25)
\]
After some long technical calculations, we obtain:
\[
A_{31}^C = \frac{1}{a} \frac{E^2}{4(1+\nu)^2} \left\{ \left((2+J)b_{11}(a_{11}^1)^2 + (a_{11}^1 a_{22}^2 - (2+2J)(a_{12}^2)^2 \right) b_{22} \right\} \partial_3^3 + \left\{ (2+J)(a_{22}^2)^2 b_{12} + 2(2+J)a_{22}^2 a_{12} b_{11} \right\} \partial_2^3 + \left\{ 4(2+J)a_{11} a_{12} b_{11} + (4(2+J)(a_{12}^2)^2 - 2a_{11} a_{22}^2) b_{12} - 2(2+J)a_{22} a_{12} b_{22} \right\} \partial_1^3 \partial_2 + \left\{ ((3J+4)a_{11} a_{22}^2 + (6+2J)(a_{12}^2)^2) b_{11} + (2+J)(a_{22}^2)^2 b_{22} + (8+4J)a_{22} a_{12} b_{12} \right\} \partial_1 \partial_2^2 \right]
\]

B.2 Koiter Problem

In order to obtain a reduced PDE of the Koiter model for \(u_3 \), we use the local formulation (1.63) of the Koiter model:
\[
\begin{align*}
-D_\alpha T^{\alpha \beta} - \varepsilon^2 \left[b^{\alpha \beta} D_\alpha M^{\alpha \gamma} + D_\gamma (b^{\alpha \gamma} M^{\alpha \beta}) \right] &= f^{\beta} \\
-b_{\alpha \beta} T^{\alpha \beta} + \varepsilon^2 \left[D_\alpha D_\beta M^{\alpha \beta} - b^{\alpha \gamma} b^{\beta \delta} M^{\alpha \beta} \right] &= f^3
\end{align*}
\]

where \(T^{\alpha \beta} = A^{\alpha \beta \lambda \delta} \gamma_{\lambda \delta} \) and \(M^{\alpha \beta} = \frac{1}{12} A^{\alpha \beta \lambda \delta} \rho_{\lambda \delta} \) denote, respectively, the membrane stresses and the bending moments.

In the equation involving \(u_3 \), we only consider the most important bending terms, i.e. those with the lowest power in \(\varepsilon \), and the highest order derivatives. We can write system (B.26) under the form (B.4) with:
\[
A = \begin{pmatrix}
-A^{1111} \partial_1^2 - A^{1212} \partial_2^2 & -A^{1112} \partial_1^2 - A^{1222} \partial_2^2 & -A^{1122} \partial_1^2 - A^{1212} \partial_2^2 & B \partial_1 \\
-2A^{1112} \partial_1 \partial_2 & -(A^{1122} + A^{1212}) \partial_1 \partial_2 & -2A^{1212} \partial_1 \partial_2 & +C \partial_2 \\
+\varepsilon^2 (\partial^2 + \ldots) & +\varepsilon^2 (\partial^2 + \ldots) & +\varepsilon^2 (\partial^2 + \ldots) & +\varepsilon^2 (\partial^2 + \ldots) \\
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
-B \partial_1 & -C \partial_1 & +B b_{11} + D b_{22} + 2C b_{12} \\
-C \partial_2 & -D \partial_2 & +\varepsilon^2 F \\
+\varepsilon^2 (\partial^2 + \ldots) & +\varepsilon^2 (\partial^2 + \ldots) & +\varepsilon^2 (\partial^2 + \ldots) \\
\end{pmatrix}
\]

with \(F = \left[A^{1111} \partial_1^4 + A^{2222} \partial_2^4 + (2A^{1122} + 4A^{1212}) \partial_1^2 \partial_2^2 + 4A^{1112} \partial_1^2 \partial_2 + 4A^{1222} \partial_1 \partial_2^2 \right] \) and where \(+\varepsilon^2 (\partial^n + \ldots) \) denote the ignored bending terms, \(n \) being the highest
order of differentiation contained in these terms. Let us quote that F is a fourth-order operator.

Thus, the most important bending term of $det(A)$ comes from:

$$(A_{11}A_{22} - A_{12}A_{12}) \frac{\varepsilon^2}{12} F =$$

$$\frac{\varepsilon^2}{12} A_{33}^C \left[A^{1111} \partial_1^4 + A^{2222} \partial_2^4 + (2A^{1122} + 4A^{1212}) \partial_1^2 \partial_2^2 + 4A^{1112} \partial_1^3 \partial_2 + 4A^{1222} \partial_1 \partial_2^3 \right]$$

(B.28)

This term is in ε^2 and comprises 8^{th} order derivatives. The other terms in ε^2 involve lower order derivatives. The full expression of $Det(A)$ then writes:

$$Det(A) = E^3 \left(\frac{\varepsilon^2}{24} \frac{1}{(1 + \nu)^3 (1 - \nu)^2} a \left[a^{11} \partial_1^2 + a^{22} \partial_2^2 + 2a^{12} \partial_1 \partial_2 \right]^{(4)} + \frac{1}{2(1 + \nu)^2 (1 - \nu) a^3} \left[b_{22} \partial_1^2 + b_{11} \partial_2^2 - 2b_{12} \partial_1 \partial_2 \right]^{(2)} + O(\varepsilon^2) \right)$$

(B.29)

where $O(\varepsilon^2)$ denotes terms containing lower order derivatives or being factors of terms in ε^n with $n > 2$.

On the other hand, we always have:

$$A_{33}^C = E^2 \frac{1}{2(1 + \nu)^2 (1 - \nu) a} \left[a^{11} \partial_1^2 + a^{22} \partial_2^2 + 2a^{12} \partial_1 \partial_2 \right]^{(2)} + O(\varepsilon^2)$$

(B.30)

so that, when $\varepsilon \searrow 0$, the reduced PDE of the Koiter model involving only u_3 writes:

$$E \left[\frac{\varepsilon^2}{12} a^2 \left[a^{11} \partial_1^2 + a^{22} \partial_2^2 + 2a^{12} \partial_1 \partial_2 \right]^{(4)} + (1 + \nu) \left[b_{22} \partial_1^2 + b_{11} \partial_2^2 - 2b_{12} \partial_1 \partial_2 \right]^{(2)} + O(\varepsilon^2) \right] u_3 = \left[a^2 (1 + \nu) \left[a^{11} \partial_1^2 + a^{22} \partial_2^2 + 2a^{12} \partial_1 \partial_2 \right]^{(2)} + O(\varepsilon^2) \right] f^3$$

(B.31)
Index

a posteriori error estimate, 99
adapted mesh, 126 133 154 158 184
adaptive mesh, 97 124 154 183 221 236
algebraic
equation, 25
system, 23 209
analytic functionals, 203 217
analytic functions, 203
anisotropic mesh, 76 126 154 237
asymptotic
behavior, 33
curves, 24 30 32 56 61
directions, 16
lines, 17 115 149
BAMG, 98 137 154 221 236
bending
energy, 101 131 192 228 239
energy bilinear form, 28
moments tensor, 27
bi-Laplacian operator, 172
boundary, 27
conditions, 27 35 116 208 211
edge layers, 136
layers, 157 187
singularity along, 136
boundary conditions
kinematical, 29
boundary layer, 38 132
Cauchy problem, 196
characteristic
case, 56 65 109 119 149
curves, 22 23
equation, 24
lines, 24 30
Christoffel symbol, 19 109 148 182
classification
Finite Element, 88
of surface, 16
of systems, 24 30
complexification phenomenon, 203 222
compliance coefficients, 28
constitutive law, 27 34 116
contravariant
basis, 15 115 182
component, 16 19
convergence
asymptotic process, 38 88 129 188 191 208
Finite Element, 88 94 95
strong, 42 48 49
weak, 39 44 45
coordinate vectors, 14
corners of the loading domain, 171 181
covariant
basis, 13 14 115 182
component, 15 19
derivative, 115
differentiation, 18
curvature tensor, 15 115 148 182
curvature variation tensor, 21 27
D.K.T. shell element, 94
deflection
patterns, 5
degrees of freedom (DOF), 95
Index

determination domain, 36, 200
Dirac function, 52, 202
Dirichlet condition, 208
displacement, 21

eigenvalues, 172, 207
elastic material, 27
elliptic
 Cauchy problem, 203, 211
 paraboloid, 181
 point, 17
 shell, 35
 surface, 181
energy norm, 70
energy repartition, 131, 192, 228, 239
error estimates, 69, 73, 78, 97, 99
finite element, 94
 P2-Lagrange, 95
 P3'-Hermite, 95
first fundamental form, 15
Fourier
 expansion, 172, 174, 176, 177, 180, 203
 transform, 201, 203, 205, 213, 214
Galerkin approximation, 70
Galerkin error estimates, 78
Gauss formula, 18
geofmetically rigid, see inhibited
half-cylinder, 114
Heaviside step function, 117
Heaviside step function, 52
Hessian, 99
Holmgren and Calderon theorem, 203
Hooke's law, 27
hyperbolic
 paraboloid, 149
 point, 17
 shell, 3, 36, 147
 surface, 149, 235
ill-inhibited shell, 36
inextensional displacement, 22, 34
infinitesimal area element, 15
infinitesimal length element, 15
inhibited
 shell, 3
 surface, 34
internal layer, 38, 126
interpolation error, 73
 anisotropic meshes, 76
 isotropic meshes, 73, 74
interpolation error estimate, 99
isotropic
 mesh, 73, 74
 refinement, 221
iterative meshes, 126, 154, 158, 159, 184
Kirchhoff-Love
 hypothesis, 47
 kinematical hypothesis, 27
 kinematics, 95
Koiter
 hypothesis, 47
 theorem, 22
Koiter model, 26
 asymptotic behavior of, 33
 asymptotic limit, 29
 coerciveness, 28
 convergence, 29, 129, 222
 ellipticity, 37
 limit behavior of, 33, 37
Korn’s inequality, 28
Kronecker symbol, 15, 115
Laplace operator, 175, 201
Lax-Milgram theorem, 28
layer thickness, 63, 78, 130, 132, 156, 187, 192
linear elasticity, 26
linear theory, 22
loading, 26
locking, 88, 236
 inhibited case, 93
 local, 82, 83
 non-inhibited case, 88
logarithmic singularity, 171, 183, 189
mapping, 13, 114, 148, 181
membrane
 bilinear form, 28
 energy, 101, 131, 192, 228, 239
 energy bilinear form, 28
 locking, 93
 model, 29, 38
 problem, 175, 207
 strain tensor, 27
stress tensor, 27
system, 30 31 108
tension system, 30
metric tensor, 15 21 115 148 182
metric variation tensor, 21
metrics, 22 34 91 98
mixed component, 16 115

Nagdhi model, 27 45
Neumann condition, 208
non-characteristic case, 53 64 111 135
non-characteristic layer, 187
non-conforming element, 95
non-inhibited, 34
non-inhibited shell, 3 5 235
normal vector, 14 115 182

parabolic point, 17
shell, 7 35 107
surface, 114
partially non-inhibited shell, 236
PDE, 47 49 172 196 198 201 207
system, 29 199
penalty problem, 43 72 85
percentage of bending energy, 132 192
poisson’s ratio, 27
positivity property, 28 39
principal curvatures, 17 54 177
propagation of singularities, 52 61 63
108 111 127 142 151 158 161 163 240
pseudo-reflections, 63 163
pure bending displacement, 34
model, 43

Reissner–Mindlin hypothesis, 27
remeshing
h-methods, 97
hp-methods, 97
p-methods, 97
Riemann invariants, 199
rigidity system, 22
scaling, 66
second fundamental form, 15
sensitive problem, 195 210
shell, 7 212 219
shape of the domain, 142
Shapiro-Lopatinskii condition, 206
shell, 113
singular perturbation problem, 72
singularity chain, 52
singularity order, 61
structured mesh, 139
surface, 13 16
deformation, 21
gometrically rigid, 35
rigidity, 34
symmetry condition, 181
symmetry property, 28
tangent plane, 14 16 114 182
vectors, 182
Taylor formula, 73
tension system, 40
thickness of the layer, see layer thickness
thickness of the shell, 26
totally non-inhibited shell, 236
transversal shear, 27
triangle
P2-Lagrange, 95
P3’-Hermite, 95
umbilic point, 177 180 183
uniform convergence, 88 93 94
mesh, 133
Weingarten formula, 18
well-inhibited shell, 7 171
surface, 234
Young’s modulus, 27
Z space, 203
Z’ space, 203 217