Appendices

Abstract. For better understandings of readers, several important mathematics and derivation of relations used in the text are given here. They are (A) Dirac delta function and Fourier transform, (B) uniaxial strain and strain components in cubic semiconductors, (C) boson operators, (D) random phase approximation, (E) density matrix, and (F) derivation of spontaneous and stimulated emission rates.

A Delta Function and Fourier Transform

A.1 Dirac Delta Function

The Delta function is very important for understanding semiconductor physics and some important relations will be discussed in this section. The Dirac delta function is defined by

\[\delta(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i\omega t} dt. \] \hspace{1cm} (A.1)

In the integral with respect to \(\omega \) the following relation holds for \(\varepsilon > 0 \)

\[\lim_{\varepsilon \to +0} \frac{1}{\omega - i\varepsilon} = \mathcal{P} \frac{1}{\omega} + i\pi \delta(\omega), \] \hspace{1cm} (A.2)

where \(\mathcal{P}[1/\omega] \) is the Cauchy principal value of \(1/\omega \). This relation is called the Dirac identity.

First, we consider the integral

\[\int_{0}^{\infty} e^{i\omega t} dt. \]

This integral does not converge when \(\omega \) is real. Then we introduce an infinitesimal positive value \(\varepsilon \), and replace \(\omega \) by \(\omega + i\varepsilon \). The integral may be equivalently written as

1 Strictly speaking, we need to prove the validity of the interchange between the limit (lim) and the integral (\(\int \)).

In a similar fashion, we obtain
\[
\int_{-\infty}^{0} e^{i\omega t} dt = \lim_{\varepsilon \to 0} \left(-i / (\omega - i\varepsilon) \right) = \delta(\omega).
\] (A.4)

These expressions lead to the following relation:
\[
\int_{-\infty}^{\infty} F_L(\omega) d\omega = \int_{-\infty}^{\infty} \frac{\varepsilon/\pi}{\omega^2 + \varepsilon^2} d\omega = \int_{-\infty}^{\infty} \delta(\omega) d\omega = 1.
\] Using this result we find the following expression for the Dirac delta function:
\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} dt = \lim_{\varepsilon \to 0} \left(\frac{\varepsilon/\pi}{\omega^2 + \varepsilon^2} \right) = \delta(\omega).
\] (A.6)

Next, the second relation, the Dirac identity, is understood in the following way. When we rewrite \(1 / (\omega - i\varepsilon)\) as
\[
\frac{\omega}{\omega^2 + \varepsilon^2} + i \frac{\varepsilon}{\omega^2 + \varepsilon^2},
\]
we easily find the following result:
\[
\frac{\varepsilon}{\pi} \int_{-\infty}^{+\infty} \frac{d\omega}{\omega^2 + \varepsilon^2} = \frac{\varepsilon}{\pi} \left[\int_{-\infty}^{0} \frac{d\omega}{\omega^2 + \varepsilon^2} + \int_{0}^{+\infty} \frac{d\omega}{\omega^2 + \varepsilon^2} \right] = \frac{2\varepsilon}{\pi} \int_{0}^{\infty} \frac{d\omega}{\omega^2 + \varepsilon^2}.
\]
the first term on the right-hand side has the value $1/\omega$ in the limit $\varepsilon \to 0$. The second term may be replaced by a delta function. Therefore, we obtain
\[
\lim_{\varepsilon \to 0} \frac{1}{\omega - i \varepsilon} = P \frac{1}{\omega} + i\pi \delta(\omega),
\]
where P is the Cauchy principal value and is defined by
\[
\int_{-\infty}^{+\infty} f(\omega') P \left[\frac{1}{\omega - \omega'} \right] d\omega' = \int_{-\infty}^{+\infty} \frac{f(\omega')}{\omega - \omega'} d\omega' = \lim_{\varepsilon \to 0} \left(\int_{-\infty}^{-\varepsilon} \frac{f(\omega')}{\omega - \omega'} d\omega' + \int_{\varepsilon}^{+\infty} \frac{f(\omega')}{\omega - \omega'} d\omega' \right). \tag{A.7}
\]

A.2 Cyclic Boundary Condition and Delta Function

In Appendix A.1 the Dirac delta function is defined in the region of integration $[-\infty, +\infty]$. In solid state physics, however, the dimension of a crystal of length L is defined by the region $[-L/2, L/2]$ and the cyclic boundary condition is adopted. For example, considering the one-dimensional case and letting the lattice constant be a, the wave vectors $q = 2\pi n/L$ ($n = 0, \pm 1, \pm 2, \ldots$) are those in the first Brillouin zone $[-\pi/a, +\pi/a]$, which correspond to the lattice points N ($n = -N/2, \ldots, N/2$). The calculations with respect to the wave vectors, therefore, can be carried out in the first Brillouin zone $[-\pi/a, +\pi/a]$ of the reciprocal lattice vector $2\pi/a$. Here we take account of the wave vector q of the lattice vibrations, but we may draw the same conclusion for the wave vectors of an electron in a crystal.

With this definition we find
\[
\frac{1}{L} \int_{-L/2}^{L/2} e^{i(q-q')x} dx = \delta_{q,q'}, \tag{A.9}
\]
\[
\sum_{q} e^{i(q(x-x'))} = L \delta(x-x'). \tag{A.10}
\]

In the case of a crystal with d dimensions, we obtain
\[
\frac{1}{L^d} \int_{V} e^{i(q-q') \cdot \mathbf{r}} d^d \mathbf{r} = \delta_{q,q'}, \tag{A.11}
\]
\[
\sum_{q} e^{i(q \cdot (\mathbf{r-r'}))} = L^d \delta(\mathbf{r-r'}). \tag{A.12}
\]

First, we will prove the one-dimensional case. The cyclic boundary condition leads to the following relation
\[
e^{iqL} = 1, \quad q = \frac{2\pi n}{L}.\]
For \(q = \neq q' \) we find
\[
\int_{-L/2}^{L/2} e^{i(q-q')x} dx = \left[\frac{e^{i(q-q')x}}{i(q-q')} \right]_{-L/2}^{L/2} = \frac{2\sin[(q-q')L/2]}{(q-q')}, \tag{A.13}
\]
and putting \(q = 2\pi n/L \) and \(q' = 2\pi m/L \) \((m \neq n)\), the above equation becomes equal to zero. On the other hand, for \(q = q' \) we have
\[
\int_{L/2}^{L/2} e^{i(q-q')x} dx = \int_{-L/2}^{L/2} 1 dx = L,
\]
and thus we obtain the following relation
\[
\frac{1}{L} \int_{-L/2}^{L/2} e^{i(q-q')x} dx = \delta_{q,q'},
\]
and (A.9) is proved.

The relation given by (A.10) is just the inverse Fourier transform of (A.9), which will be understood from the following discussion of the Fourier transform. For simplicity we put \(x' = 0 \) and prove the following relation:
\[
\sum_q e^{iqx} = L\delta(x).
\]
Multiplying both sides of this equation by \((1/L) \exp(-iq'x)\) and integrating over the region \([-L/2, L/2]\) leads to the following result with the help of (A.9):
\[
\text{Left-hand side} = \sum_q \frac{1}{L} \int_{-L/2}^{L/2} e^{i(q-q')x} dx = \sum_q \delta_{q,q'} = 1,
\]
\[
\text{Right-hand side} = \int_{-L/2}^{L/2} e^{-iqx} dx \delta(x) = 1,
\]
and therefore the relation (A.10) is proved. The same result is obtained when the summation is replaced by the integral
\[
\sum_q = \frac{L}{2\pi} \int dq,
\]
which leads to the following relation
\[
\sum_q e^{iq(x-x')} = \frac{L}{2\pi} \int e^{iq(x-x')} dq = L\delta(x-x').
\]
From these results we may understand the relations between the delta function and the cyclic boundary condition.
In the case of the three-dimensional lattice we may deduce the same result. Consider a crystal with \(N \) lattice points and let the position vector be \(\mathbf{R}_j \). Assuming the cyclic boundary condition, we rewrite the integral over the crystal as the sum of the integral over the unit cell \(\Omega \):

\[
I = \frac{1}{L^3} \int_V \exp[i(\mathbf{q} - \mathbf{q}') \cdot \mathbf{r}] d^3 r
\]

\[
= \frac{1}{N\Omega} \sum_j^N \exp[i(\mathbf{q} - \mathbf{q}') \cdot \mathbf{R}_j] \int_{\Omega} \exp[i(\mathbf{q} - \mathbf{q}') \cdot \mathbf{r}] d^3 r
\]

\[
= \delta_{\mathbf{q},\mathbf{q}'} \frac{1}{\Omega} \int_{\Omega} \exp[i(\mathbf{q} - \mathbf{q}') \cdot \mathbf{r}] d^3 r
\]

\[
= \begin{cases}
1 & \text{(for } \mathbf{q} = \mathbf{q}'\text{)} \\
0 & \text{(for } \mathbf{q} \neq \mathbf{q}'\text{)}
\end{cases}, \tag{A.14}
\]

where

\[
\sum_j^N \exp[i(\mathbf{q} - \mathbf{q}') \cdot \mathbf{R}_j] = \sum_{j=0}^{N-1} \exp[i(\mathbf{q} - \mathbf{q}') \cdot \mathbf{R}_j]
\]

\[
= \frac{1 - \exp[i(\mathbf{q} - \mathbf{q}') \cdot \mathbf{R}_N]}{1 - \exp[i(\mathbf{q} - \mathbf{q}') \cdot \mathbf{R}_j]}
\]

\[
= 0 \quad \text{(for } \mathbf{q} - \mathbf{q}' \neq 0\text{)}, \tag{A.15}
\]

which is shown in the following. Rewriting \(\mathbf{q} \) and \(\mathbf{R} \) in their vector components such as \(q_x = (2\pi/L)n_x \) (\(n_x = 0, \pm 1, \pm 2, \pm 3, \ldots \)) and \(R_x = am_x \) (\(m_x = 0, 1, 2, \ldots, N - 1 \)), then we find

\[
\frac{2\pi}{L} n_x a N = 2\pi n_x. \tag{A.16}
\]

For \(\mathbf{q} - \mathbf{q}' = 0 \), we obtain

\[
\sum_{j=0}^{N-1} \exp[i(\mathbf{q} - \mathbf{q}') \cdot \mathbf{R}_j] = N. \tag{A.17}
\]

In general, therefore, the following relations hold for the wave vectors of electrons and phonons, \(\mathbf{k} \) and \(\mathbf{q} \):

\[
\sum_j \exp i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{R}_j = N \delta_{k,k'}, \tag{A.18}
\]

\[
\sum_j \exp i(\mathbf{q} - \mathbf{q}') \cdot \mathbf{R}_j = N \delta_{q,q'}. \tag{A.19}
\]
In addition, we have the relation
\[\frac{1}{\Omega} \int_{\Omega} \exp[i(q' - q) \cdot r] d^3 r = 1 \quad (\text{for } q = q'), \tag{A.20} \]
and therefore we obtain the final result.
\[\frac{1}{L^d} \int \exp[i(q - q') \cdot r] d^d r = \delta_{q,q'} \tag{A.21} \]
\[= \begin{cases} 1 & (\text{for } q = q') \\ 0 & (\text{for } q \neq q') \end{cases}. \]

A.3 Fourier Transform

As is well known in mathematics, the Fourier transform is expressed as
\[f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k) \exp(ikx) dk, \tag{A.22} \]
\[F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \exp(-ikx) dx, \tag{A.23} \]
where the function \(F(k) \) is called the Fourier transform of the function \(f(x) \) and the function \(f(x) \) is the Fourier transform of the function \(F(k) \).

The Fourier transform given by (A.23) is realized when the function \(f(x) \) satisfies the following condition
\[\int_{-\infty}^{\infty} |f(x)|^2 dx < \infty. \tag{A.24} \]

The Fourier transform discussed above is shown for the one-dimensional case. It is easy to extend it the three-dimensional case, which is written as
\[f(x,y,z) = \left(\frac{1}{2\pi} \right)^{3/2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(k_x,k_y,k_z) \times \exp[i(k_x x + k_y y + k_z z)] dk_x dk_y dk_z. \tag{A.25} \]
When we introduce the vector notation \((x, y, z) = r, dx dy dz = d^3 r, (k_x, k_y, k_z) = k, \) and \(dk_x dk_y dk_z = d^3 k, \) the Fourier transform may be rewritten as
\[f(r) = \left(\frac{1}{2\pi} \right)^{3/2} \int_{-\infty}^{\infty} F(k) \exp(i k \cdot r) d^3 k, \tag{A.26} \]
\[F(k) = \left(\frac{1}{2\pi} \right)^{3/2} \int_{-\infty}^{\infty} f(r) \exp(-i k \cdot r) d^3 r. \tag{A.27} \]

It is very important in solid state physics to express the Fourier transform under the cyclic boundary condition. For one-dimensional space we find the following relations:
Appendices 531

\[f(x) = \sum_{q} F(q)e^{iqx}, \quad (A.28) \]

\[F(q) = \frac{1}{L} \int f(x)e^{-iqx}dx. \quad (A.29) \]

Here again (A.28) is called the Fourier transform of the function \(f(x) \), and the coefficient \(F(q) \) is the Fourier coefficient, or (A.29) is called the Fourier transform of \(f(x) \). In general, the Fourier transform in \(d \) dimensional space is given by the following relations:

\[f(r) = \sum_{q} F(q)e^{iq\cdot r}, \quad (A.30) \]

\[F(q) = \frac{1}{L^d} \int f(r)e^{-iq\cdot r}d^d r. \quad (A.31) \]

When we replace the summation in \(q \) space by an integral, (A.30) is written as follows.

\[f(r) = \frac{L^d}{(2\pi)^d} \int F(q)e^{iq\cdot r}d^d r. \quad (A.32) \]

It may be proved as follows that the Fourier coefficient of (A.28) is given by (A.29). Inserting (A.28) into (A.29) and using (A.9), the following result follows:

\[F(q) = \sum_{q'} \frac{1}{L} \int F(q')e^{i(q'-q)x}dx = \sum_{q'} F(q')\delta_{q',q} = F(q). \]

In contrast, inserting (A.29) into (A.28), we find

\[f(x) = \sum_{q} \frac{1}{L} \int f(x')e^{iq(x-x')}dx' = \int f(x')\delta(x-x')dx = f(x) \]

and thus (A.10)

\[\sum_{q} e^{iq(x-x')} = L\delta(x-x') \]

should hold.

B Uniaxial Stress and Strain Components in Cubic Crystals

Denoting the displacement of a crystal by \(u \) the strain tensor is defined by
When we define the force per unit area in the direction along the \(i \) axis in the plane perpendicular to the \(j \) axis by the stress tensor \(T_{ij} \), Hooke’s law is expressed as
\[
T_{ij} = c_{ijkl} e_{kl},
\]
where \(c_{ijkl} \) is called the elastic constant. Let us define the notations
\[
ij : \ xy \ yz \ yx \ zx \ zx \ \alpha : \ 1 \ 2 \ 3 \ 4 \ 5 \ 6.
\]
We may therefore rewrite (B.2) as
\[
T_\alpha = c_{\alpha\beta} e_\beta, \quad \alpha, \beta = 1, 2, 3, 4, 5, 6
\]
where \(s_{\alpha\beta} \) is the elastic compliance constant. When we define
\[
e_{\alpha\beta} = c_{ijkl},
\]
we find for strain tensors the relations
\[
2e_{yz} = 2e_{zy} = e_4, \quad 2e_{zx} = 2e_{xz} = e_5, \quad 2e_{xy} = 2e_{yx} = e_6,
\]
and for the elastic compliance constants the relations
\[
2s_{xyyz} = s_{14}, \quad 2s_{xxyy} = s_{12}, \quad 2s_{zxzz} = s_{13},
\]
Let us calculate the strain components under the application of a uniaxial stress in the (110) plane. We consider coordinates \((x', y', z')\) such that a uniaxial stress \(X \) is applied in the \(z' \) direction, and the directions \(x', y' \) are perpendicular to the stress. Then the stress tensor is written as
\[
||T'|| = \begin{vmatrix}
0 \\
0 \\
X \\
0 \\
0
\end{vmatrix}.
\]
\[x_i = (a^{-1})_{ij} x'_j, \]

(B.9)

the transform matrix is given by

\[
||a^{-1}|| = \begin{vmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \cos \theta & \frac{1}{\sqrt{2}} \sin \theta \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \cos \theta & -\frac{1}{\sqrt{2}} \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{vmatrix},
\]

(B.10)

where \(\theta \) is the angle between the \(z \) and \(z' \) axes. The transform of the stress is written as

\[T_{ik} = (a^{-1})_{ij} (a^{-1})_{kl} T'_{jl}, \]

(B.11)

and thus the stress in the coordinates \((x, y, z)\) is given by the following relation:

\[
||T|| = \begin{vmatrix}
T_{xx} & \frac{1}{2} \sin^2 \theta \\
T_{yy} & \frac{1}{2} \sin^2 \theta \\
T_{zz} & \frac{1}{2} \sin^2 \theta \\
T_{yz} & \frac{1}{2} \sin \theta \cos \theta \\
T_{zx} & \frac{1}{2} \sin \theta \cos \theta \\
T_{xy} & \frac{1}{2} \sin \theta \cos \theta
\end{vmatrix},
\]

(B.12)

From these results the strain tensor components are expressed as

\[
||e|| = X \begin{vmatrix}
e_1 & s_{11} \left(\frac{1}{2} \sin^2 \theta + s_{12} \left(\frac{1}{2} \sin^2 \theta + \cos^2 \theta \right) \right) \\
e_2 & s_{11} \left(\frac{1}{2} \sin^2 \theta + s_{12} \left(\frac{1}{2} \sin^2 \theta + \cos^2 \theta \right) \right) \\
e_3 & s_{11} \cos \theta \sin \theta \\
e_4 & \frac{1}{\sqrt{2}} s_{44} \cos \theta \sin \theta \\
e_5 & \frac{1}{\sqrt{2}} s_{44} \cos \theta \sin \theta \\
e_6 & \frac{1}{2} s_{44} \sin^2 \theta
\end{vmatrix}.
\]

(B.13)

Since the relation between the strain tensors \(e_\alpha \) and \(e_{ij} \) is given by (B.6), we obtain the following result:

\[
e_{xx} = e_{yy} = X \left[\frac{1}{2} s_{11} \sin^2 \theta + s_{12} \left(\frac{1}{2} \sin^2 \theta + \cos^2 \theta \right) \right] \\
e_{zz} = X \left[s_{11} \cos^2 \theta + s_{12} \sin^2 \theta \right] \\
e_{xy} = \frac{X}{4} s_{44} \sin^2 \theta \\
e_{zx} = e_{yz} = \frac{X}{2 \sqrt{2}} s_{44} \cos \theta \sin \theta.
\]

(B.14)

As stated above, the strain tensor is a second-rank tensor and its six independent components are \(e_{xx}, e_{yy}, e_{zz}, e_{yz}, e_{zx} = e_{zy}, e_{xy} = e_{yx} \). The strain tensor is related to the symmetry of the crystal and the analysis of
the Raman scattering tensor and the deformation potentials is classified with the help of the group theory analysis of the strain tensor. In this Appendix we briefly describe the irreducible representation of the strain tensor for a crystal with cubic symmetry, where we use the notation of group theory for the zinc blende-type crystals of the T_d group. In Table B.1 the character table for the T_d group is shown. From Table B.1 a symmetric strain tensor e_{ij} is classified into the irreducible representations of one-dimensional Γ_1, two-dimensional Γ_3 and three-dimensional Γ_4. In other words, we obtain

$$\Gamma_1 : e_{xx} + e_{yy} + e_{zz},$$

$$\Gamma_3 : e_{xx} - e_{yy}, \quad e_{zz} - (e_{xx} + e_{yy})/2,$$

$$\Gamma_4 : e_{xy}, \quad e_{xz}, \quad e_{zx}.$$ \hspace{1cm} (B.15)

It is also possible to express the strain tensor e_{ij} by the following three matrices:

$$[e_{ij}(\Gamma_1)] = \frac{1}{3} \begin{bmatrix} e_{xx} + e_{yy} + e_{zz} & 0 & 0 \\ 0 & e_{xx} + e_{yy} + e_{zz} & 0 \\ 0 & 0 & e_{xx} + e_{yy} + e_{zz} \end{bmatrix}$$

$$[e_{ij}(\Gamma_3)] = \frac{1}{3} \begin{bmatrix} 2e_{xx} - (e_{yy} + e_{zz}) & 0 & 0 \\ 0 & 2e_{yy} - (e_{zz} + e_{xx}) & 0 \\ 0 & 0 & 2e_{zz} - (e_{xx} + e_{yy}) \end{bmatrix}$$

$$[e_{ij}(\Gamma_4)] = \begin{bmatrix} 0 & e_{xy} & e_{xz} \\ e_{xy} & 0 & e_{yz} \\ e_{xz} & e_{yz} & 0 \end{bmatrix}.$$
C Boson Operators

In the main text we have discussed the quantization of the lattice vibrations, where boson operators appear. Here we will describe the boson operators to supplement the treatment. For simplicity we disregard the subscripts. The Hamiltonian for a simple harmonic oscillator is written as

\[H = \frac{1}{2M} (p^2 + M^2 \omega^2 q^2) , \]

(C.1)

where the following commutation relation holds:

\[[q, p] = i\hbar . \]

(C.2)

Defining new variables by

\[P = \sqrt{\frac{1}{M}} p , \]

(C.3)

\[Q = \sqrt{M} q , \]

(C.4)

the Hamiltonian is rewritten as

\[H = \frac{1}{2} (P^2 + \omega^2 Q^2) \]

(C.5)

and the commutation relation is expressed as

\[[Q, P] = i\hbar . \]

(C.6)

As described in Sect. 6.1.2, we introduce new variables defined by

\[a = \left(\frac{1}{2\hbar\omega} \right)^{1/2} (\omega Q + iP) , \]

(C.7)

\[a^\dagger = \left(\frac{1}{2\hbar\omega} \right)^{1/2} (\omega Q - iP) , \]

(C.8)

where \(a \) and \(a^\dagger \) are Hermite conjugates. Using these operators we may define \(Q \) and \(P \), which are given by

\[Q = \left(\frac{\hbar}{2\omega} \right)^{1/2} (a + a^\dagger) , \]

(C.9)

\[P = -i \left(\frac{\hbar\omega}{2} \right)^{1/2} (a - a^\dagger) . \]

(C.10)

From these results we easily find the following relations:

\[a^\dagger a = \frac{1}{\hbar\omega} \left(H - \frac{1}{2} \hbar\omega \right) , \]

(C.11)

\[aa^\dagger = \frac{1}{\hbar\omega} \left(H + \frac{1}{2} \hbar\omega \right) . \]

(C.12)
The commutation relation between a and a^\dagger is written as
\[[a, a^\dagger] = aa^\dagger - a^\dagger a = 1. \] (C.13)

Finally, the Hamiltonian is rewritten with new operators as
\[H = \left(a^\dagger a + \frac{1}{2} \right) \hbar \omega. \] (C.14)

We have to note here that the operators a^\dagger and a are not observable, but that when the operators are applied to a state, they change the state. As shown in Sect. 6.1.2, we use the number operator \hat{n} in the following.

Denoting the eigenstate of a simple harmonic oscillator by $|n\rangle$ and its eigenvalue by \mathcal{E}_n, we may write the Schrödinger equation as
\[H|n\rangle = \hbar \omega \left(a^\dagger a + \frac{1}{2} \right) |n\rangle = \mathcal{E}_n |n\rangle. \] (C.15)

This may be rewritten as follows by using the commutation relation given by (C.13):
\[\hbar \omega \left(aa^\dagger - 1 + \frac{1}{2} \right) |n\rangle = \mathcal{E}_n |n\rangle. \] (C.16)

Multiplication by a^\dagger from the left to both sides of this equation leads to
\[\hbar \omega \left(a^\dagger aa^\dagger - a^\dagger + \frac{1}{2} a^\dagger \right) |n\rangle = \mathcal{E}_n a^\dagger |n\rangle. \] (C.17)

Transposition of the second term on the left-hand side to the right-hand side results in
\[\hbar \omega \left(a^\dagger a + \frac{1}{2} \right) a^\dagger |n\rangle = Ha^\dagger |n\rangle = (\mathcal{E}_n + \hbar \omega) a^\dagger |n\rangle. \] (C.18)

This equation is understood to be an eigenequation with eigenstate $a^\dagger |n\rangle$ and eigenvalue $\mathcal{E}_n + \hbar \omega$. In other words, when a^\dagger operates on the eigenstate $|n\rangle$, the eigenvalue is changed from \mathcal{E}_n to $\mathcal{E}_n + \hbar \omega$. Considering this fact we may write new eigenstate and eigenvalue as
\[a^\dagger |n\rangle = c_n |n+1\rangle \] (C.19)
\[\mathcal{E}_n + \hbar \omega = \mathcal{E}_{n+1}. \] (C.20)

Here the constant c_n of (C.19) is introduced to normalize the state $|n+1\rangle$ and is determined later. Inserting these results in (C.18), we obtain
\[H|n+1\rangle = \mathcal{E}_{n+1} |n+1\rangle. \] (C.21)
In a similar fashion, multiplying a from the left to both sides of (C.16) and applying a similar treatment, we obtain

$$Ha|n\rangle = (\mathcal{E}_n - \hbar \omega) a|n\rangle.$$
(C.22)

Here the above equation means that the eigenvalue for the eigenstate $a|n\rangle$ is given by $\mathcal{E}_n - \hbar \omega$. Therefore, in a similar fashion to the previous treatment we may rewrite as follows:

$$a|n\rangle = c'_n|n-1\rangle,$$
(C.23)

$$\mathcal{E}_n - \hbar \omega = \mathcal{E}_{n-1},$$
(C.24)

where c'_n is a constant to normalize the eigenstate $|n-1\rangle$. These relations lead to

$$H|n-1\rangle = \mathcal{E}_{n-1}|n-1\rangle.$$
(C.25)

It is evident from the process of deriving (C.21) and (C.25) that starting with an eigenstate $|n\rangle$ and an eigenvalue \mathcal{E}_n all other eigenstates and eigenvalues are calculated. In addition, these energy eigenvalues are equally spaced with the interval $\hbar \omega$. If $|n\rangle$ is not the ground state, the eigenstate $a|n\rangle$ exists and its energy eigenvalue lower than \mathcal{E}_n by $\hbar \omega$. If $a|n\rangle$ is not the ground state, there exists the eigenstate $a^2|n\rangle$ and its energy is lower than that of $|n\rangle$ by $2\hbar \omega$. In this way we find the lowest eigenstate $|0\rangle$ and its eigenenergy \mathcal{E}_0, where the eigenenergy \mathcal{E}_0 should be positive. The lowest state is understood to be the ground state. When a operates on the ground state, we find

$$Ha|0\rangle = (\mathcal{E}_0 - \hbar \omega)a|0\rangle.$$
(C.26)

Since the eigenstate with eigenenergy lower than the ground state energy is not allowed, we find

$$a|0\rangle = 0.$$
(C.27)

Taking account of these results, the eigenequation of (C.25) for the ground state $|0\rangle$ is written as

$$H|0\rangle = \frac{1}{2}\hbar \omega|0\rangle = \mathcal{E}_0|0\rangle,$$
(C.28)

and thus the energy eigenvalue for the ground state is given by

$$\mathcal{E}_0 = \frac{1}{2}\hbar \omega.$$
(C.29)

From (C.20) or (C.24) the following relation is deduced.

$$\mathcal{E}_n = \left(n + \frac{1}{2}\right) \hbar \omega, \quad n = 0, 1, 2, \ldots.$$
(C.30)
Using (C.16) and (C.30) we may obtain
\[H|n\rangle = \hbar \omega \left(\hat{n} + \frac{1}{2} \right) |n\rangle = \hbar \omega \left(n + \frac{1}{2} \right) |n\rangle, \]
(C.31)
\[\hat{n}|n\rangle = a\dagger a|n\rangle = n|n\rangle. \]
(C.32)
The above equation tells us that the eigenvalue for the operator \(\hat{n} = a\dagger a \) is \(n \).

In a similar fashion, using the commutation relation of (C.13) to (C.16), the following relation is derived:
\[aa\dagger |n\rangle = (n+1)|n\rangle. \]
(C.33)

Let us determine the normalization constants \(c_n \) and \(c'_n \). The normalization of the eigenstates \(|n\rangle \), \(|n+1\rangle \) and \(|n-1\rangle \) is written as
\[\langle n|n\rangle = \langle n+1|n+1\rangle = \langle n-1|n-1\rangle. \]
(C.34)

Multiplying the Hermite conjugate of (C.19) to both sides and using (C.33) and (C.34), we obtain
\[\langle n+1|c^*_n c_n |n+1\rangle = \langle n|aa\dagger|n\rangle = (n+1)\langle n|n\rangle = n+1, \]
(C.35)
which leads to
\[|c_n|^2 = n+1. \]
(C.36)
Assuming the phase factor of \(c_n \) to be zero, (C.19) can be rewritten as
\[a\dagger|n\rangle = \sqrt{n+1}|n+1\rangle. \]
(C.37)

In a similar fashion, from (C.24) we obtain
\[a|n\rangle = \sqrt{n-1}|n-1\rangle. \]
(C.38)
Since the eigenfunctions are diagonal, i.e. \(\langle n|n'\rangle = \delta_{n,n'} \), the non-zero matrix elements of the operators \(a\dagger \) and \(a \) are as follows:
\[\langle n+1|a\dagger|n\rangle = \sqrt{n+1}, \]
(C.39)
\[\langle n-1|a|n\rangle = \sqrt{n}. \]
(C.40)
The operator \(a\dagger \) is called the creation operator and the operator \(a \) is called the annihilation operator.

We have mentioned that a known eigenstate will determine all the other eigenstates. An arbitrary eigenstate \(|n\rangle \) is therefore derived from the ground state \(|0\rangle \). Since (C.37) leads to \((n!)^{1/2}|n\rangle = (a\dagger)^n|0\rangle \), we find the following relation:
\[|n\rangle = (n!)^{-1/2}(a\dagger)^n|0\rangle. \]
(C.41)
As stated in Sect. 6.1.2, the lattice vibrations are expressed by a summation over the modes. Here we use the notation μ for the mode. The eigenstate of the lattice vibrations is given by $|n_1, n_2, \ldots, n_\mu, \ldots\rangle$ and therefore the following relations hold:

$$a_\mu |n_1, n_2, \ldots, n_\mu, \ldots\rangle = \sqrt{n_\mu} |n_1, n_2, \ldots, n_\mu - 1, \ldots\rangle,$$

$$a^\dagger_\mu |n_1, n_2, \ldots, n_\mu, \ldots\rangle = \sqrt{1 + n_\mu} |n_1, n_2, \ldots, n_\mu + 1, \ldots\rangle,$$

$$a_\mu a_\nu - a_\nu a_\mu = a^\dagger_\mu a^\dagger_\nu - a^\dagger_\nu a^\dagger_\mu = 0,$$

or

$$[a_\mu, a_\nu]_\pm = [a^\dagger_\mu, a^\dagger_\nu]_\pm = 0,$$

$$[a_\mu, a^\dagger_\nu]_\pm = \delta_{\mu\nu},$$

$$a_\mu a^\dagger_\mu |n_1, n_2, \ldots, n_\mu, \ldots\rangle = \sqrt{n_\mu + 1} a_\mu |n_1, n_2, \ldots, n_\mu + 1, \ldots\rangle = (n_\mu + 1) |n_1, n_2, \ldots, n_\mu, \ldots\rangle,$$

$$a^\dagger_\mu a_\mu |n_1, n_2, \ldots, n_\mu, \ldots\rangle = \sqrt{n_\mu} a^\dagger_\mu |n_1, n_2, \ldots, n_\mu - 1, \ldots\rangle = (n_\mu) |n_1, n_2, \ldots, n_\mu, \ldots\rangle.$$

D Random Phase Approximation and Lindhard Dielectric Function

In this section we follow the treatment of Haug and Koch3 and discuss the plasma screening effect. The electron density operator $\langle \rho(q) \rangle$ is defined, as shown in Appendix E by

$$\langle \rho(q) \rangle = -\frac{e}{L^3} \sum_k \langle c^\dagger_k e^{-q_k} c_k \rangle.$$

Denoting the Coulomb potential $V(r)$ and the potential induced by electron fluctuations by $V_{\text{ind}}(r)$, the effective potential energy $V_{\text{eff}}(r)$ for an electron is written as

$$V_{\text{eff}}(r) = V(r) + V_{\text{ind}}(r).$$

This effective potential energy should be determined self-consistently. The Fourier transform of the effective potential energy leads to

\[
V_{\text{eff}}(q) = V(q) + V_{\text{ind}}(q). \tag{D.3}
\]

The electron Hamiltonian is then given by
\[
\mathcal{H} = \sum_k \mathcal{E}(k) c_k^\dagger c_k + \sum_{k,q'} V_{\text{eff}}(q') c_{k+q'}^\dagger c_k. \tag{D.4}
\]

The Heisenberg equation for \(c_{k-q}^\dagger c_k\) gives the following relation:
\[
\frac{d}{dt} c_{k-q}^\dagger c_k = \frac{i}{\hbar} \left[\mathcal{H}, c_{k-q}^\dagger c_k \right] = \frac{i}{\hbar} (\mathcal{E}(k-q) - \mathcal{E}(k)) c_{k-q}^\dagger c_k \\
- \frac{i}{\hbar} \sum_{q'} V_{\text{eff}}(q') \left(c_{k-q}^\dagger c_{k-q'} - c_{k+q'}^\dagger c_k \right). \tag{D.5}
\]

Here we use the random phase approximation to evaluate the above equation. The random phase approximation is based on the following assumption. We assume that the expectation value \(\langle c_k^\dagger c_{k'} \rangle\) is approximated by \(\langle c_k^\dagger c_{k'} \rangle \propto \exp[i(\omega_k - \omega_{k'}) t]\). In the summation \(\sum_{k,k'} \exp[i(\omega_k - \omega_{k'}) t]\), the term \(k \neq k'\) oscillates and the average contribution is assumed to vanish. Therefore, only the term for \(k = k'\) will contribute to the summation. This assumption is called the random phase approximation. Applying the random phase approximation to the last two terms on the right hand side of (D.5) we obtain (see the reference in the footnote of page 539)
\[
\frac{d}{dt} \langle c_{k-q}^\dagger c_k \rangle = \frac{i}{\hbar} (\mathcal{E}(k-q) - \mathcal{E}(k)) \langle c_{k-q}^\dagger c_k \rangle \\
- \frac{i}{\hbar} V_{\text{eff}}(q) (f(k-q) - f(k)), \tag{D.6}
\]

where we use the following relation
\[
f(k) = \langle c_k^\dagger c_k \rangle. \tag{D.7}
\]

When we assume that the electron density fluctuate as \(\langle c_{k-q}^\dagger c_k \rangle \propto \exp[-i(\omega + i\Gamma/\hbar) t]\), the following relation may be obtained from (D.6)
\[
(h\omega + i\Gamma + \mathcal{E}(k-q) - \mathcal{E}(k)) \langle c_{k-q}^\dagger c_k \rangle \\
= V_{\text{eff}}(q) [f(k-q) - f(k)]. \tag{D.8}
\]

Multiplying by \(-e/L^3\) on both sides, summing up with respect to \(k\), and using the relation given by (D.1), we obtain
\[
\langle \rho(q) \rangle = -\frac{e^2}{L^3} V_{\text{eff}}(q) \sum_k \frac{f(k-q) - f(k)}{h\omega + i\Gamma + \mathcal{E}(k-q) - \mathcal{E}(k)}. \tag{D.9}
\]
Since the potential due to the induced charge follows Poisson’s equation, it is given by
\[\nabla^2 V_{\text{ind}}(r) = \frac{e \rho(r)}{\epsilon_0}. \] (D.10)

The Fourier transform of this equation results in
\[V_{\text{ind}}(q) = -\frac{e}{\epsilon_0 q^2} \rho(q) = \frac{e^2}{\epsilon_0 q^2 L^3} V_{\text{eff}}(q) \sum_k \frac{f(k-q) - f(k)}{\hbar \omega + i \Gamma + \mathcal{E}(k-q) - \mathcal{E}(k)} \]
\[= V(q) V_{\text{eff}}(q) \sum_k \frac{f(k-q) - f(k)}{\hbar \omega + i \Gamma + \mathcal{E}(k-q) - \mathcal{E}(k)}. \] (D.11)

Inserting this into (D.3), (6.257) is derived as the following:
\[\kappa(q,\omega) = 1 - V(q) \sum_k \frac{f(k-q) - f(k)}{\hbar \omega + i \Gamma + \mathcal{E}(k-q) - \mathcal{E}(k)} \]
\[= 1 - \frac{e^2}{\epsilon_0 q^2 L^3} \sum_k \frac{f(k-q) - f(k)}{\hbar \omega + i \Gamma + \mathcal{E}(k-q) - \mathcal{E}(k)}. \] (D.12)

E Density Matrix

In this section the density matrix is summarized. A good introduction to the density matrix method is given in the text of Kittel,\(^\text{4}\) which we shall follow here.

First, we assume a complete and orthonormal set of functions \(u_n\). Any function may be expanded by using these functions and therefore an eigenstate for the Hamiltonian \(H\) is expressed as
\[\psi(x,t) = \sum_n c_n(t) u_n(x), \] (E.1)

where the orthnormality of the functions gives the following relation:
\[\langle u_n | u_m \rangle = \int u_n^* u_m dx = \delta_{nm}. \] (E.2)

The density matrix is defined by
\[\rho_{nm} = \overline{c_n^* c_m}. \] (E.3)

We have to note that the order of \(m\) and \(n\) on the two sides of (E.3) is interchangeable. The bar indicates the ensemble average over all the systems in the ensemble. Several important properties of the density matrix are summarized in the following.

1. \[\sum_n \rho_{nn} = \text{Tr} \{ \rho \} = 1 . \]

This property leads to the following relation:

\[\langle \psi | \psi \rangle = \sum_n c_n^* c_n = \sum_n \rho_{nn} = \text{Tr} \{ \rho \} = 1 . \] \hspace{1cm} (E.4)

2. \[\langle F \rangle = \text{Tr} \{ F \rho \} . \]

Here \(\langle F \rangle \) represents the ensemble average of the expectation value of an observable \(F \). This relation is derived as follows:

\[\langle F \rangle = \langle \psi | F | \psi \rangle = \sum_{m,n} F_{mn} c_m^* c_n = \sum_{m,n} F_{mn} \rho_{nm} \] \hspace{1cm} (E.5)

and thus

\[\langle F \rangle = \sum_m (F \rho)_{mm} = \text{Tr} \{ F \rho \} . \] \hspace{1cm} (E.6)

It is very important to point out that traces are independent of the representation and thus that the ensemble average \(\langle F \rangle \) is independent of the representation.

3. \[i \hbar \frac{\partial \rho}{\partial t} = -[\rho, H] = -(\rho H - H \rho) . \]

The above equation gives the time dependence of the density matrix \(\rho \) of the Hamiltonian \(H \). In order to derive the equation, we begin with the wave function (E.1) and insert it into the Schrödinger equation

\[i \hbar \frac{\partial \psi}{\partial t} = H \psi . \] \hspace{1cm} (E.7)

First, we insert (E.1) into (E.7)

\[i \hbar \frac{\partial \psi}{\partial t} = i \hbar \sum_k \frac{\partial c_k}{\partial t} u_k(x) = H \psi = \sum_k c_k H u_k(x) , \] \hspace{1cm} (E.8)

and then multiplying by \(u_n(x) \) from the left and integrating over all space we obtain the equation

\[i \hbar \frac{\partial c_n}{\partial t} = \sum_k H_{nk} c_k , \] \hspace{1cm} (E.9)

where we have used the orthonormality property (E.2) and

\[H_{nk} = \langle u_n | H | u_k \rangle = \int u_n^*(x) H u_k(x) dx . \] \hspace{1cm} (E.10)

In a similar fashion we obtain
\[-i\hbar \frac{\partial c^*_m}{\partial t} = \sum_k H^*_{mk} c^*_k. \]
(E.11)

From (E.3) we obtain
\[i\hbar \frac{\partial \rho_{nm}}{\partial t} = i\hbar \frac{\partial}{\partial t} \left(\frac{\partial c^*_m c_n}{\partial t} + c^*_m \frac{\partial c_n}{\partial t} \right). \]
(E.12)

Inserting (E.9) and (E.11) into (E.12), we find
\[i\hbar \frac{\partial \rho_{nm}}{\partial t} = - (\rho H - H \rho)_{nm}. \]
(E.13)

4. \(Z = \text{Tr} \{ e^{-\beta H} \} \)

Here, \(Z \) is the partition function. For a canonical ensemble (see the reference in the footnote of page 541)
\[\rho = e^{\beta (F - H)}, \]
(E.14)

where \(F \) is the Helmholtz free energy and \(H \) is the Hamiltonian. In the quantum mechanical representation the partition function \(Z \) is given by (see the reference of the footnote of page 541)
\[Z = \sum_i e^{-\beta E_i}, \]
(E.15)

where \(\beta = k_B T \). Using the relation between the Helmholtz free energy and the partition function \(\log Z = -\beta F \), we find
\[Z = e^{-\beta F} = \sum e^{-\beta E_n} = \text{Tr} \{ e^{-\beta H} \}. \]
(E.16)

Since the trace is invariant under unitary transformations, the partition function may be calculated by taking the trace of \(e^{-\beta H} \) in any representation. Using these results one may find
\[\rho = \frac{e^{-\beta H}}{\text{Tr} \{ e^{-\beta H} \}}, \]
(E.17)

which is a very important relation and is used to evaluate the ensemble average of an observable quantity.

F Spontaneous and Stimulated Emission Rates

Here we will derive the relations between absorption, spontaneous emission, and stimulated emission.
Let us define a vector potential by A and put $B = \text{rot} \ A = \nabla \times A$, then we obtain

$$\nabla \cdot B = \nabla \cdot \nabla \times A = 0,$$

(F.1)

and thus the vector potential satisfies the relation for the magnetic flux B of (9.90d), $(\nabla \cdot B = 0)$. We insert the relation $B = \text{rot} \ A = \nabla \times A$ into Maxwell’s equation (9.90b), we find

$$\nabla \times E = -\frac{\partial}{\partial t} \nabla \times A.$$

(F.2)

Therefore we obtain the following relation

$$E = i \omega A.$$

(F.3)

Since we deal with the squared values of the vector potential and electric field, we put

$$E = \omega A.$$

(F.4)

The electromagnetic field interact with an electron of charge $-e$, and the interaction is given by the Hamiltonian

$$H = \frac{1}{2m} (p + eA)^2 + V(r),$$

(F.5)

where $V(r)$ is the periodic potential of a crystal. This equation is rewritten as

$$H = \frac{p^2}{2m} + V(r) + \frac{e}{m} (A \cdot p) + \frac{1}{2m} (eA)^2$$

(F.6)

and neglecting the last term because of its small contribution, we may rewrite

$$H = H_0 + H_1,$$

(F.7)

$$H_0 = \frac{p^2}{2m} + V(r),$$

(F.8)

$$H_1 = \frac{e}{m} (A \cdot p).$$

(F.9)

Treating H_1 as a perturbation term, the transition probability between the initial state $|i\rangle$ and the final state $|f\rangle$ is given by

\[\begin{align*}
\text{(In (F.5), we operate $A \cdot p + p \cdot A$ to a scalar function f and taking account of the vector potential of the electromagnetic field $A = A_0 \exp(ik \cdot r)$ and of the momentum operator $p = -i\hbar \nabla$,)}

(A \cdot p + p \cdot A)f = A \cdot (p + p + \hbar k) f = 2A \cdot pf

\end{align*}\]

is obtained. The last relation was deduced from the fact that the electromagnetic field is transverse wave, resulting in $A \cdot k_p = 0$.\]
\[w_{if} = \frac{2\pi}{\hbar} |\langle f | H_1 | i \rangle|^2 \delta [\mathcal{E}_f - \mathcal{E}_i - \hbar \omega]. \]

(F.10)

The transition rate between the valence band state \(|c k\rangle\) and the conduction band state \(|v k'\rangle\) is given by (4.31) in (4.2)

\[w_{cv} = \frac{2\pi}{\hbar} |\langle c k' | e \cdot p | v k \rangle|^2 \delta [\mathcal{E}_c(k') - \mathcal{E}_v(k) - \hbar \omega]. \]

Writing the vector potential \(A\) using the unit vector of the vector potential \(e\) as \(A = e \cdot A\), the matrix element is given by

\[|M| = |\langle c k' | \exp(i k_p \cdot r) e \cdot p | v k \rangle|, \]

(F.11)

and we have

\[|M|^2 = \frac{1}{3} \left(|M_x|^2 + |M_y|^2 + |M_z|^2 \right), \]

(F.12a)

\[M_x = -i\hbar \langle c k' | \exp(i k_p) \frac{\partial}{\partial x} | v k \rangle. \]

(F.12b)

Since \(k_p\) is very small, we put \(\delta(k' - k - k_p) \equiv \delta(k' - k) = 0\) and thus the summation of the allowed \(k'\) and \(k\) give rise to Kronecker delta \(\delta_{k',k}\).

Using (4.21) and (4.38) or (4.39), the absorption coefficient is given by

\[\alpha = \frac{\omega \kappa_2}{n_t c} = \frac{2\hbar \omega}{n_t c \epsilon_0 \omega^2 A_0^2} w_{cv} \]

\[= \frac{\pi \epsilon^2}{n_t c \epsilon_0 m^2 \omega} \sum_{k,k'} |M|^2 \delta [\mathcal{E}_c(k') - \mathcal{E}_v(k) - \hbar \omega] \delta_{k,k'}. \]

(F.13)

In the case of semiconductor lasers, high densities of electrons and holes are injected into the active region and occupy the conduction band and valence bands. Therefore the absorption coefficient depends on the occupation factors of the electron and holes. Let the occupation factor of the electrons in the upper and lower states as \(f(\mathcal{E}_2)\) and \(f(\mathcal{E}_1)\), respectively, and the net rate of the photon absorption and emission is proportional to \(f(\mathcal{E}_1)[1 - f(\mathcal{E}_2)] - f(\mathcal{E}_2)[1 - f(\mathcal{E}_1)] = f(\mathcal{E}_1) - f(\mathcal{E}_2)\). Then the absorption coefficient is given by

\[\alpha = \frac{\pi \epsilon^2}{n_t c \epsilon_0 m^2 \omega} \times \sum_k |M|^2 \delta [\mathcal{E}_2(k) - \mathcal{E}_1(k) - \hbar \omega] \delta_{k,k'} [f(\mathcal{E}_1) - f(\mathcal{E}_2)]. \]

(F.14)

In the above equation \(\sum\) is carried out over the pair states of the valence band \(|v k\rangle\) and the conduction band \(|c k\rangle\), and thus we obtain
\[
\sum_k \delta[\mathcal{E}_{cv}(k) - \hbar \omega] = \frac{1}{(2\pi)^3} \int d^3k \cdot \delta[\mathcal{E}_{cv}(k) - \hbar \omega] \\
\equiv \int \rho_{\text{red}}(\hbar \omega) \cdot d(\hbar \omega), \tag{F.15}
\]

\[
\mathcal{E}_{cv} = \mathcal{E}_c(k) - \mathcal{E}_v(k), \tag{F.16}
\]

where only one direction of spin orientation is considered. The last relation of (F.15) is obtained by putting the photon energy as \(\hbar \omega = \mathcal{E}\) and defining the density of states between the energies \(\hbar \omega = \mathcal{E}\) and \(\hbar \omega + d(\hbar \omega) = \mathcal{E} + d\mathcal{E}\) as \(\rho_{\text{red}}(\mathcal{E})d\mathcal{E}\). When the effective masses of the conduction and valence bands are isotropic, putting the electron effective mass as \(m_c\) and the hole effective mass as \(m_h\), we may write

\[
\mathcal{E}_{cv} = \frac{\hbar^2 k^2}{2m_c} + \frac{\hbar^2 k^2}{2m_h} + \mathcal{E}_G = \frac{\hbar^2 k^2}{2\mu} + \mathcal{E}_G, \tag{F.17}
\]

where \(1/\mu = 1/m_c + 1/m_h\) and \(\mu\) is called reduced mass. Then the density of states is given by

\[
\rho_{\text{red}} \cdot d(\hbar \omega) = \frac{1}{(2\pi)^3} 4\pi k^2 \cdot dk, \\
= \frac{2\pi}{(2\pi)^3} \left(\frac{2\mu}{\hbar^2} \right)^{3/2} \sqrt{\hbar \omega - \mathcal{E}_G} d\hbar \omega. \tag{F.18}
\]

Writing the photon energy as \(\hbar \omega = \mathcal{E}\), we find

\[
\rho_{\text{red}} d(\mathcal{E}) = \frac{2\pi}{(2\pi)^3} \left(\frac{2\mu}{\hbar^2} \right)^{3/2} \sqrt{\mathcal{E} - \mathcal{E}_G} d\mathcal{E}. \tag{F.19}
\]

Next we discuss quantum theory of spontaneous and stimulated emissions[9.6]. First, we deal with the radiation of the electromagnetic waves based on the classical theory. Using Poynting vector of the electromagnetic waves and vector potential \(\mathbf{A}\) given by \(\nabla \times \mathbf{A} = \mathbf{B}\), and (9.90b), the flux of the waves is given by the following relation

\[
\langle \mathbf{S} \rangle = \frac{1}{2} \text{Re}(\mathbf{E} \times \mathbf{H}) = \frac{1}{2} \text{Re} [(-i\omega \mathbf{A}) \times (i\mathbf{k}_p \times \mathbf{A})] / \mu_0 \\
= \frac{\omega}{2\mu_0} \text{Re} ([\mathbf{A} \cdot \mathbf{k}_p] \mathbf{k}_p - [\mathbf{A} \cdot \mathbf{A}] \mathbf{k}_p) = \frac{n_r \omega^2}{2c\mu_0} |\mathbf{A}|^2 \frac{\mathbf{k}_p}{|\mathbf{k}_p|}, \tag{F.20}
\]

where \(\mu_0\) is the magnetic permeability in free space, \(1/(\epsilon_0\mu_0) = c^2\) (c: the light speed in free space) and \(\mathbf{k}_p/|\mathbf{k}_p|\) is a unit vector in the propagation direction of the vector potential \(\mathbf{A}\). The last relation is derived for the transverse waves in uniform medium, and putting \(\mathbf{k}_p \cdot \mathbf{A} = 0\).

Next, we discuss Planck’s radiation theory. Since the number of plane waves modes in a volume \(V\) in an element \(dk_x dk_y dk_z\) of the \(\mathbf{k}_p\) space is \(V(2\pi)^{-3}dk_x dk_y dk_z\), and is independent of the shape of the sample or of the
boundary conditions provided the dimensions are large compared to the wave-
length. Putting $k_p = |k_p| = n_r \omega / c$, and taking account of two independent
polarization directions for each wave vector of the electromagnetic waves, the
density of modes per unit volume between ω and $\omega + d\omega$ is given by $G(\omega)d\omega$
with
$$ G(\omega) = \frac{2}{(2\pi)^3} 4\pi k_p^2 \frac{dk_p}{d\omega} = \frac{k_p^2}{\pi^2 v_g} = \frac{n_r^2 \omega^2}{\pi^2 c^2 v_g}. $$

(F.21)

Here the group velocity $v_g = \frac{d\omega}{dk_p}$ is used and assumed to be constant
except strong absorption region with the anomalous dispersion.

The average energy of a mode with angular frequency ω at temperature T
under the thermal equilibrium is given by
$$ \langle \mathcal{E}(\omega) \rangle = \frac{\hbar \omega}{\exp(\hbar \omega/k_B T) - 1}. $$

(F.22)

Thus the energy density of blackbody radiation $u(\omega)d\omega = \langle \mathcal{E}(\omega) \rangle G(\omega)d\omega$ in
the range between ω and $\omega + d\omega$ is obtained as
$$ u(\omega) = \frac{n_r^2 \hbar \omega^3}{\pi^2 c^2 v_g} \frac{1}{\exp(k_B T) - 1}. $$

(F.23)

Since the velocity of the energy flow of the electromagnetic waves in a
dielectric is the group velocity, the time average of the radiation with wave
vector k_p, lying an element of solid angle $d\Omega$, with polarization vector e
lying in an angular interval $d\theta$ in a plane perpendicular to k_p, and with an angular
frequency in a range $d\omega$, is
$$ |\langle S \rangle| = u(\omega) v_g \frac{d\Omega}{4\pi} \frac{d\theta}{2\pi} d\omega $$
$$ = \frac{n_r^2 \hbar \omega^3}{\pi^2 c^2} \frac{1}{\exp(k_B T) - 1} \frac{d\Omega}{4\pi} \frac{d\theta}{2\pi} d\omega. $$

(F.24)

Averaging (F.24) in the solid angle Ω and polarization direction, we find
$$ \int \frac{d\omega}{4\pi} \int \frac{d\theta}{2\pi} = 1, $$
and thus we obtain,
$$ |\langle S \rangle| = \frac{n_r^2 \hbar \omega^3}{\pi^2 c^2} \frac{1}{\exp(k_B T) - 1} d\omega. $$

(F.25)

Using (F.11), the spontaneous emission rate from the upper state \mathcal{E}_2 to the
lower state \mathcal{E}_1 is given by
$$ r_{\text{spon}}(\mathcal{E}) = \frac{\pi e^2 |A|^2}{2m^2 \hbar} |M|^2 \rho_{\text{red}}(\mathcal{E}) [f(\mathcal{E}_2)(1 - f(\mathcal{E}_1))]. $$

(F.26)
Equating (F.20) and (F.25), and eliminating $|A|$, we find

$$r_{\text{spon}}(\mathcal{E}) = \frac{n_e e^2 \mu_0 \omega}{\pi m^2 c} |M|^2 \rho_{\text{red}}(\mathcal{E}) f(\mathcal{E}_2) [1 - f(\mathcal{E}_1)].$$ \hspace{2cm} (F.27)

Using the relation $\epsilon_0 \mu_0 = 1/c^2$, and putting $\hbar \omega = \mathcal{E}$, the spontaneous emission rate between the energy separation \mathcal{E} and $\mathcal{E} + d\mathcal{E}$, is then given by

$$r_{\text{spon}}(\mathcal{E}) = \frac{n_e e^2 \mathcal{E}}{\pi \epsilon_0 m^2 \hbar^2 c^3} |M|^2 \rho_{\text{red}}(\mathcal{E}) f(\mathcal{E}_2) [1 - f(\mathcal{E}_1)],$$ \hspace{2cm} (F.28)

and thus we obtain the spontaneous emission rate given by (9.14). In a similar fashion, the stimulated emission rate (9.15) is given by

$$r_{\text{stim}}(\mathcal{E}) = \frac{n_e e^2 \mathcal{E}}{\pi \epsilon_0 m^2 \hbar^2 c^3} |M|^2 \rho_{\text{red}}(\mathcal{E}) (f_2 - f_1).$$ \hspace{2cm} (F.29)
Chapter 1

The following references review the energy band structures and optical properties of semiconductors in detail and give a good introduction to semiconductor physics.

The following references will help readers to understand Chap. 1.

1.10 D. Brust, Phys. Rev. A134, 1337 (1964)
1.11 E.O. Kane, J. Phys. Chem. Solids, 1, 82 (1956)
1.12 L.P. Bouckaert, R. Smoluchowski, E. Wigner, Phys. Rev. 50, 58 (1936)
1.13 G. Dresselhaus, A.F. Kip, C. Kittel, Phys. Rev. 98, 368 (1955)
The following references are cited in the text.

1.16 P.O. Löwdin, J. Chem. Phys., 19, 1396 (1951)

Chapter 2

2.1 G. Dresselhaus, A.F. Kip, C. Kittel, Phys. Rev. 98, 368 (1955)
2.2 J.M. Luttinger, Phys. Rev. 102, 1030 (1956)
2.3 E.O. Kane, J. Phys. Chem. Solids 1, 82, 249 (1957)
2.6 J.M. Luttinger, W. Kohn, Phys. Rev. 97, 869 (1955)
2.7 R. Bowers, Y. Yafet, Phys. Rev. 115, 1165 (1959)

Chapter 3

3.1 G. Wannier, Phys. Rev. 52, 191 (1937)
3.2 J.M. Luttinger, W. Kohn, Phys. Rev. 97, 869 (1955)
3.3 W. Kohn, J.M. Luttinger, Phys. Rev. 97, 1721 (1955)
3.5 W. Kohn, J.M. Luttinger, Phys. Rev. 98, 915 (1955)

Chapter 4

The following references review the energy band structures and optical properties of semiconductors in detail and give a good introduction to semiconductor physics.

4.3 F. Abelès (ed.), *Optical Properties of Solids* (North-Holland, Amsterdam, 1972)

The following references will help readers to understand Chap. 1.

4.8 G.G. MacFarlane, V. Roberts, Phys. Rev. 98, 1865 (1955)

Chapter 5

The following references will provide a good guide to the understanding of Chap. 5.

The following references are cited in the text.

5.15 D.E. Aspnes, Phys. Rev. 147, 554 (1966)
5.16 Y. Hamakawa, P. Handler, F.A. Germano, Phys. Rev. 167, 709 (1966)
5.18 D.E. Aspnes, Phys. Rev. Lett. 28, 168 (1972)
5.20 D.E. Aspnes, Surf. Sci. 37, 418 (1973)
5.21 M. Cardona, Light scattering as a form of modulation spectroscopy, Surf. Sci. 37, 100–119 (1973)

5.10 M. Cardona, Light scattering as a form of modulation spectroscopy, Surf. Sci. 37, 100–119 (1973)
5.15 D.E. Aspnes, Phys. Rev. 147, 554 (1966)
5.16 Y. Hamakawa, P. Handler, F.A. Germano, Phys. Rev. 167, 709 (1966)
5.18 D.E. Aspnes, Phys. Rev. Lett. 28, 168 (1972)
5.20 D.E. Aspnes, Surf. Sci. 37, 418 (1973)
5.22 H.M.J. Smith, Phil. Trans. A241, 105 (1948)
5.26 M. Cardona, Surf. Sci. 37, 100 (1973)
5.30 F. Pockels, Ann. Physik 37, 144, 372 (1889); 39, 440 (1890)
5.31 G.B. Benedek, K. Fritsch, Phys. Rev. 149, 647 (1966)

Chapter 6

The following references will provide a good guide to understanding of Chap. 6.

The following references are cited in the text.

6.30 J. Lindhard, Mat. Fys. Medd. 28, 8 (1954)
6.32 H. Callen, Phys. Rev. 76, 1394 (1949)
6.33 J. Zook, Phys. Rev. 136, A869 (1964)
6.38 N. Sclar, Phys. Rev. 104, 1548 (1956)

Chapter 7

The following references will provide a good guide to understanding of Chap. 7.

7.1 K. Seeger, Semiconductor Physics (Springer-Verlag, New York, 1973)
The following references are cited in the text.

7.11 P.N. Argyres, Phys. Rev. 117, 315 (1960)
7.22 R.A. Stradling, R.A. Wood, Solid State Commun. 6, 701 (1968)

Chapter 8

The following references will provide a good guide to understanding of Chap. 8.

8.10 W. Harrison, Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980)

The following references are cited in the text.
8.17 M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1965) p. 446
8.18 F. Stern, Phys. Rev. B5, 4891 (1972)
References

8.84 Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)
8.87 R. Landauer, IBM J. Res. Dev. 1, 223 (1957); Philos. Mag. 21, 863 (1970)
References

8.113 M. Stopa, see reference [8.12] pp. 56–66
Chapter 9

The following references will provide a good guide to understanding of Chap. 9.

This book deals with the mechanisms and device structures of semiconductor lasers in detail and is recommended to those readers who are interested in semiconductor lasers.

In addition to the above review articles, the following references are cited in the text.

9.16 P.J. Dean, J. Lumin. 1, 2, 398 (1970)
9.17 D.G. Thomas, J.J. Hopfield, C.J. Frosch, Phys. Rev. Lett. 15, 857 (1965)

Index

AAS effect, 418
AB effect, 409, 417
absorption coefficient, 103
acceleration
 of electron, 93
acoustic branch, 211
acoustic phonon, 211
acoustic phonon scattering, 233, 268, 280
 two-dimensional electron gas, 353
acoustoelectric effect, 188
addition energy, 440
Aharonov–Bohm effect, 408, 409, 417
Airy function, 148
allowed band, 8
alloy scattering, 263, 279, 286
amplitude reflection coefficient, 102
angular momentum, 43
annihilation operator, 218, 538
anti-Stokes shifted wave, 163
artificial atom, 439
Aspnes third-derivative form, 157

Büttiker–Landauer formula, 412, 414
ballistic electron transport, 419
ballistic region, 411
band discontinuity, 498
band structure
 quasi-one-dimensional, 386
band tail effect, 464, 465
band-to-band transition, 103
birefringence, 183
Bloch function, 73
Bloch theorem, 3
Boltzmann distribution function, 226
Boltzmann transport equation, 221, 222
Bose–Einstein distribution, 219, 243, 248
Bose–Einstein statistics, 261
boson
 excitation number, 219
 operator, 220, 535
bound exciton, 470, 471
Bragg reflection, 6
Brillouin scattering, 180
 resonant, 177, 179, 190
Brillouin zone, 7, 209
 superlattice, 389
 symmetry of fcc, 26
 zone folding, 388
Brooks–Herring formula, 235, 238, 277

canonical ensemble, 543
cathode luminescence, 459, 468
Cauchy, 128
Cauchy principal value, 527
central cell correction, 87, 89
charging energy, 449
chemical potential, 258, 412
chemical potential difference, 440
collision rate, 229
collision term, 223
commutation relation, 535
complex conductivity, 102, 103
complex dielectric constant, 102
complex dielectric function, 128
complex refractive index, 100, 101
composite boson model, 432
composite fermion model, 432
conductivity, 225, 230
effective mass, 227, 279
tensor in magnetic field, 295
confinement
quantum well, 499
confinement factor, 492
continuum model, 216
Conwell–Weisskopf formula, 238, 239, 277
Cooper–Nelson formula, 385
Coulomb blockade, 433–435
Coulomb gap, 434, 436
Coulomb interaction, 439
Coulomb island, 436
Coulomb potential, 235
screened, 235, 262
creation operator, 218, 538
critical point, 107
of joint density of states, 107
crystal field, 515
crystal momentum, 54
cyclonic boundary condition, 3, 214
cyclotron frequency, 30
cyclotron mass, 34, 35
cyclotron motion, 30, 55
cyclotron radius, 55
cyclotron resonance, 29, 30
quantum mechanical treatment of, 60
Debye screening length, 236, 259
deformation potential, 136, 251
acoustic phonon, 233
acoustic phonon scattering, 253
constant, 139
degenerate bands, 249
Herring–Vogt relation, 250, 256
hydrostatic, 250
inter-valley phonon scattering, 249, 253
optical phonon, 242, 243
optical phonon scattering, 253
rigid-ion model, 251
scattering, 233
shear, 250
tensor, 138
theory, 251
degeneracy, 59
in a magnetic field, 55
delta function, 525
density matrix, 541
density of states, 25, 60
GaAs, 27
indirect transition, 113
Si, 27
density operator, 539
density-of-states mass, 227
depletion layer, 335
DH–LD, 483
diagram, 172
dielectric constant
effective, 241
high frequency, 245
indirect transition, 113
static, 245, 257
dielectric function, 127
electron screening, 256
indirect transition, 114
Lindhard formula, 256
of exciton, 125
of indirect exciton, 126
dielectric loss, 103
diffusion
coefficient, 411
length, 411
region, 411
Dingle temperature, 309
Dirac delta function, 525
Dirac identity, 525, 526
direct exciton, 116
direct transition, 103, 105
distribution function
Bose–Einstein, 243, 248
Fermi–Dirac, 257
donor
excited states, 84
in Ge, 80
in Si, 80
ionization energy, 80
donor level, 80
double heterostructure, 483
confinement factor, 492
double heterostructure laser diode, 483
doublet, 86
drift mobility, 229
drift motion, 229
drift term, 222
drift velocity, 229, 290
drifted Maxwellian distribution function, 283

drift velocity, 229, 290
effective charge, 243
effective density-of-states mass, 279
effective electric field, 365, 382
effective gain factor, 495
effective ionic charge, 246

effective mass, 97
conductivity, 227
density-of-states mass, 227, 338
effective refractive index, 490
effective-mass approximation, 75, 79
effective-mass equation, 79
for exciton, 118
in a magnetic field, 56
Einstein coefficients, 456, 457
Einstein relation, 456
elastic compliance constant, 532
elastic constant, 240, 532
electrical conductivity, 230
electro–luminescence, 468
electro-luminescence, 459
electro-optic effect, 147
electroabsorption, 154

electromechanical coupling coefficient, 274
electron interference, 408
intensity, 409
electron mobility, 229
electron motion, 96
in external force, 93
electron–electron interaction, 256
electron–electron scattering, 256
electron–LO–phonon interaction, 244
electron–phonon interaction Hamiltonian, 231
electronic polarization constant, 243
electroreflectance, 154, 157
empirical pseudopotential method, 15
empty lattice bands, 9
energy band gap, 8
envelop function, 499
envelope function, 79

exact diagonalization, 443
exciton, 116, 133, 197
bound exciton, 470
bound state of, 122
bound to ionized acceptor, 471
bound to ionized donor, 471
bound to neutral acceptor, 471
bound to neutral donor, 471
complex dielectric function, 125
continuum state, 122
envelop function, 120
exciton molecule, 472
free exciton, 470
longitudinal, 198
longitudinal-transverse splitting, 198
luminescence, 470
polariton, 197
transverse, 198
wave function, 117
exciton molecule, 472
expectation value
of electron velocity, 90
extended zone representation, 7
extended zone scheme, 9
extinction coefficient, 102

Fabry–Perot, 493
Fermi distribution function, 226
Fermi energy, 258
Fermi golden rule, 174
Fermi wavelength, 410
Fermi–Dirac distribution function, 226
Fermi–Dirac distribution function, 257
flux quanta, 409, 418, 425
forbidden band, 8
Fourier coefficient, 531
Fourier transform, 530
Fröhlich coupling constant, 247
fractional quantum Hall effect, 422, 432
Franz–Keldysh effect, 149, 150, 152
free exciton, 470
luminescence, 470
free-carrier absorption, 200, 202
free-electron bands, 9
free-electron model, 1
galvanomagnetic effect
quantum, 302
GaN lasers, 515
group velocity
 of electron, 90, 93

Hall angle, 288
Hall coefficient, 288, 297
Hall effect, 287
 scattering factor, 289, 298
tensor, 295
Hall field, 288
Hall mobility, 289
Hall resistance, 425
Hamiltonian
 electron–phonon interaction, 231
harmonic approximation, 212
heavy hole, 38
 band, 45
HEMT, 349
Hermite conjugate, 216
Hermite operator, 216
Hermite polynomials, 57
Herring–Vogt relation, 250
heterostructure, 344, 482
high electron mobility transistor, 349
high-field domain, 189
high-frequency dielectric constant, 195, 245
hot electron, 319
Hund’s rule, 439, 450
hydrostatic deformation potential, 250
impurity level, 80
 of Ge, 83
 of Si, 83
 shallow, 80
impurity scattering
 Conwell–Weisskopf, 239
indirect exciton, 125
 luminescence, 470
indirect transition, 110
integer quantum Hall effect, 422
inter-subband transition, 352
inter-valley phonon scattering, 248, 275, 284, 321
g process, 248
f process, 248
two-dimensional electron gas, 356
inter-valley scattering
 Herring–Vogt relation, 250
interatomic matrix element, 393
interband transition
 effect of electric field, 150
intra-subband scattering, 358
intra-subband transition, 352
inverse effective mass, 97
inversion layer, 334
ionized impurity scattering, 235, 276, 285
two-dimensional electron gas, 362
isoelectronic trap, 477
joint density of states, 105
k.p perturbation, 19, 20, 38, 40
Kerr effect, 147
Kramers–Kronig relations, 129
Kramers–Kronig transform, 155
Kronig–Penney model, 386
Löwdin orbital, 392
Löwdin’s method, 391
Landau gauge, 56
Landau level, 54
 of non-parabolic band, 61
 of valence bands, 65
 quantum number of, 57
Landauer formula, 412, 413
Larmour frequency, 442
laser diode, 482
laser gain, 462
laser oscillation, 493
lattice match, 344
lattice vibration, 207
 acoustic mode, 207
 continuum model, 216
 optical mode, 207
LD, 482
LED, 481
light absorption
 by excitons, 121
light emitting diode, 481
light hole, 38
light-hole
 band, 45
Lindhard dielectric function, 539
Lindhard formula, 256
LO phonon
 plasmon coupled mode, 205
local electric field, 243
longitudinal magnetoresistance, 305
longitudinal mode frequency, 496
longitudinal optical phonon, 194, 244
 angular frequency, 194
Lorentz force, 29, 287
Lorentz function, 123, 526
luminescence, 468
 band to band transition, 469
 bound exciton, 471
 exciton, 470
 exciton bound to acceptor, 471
 exciton bound to ionized donor, 471
 exciton bound to neutral acceptor, 471
 exciton bound to neutral donor, 471
 free exciton, 470
 indirect exciton, 470
N trap, 477
 via impurity, 472
luminescence
 donor–acceptor pairs, 472
Luttinger Hamiltonian, 499, 504
Luttinger parameters, 66, 499, 500
Lyddane–Sachs–Teller equation, 194
magnetic focusing, 420
magnetoconductivity tensor, 295
magnetophonon resonance, 312
 Barker’s formula, 318
 impurity series, 319
 inter-valley phonon series, 321
 two-TA-phonon series, 320
 under high electric and magnetic fields, 324
magnetoresistance, 291
magnetoresistance effect, 293, 294
magnetotransport, 287
many valleys, 36
many-valley semiconductor, 275
many-valley structure, 36, 250
matrix element
 acoustic phonon scattering, 234
 electron–electron scattering, 263
 electron–hole scattering, 263
 for transition, 104
 ionized impurity scattering, 236
 non-polar optical phonon scattering, 242
 piezoelectric potential scattering, 241
 plasmon scattering, 261
 polar optical phonon, 248
 transition, 230
mean free path
 acoustic phonon scattering, 271
mesoscopic, 406
 region, 410
 system, 410
mini-band, 388
mobility, 225, 229, 279
 acoustic phonon scattering, 280
 alloy scattering, 286
 Brooks–Herring formula, 285
 Conwell–Weisskopf formula, 286
 Cooper–Nelson formula, 385
 inter-valley phonon scattering, 284
 ionized impurity scattering, 285
 neutral impurity scattering, 286
 non-polar optical phonon scattering, 280
 piezoelectric potential scattering, 283
 polar optical phonon scattering, 283
 remote ionized impurity scattering, 373
 two-dimensional electron gas, 378
 universality of MOSFET mobility, 383
mode gain, 496
mode refractive index, 486
modulation doping, 346
modulation spectroscopy, 147, 153
molecular beam epitaxy, 343
momentum conservation, 105
momentum operator, 54
 commutation relation of, 54
MOSFET, 334
N trap, 477
nearly free electron approximation, 4
neutral impurity scattering, 277, 286
non-parabolic band, 52
non-parabolicity, 51
non-polar optical phonon scattering, 242, 271, 280
 two-dimensional electron gas, 353
non-radiative recombination, 459
normal process, 233
number operator, 219
optical branch, 211
optical dielectric constant, 195
optical phonon, 220
 longitudinal, 244
optical transition
 in quantum well, 503
orthogonal plane wave, 14

Pauli spin matrix, 43
phase coherence length, 411
phase relaxation time, 411
phonon
 absorption, 113
 acoustic, 211
 emission, 113
 optical, 211
 polariton, 193, 196, 197
photoelastic constant, 181
photoelastic effect, 181
photoluminescence, 398, 458, 468
photorefractance, 154, 398
piezobirefringence, 135
 coefficient, 136
 tensor, 136
piezoelectric constant, 165
 effective, 241
piezoelectric field, 515
piezoelectric potential, 240
piezoelectric potential scattering, 240, 274, 283
 two-dimensional electron gas, 360
piezoelectricity, 165, 240
 fundamental equations, 240
piezoreflectance, 154
Planck’s radiation theory, 457
plasma frequency, 201, 257
plasma oscillation, 260
 longitudinal, 201
plasmon, 200, 201
 LO phonon coupled mode, 205
plasmon scattering, 256, 278
Pockels effect, 147, 181
Pockels electro-optic tensor, 147
point contact, 420
Poisson summation formula, 304
polar optical phonon scattering, 243, 273, 283
 two-dimensional electron gas, 357
polariton, 193
 exciton, 197
 phonon, 193, 197
polaron, 329
 effect, 329
 polaron mass, 332
population inversion, 462
power loss, 103
principle of detailed balance, 223
 degenerate case, 225
propagator, 173
pseudomorphic growth, 344
pseudopotential, 14
pseudopotential method, 13
quantum dot, 439
quantum Hall effect, 333, 421
quantum liquids, 432
quantum structure, 333
quantum well, 345
quantum well laser diode, 483
quasi-direct transition, 398
quasi-static approximation, 180
QUILLS, 324
QW–LD, 483
Raman scattering, 161
 first-order, 167, 170
 quantum mechanical theory, 172
 resonant, 172, 177, 179
 second-order, 167, 170, 171
 selection rule, 167
Raman tensor, 164, 166
random phase approximation, 256, 539, 540
randomizing collision approximation, 272
reciprocal lattice, 3
reciprocal lattice vector, 4
recombination, 468
reduced zone representation, 7
reduced zone scheme, 8, 9
reflection coefficient, 101, 102
refractive index, 100, 102
 effective, 490
relaxation approximation, 224
relaxation time, 223, 224, 231, 264, 265
 acoustic phonon scattering, 270
 alloy scattering, 279
 inter-valley phonon scattering, 275
ionized impurity scattering, 237, 277
neutral impurity scattering, 278
non-polar optical phonon scattering, 272
piezoelectric potential scattering, 274
plasmon scattering, 278
polar optical phonon scattering, 274
remote ionized impurity scattering, 372
remote ionized impurity scattering, 369
degenerate 2DEG, 373
delta-doped heterostructure, 374
non-degenerate 2DEG, 375
reservoir, 412
rigid-ion model, 251
scattering probability, 230, 231
scattering rate, 229, 264
acoustic phonon scattering, 269
electron–electron scattering, 263
electron–hole, 263
inter-valley phonon scattering, 275
ionized impurity scattering, 277
neutral impurity scattering, 278
non-polar optical phonon, 272
piezoelectric potential scattering, 274
polar optical phonon scattering, 273
remote ionized impurity scattering, 369
two-dimensional electron gas, 353
two-dimensional system, 353
scattering time, 264
screened Coulomb potential, 236
screening effect
static screening, 248
two-dimensional electron gas, 364, 366
screening length
Debye, 259
Debye–Hückel, 259
Debye-length, 236
Thomas–Fermi, 259
screening wavenumber
Debye–Hückel, 259
Thomas–Fermi, 259
self-consistent calculation, 347
self-consistent method, 340
Seraphin coefficient, 155
SET, 436
shear deformation potential, 250
sheet electron density, 381
shell filling, 443
Shubnikov–de Haas effect, 301, 302
simple harmonic oscillator, 56
single electron transistor, 433, 436, 438
singlet, 86
singularity
of crytical point, 107
of joint density of states, 107
skipping motion, 427
Slater determinant, 443, 447
Snell law, 183
spin momentum, 43
spin–angular orbital interaction, 43
spin–flip, 114
spin–orbit interaction, 43, 402
spin–orbit split-off band, 45
spin–orbit splitting energy, 44
split-gate, 420
spontaneous emission, 457, 458
static dielectric constant, 245, 257
stimulated emission, 457, 458
Stokes shifted wave, 163
Stradling–Wood formula, 313
strain, 240
tensor, 250, 531
stress, 240
tensor, 532
subband, 338
energy, 338
superlattice, 343, 386
Brillouin zone, 389
ergy bands, 395
period, 386
strained-layer, 344
types, 345
surface roughness scattering
two-dimensional electron gas, 364
susceptibility tensor, 128
TE mode, 486, 487
thermoreflectance, 154
third-derivative form, 157
third-derivative modulation spectroscopy, 157
tight binding approximation, 391
sp^3s^*, 393, 394
second nearest-neighbor sp^3, 400
TM mode, 487
transducer, 187
transition
 matrix element, 104, 230
 probability, 230
transmission coefficient, 101
transmissivity, 494
transverse electric mode, 486, 487
transverse magnetic mode, 487
transverse magnetoresistance, 308
transverse optical phonon, 193
 angular frequency, 194
 transverse resonance frequency, 195
triangular potential approximation, 336
triplet, 86
two-band approximation, 52
two-dimensional electron gas, 334, 336, 347
density of states, 337
Umklapp process, 233
uniaxial stress, 531
unitary transform, 46
valence bands, 38
valley degeneracy, 338
valley–orbit interaction, 85, 86
van Hove singularities, 107
variational principle, 81, 340
vector potential, 54
vertex, 173
virtual-crystal approximation, 263
von Klitzing constant, 422
Wannier exciton, 116
Wannier function, 73
wurtzite semiconductor, 515
zone-folding effect, 388