Index

π-conjugated materials, 105, 183
ab initio MD, 36
absorption spectra, 10, 155
adiabatic exciton states, 46
adsorbed CO, 365, 375
amide I band, 37
Anderson impurity model (AIM), 238, 288
Anderson-Hubbard Hamiltonian, 238, 255, 286
anharmonic couplings, 144
anisotropy, 135
antenna complexes, 29
antenna-effect, 3
anti-cancer drugs, 165
anthracycline, 165
daunomycin, 167
bath, see reservoir, 341
correlation function, 341
biopolymers, 73
bleaching signal, 155
Born-Oppenheimer surfaces, 147, 389
Bose-Einstein distribution, 341
bosonic bath, 339, 344
branching plane, 195, 196, 200
canonical ensemble simulation, 170
chromophore couplings, 42
classical path approximation, 54
cluster modes, 196
CO/Cu(001), 365, 374, 376
collective modes, 195
Condon approximation, 50
conductance
differential, 242
linear, 241
configuration
parallel, 297
serial, 295
conformational dynamics, 77, 78, 80, 84, 87, 96
conical intersection (CoIn), 194
correlations between structure and dynamics, 90
Coulomb blockade, 214, 216, 239, 285
Coulomb staircase, 242
cumulant expansion, 199
current, 263
nonequilibrium, 295
current-voltage curve, 242
CURVES, 172
damped harmonic oscillator, 348
decoherence, 313, 398, 400, 432
time, 234
dendrimeric, 35
density functional theory (DFT), 147
dephasing, 40
diabatic representation, 193
diagrammatic technique, 264, 267
differential conductance
negative, 214
dissipation, 313
delayed, 363, 365, 370, 374
energy, 363
fast, 363, 365, 369
instantaneous, 370, 372, 377
slow, 364, 365, 369
dissipative
dynamics, 344, 364, 374
phenomena, 364, 369
potential, 365, 372, 375
quantum dynamics, 51
DNA, 105, 127, 143, 165, 167
absorption spectrum, 129
basepairs, 143, 165
bases, 106
chemistry of life, 105
conformations, 144
dAMP, 127
dCMP, 127
dGMP, 127
electronic transitions, 130
evolution, 105
hydrogen bonding, 144
hypochromism, 129
microsolvated base pairs, 143
minor groove, 177
molecular wire, 313
oligomers, 143
photochemical products, 106
photolesions, 106
proton transfer, 119
rare tautomer forms, 118
solvated base pairs, 146
TMP, 127
Watson Crick pairs, 117, 128, 137
dual level calculations, 148
Dyson equation, 219
effective modes
chain, 196
hierarchical representation, 196
Ehrenfest
dynamics, 38, 53
equations, 395
electron transport, 340, 354
electron-phonon
coupling, 185
Hamiltonian, 191, 246
electron-vibron coupling, 246
electronic coupling, 22
electronic energy relaxation, 363
electronic energy transfer, 3, 4, 19, 20
electronic Hamiltonian, 41
emission rate, 50
equation of motion (EOM) technique, 277
evolution, 29
evolutionary tree of life, 5
arkea, 5
bacteria, 5
eukarya, 5
excimer, 108
exciplex, 108, 184, 190, 204
excitation energy transfer (EET), 35, 40, 184
electronic, 132
fourth-order rates of EET, 47
exciton, 108, 184, 185
diffusion length, 184
dissociation, 184, 200
Förster
distance, 20
orientation factor, 22
rates, 39
spectral overlap, 20, 28
theory, 4, 16, 19, 20, 73, 138
transition dipole strength, 22
Fabry-Perot domain, 216
Fenna-Matthews-Olson (FMO) protein, 13
Fermi level, 296, 322
Fermi’s Golden Rule, see golden rule, 285
fermionic reservoirs, 339, 352
filter, 422
fingerprint mode, 144
fluctuation-dissipation theorem, 266
fluctuations, 84
fluorescence, 132
anisotropy, 135
upconversion, 129, 132
FMO protein of green bacteria, 10
force basis, 392
force field, 168
AMBER, 169
Franck-Condon
blockade, 219, 254
matrix element, 253
states, 131, 138
Frenkel-exciton, 35
vibrational, 37
FRET, 73
efficiency, 75, 78
single-molecule (SM-FRET), 73, 75, 76, 81, 96

Generalized Langevin Equation, 198
golden rule, 19, 20
Green function
lesser, for fermions, 265, 290
retarded, 259, 289
Green function (GF) methods, 220, 225
single-particle matrix, 229
time-ordered, 264
GROMACS, 168

Haken-Strobl-Reinecker model, 38
Hashitsume-Shibata-Takahashi identity, 340
Heisenberg
equation of motion, 448, 449, 452
group, 441–443, 445, 446, 449, 451, 452, 456, 461, 462
group representation, 440
Hellmann-Feynman forces, 390
heterojunction, 184
TFB:F8BT, 186, 205
triplet states, 190
type II, 186
hierarchical electron-phonon (HEP) model, 196
homopolymer model, 84
Huang-Rhys parameter, 193
Hubbard
interaction, 238
model, 108
hydrogen bonding, 144, 176
hydrophilic, 82
hydrophobic, 82
incoherent hopping, 29
incoherent transfer, 19
inertial regime, 199
initial conditions
nonthermal, 265
integro-differential equation
numerical procedure, 373
interaction modes, 196
interaction representation, 267
intercalation, 165, 166
barrier height, 175
free energy, 165, 166, 175
rate constant, 175
interface configurations, 204
internal conversion, 183
intersystem crossing (ISC), 190
IR-pump-probe methods, 143
iterative linearized density matrix, 416

Jahn-Teller effect, 193
junction
asymmetric, 305
differential conductance, 304, 305
single-site, 285
symmetric, 304

Kadanoff-Baym-Keldysh (KBK) method, 219, 278
Kasha’s rule, 183
Kasha-Vavilov rule, 183
kinetic Monte Carlo simulations, 82
kinetic properties, 263
Kondo effect, 214, 216, 255
Kondo parameter, 428
Kubo transformed correlation function, 404

Landauer formula, 232
Landauer-Büttiker formula, 229, 275
Lang-Firsov transformation, 216
Langevin
dynamics, 75
equation, 80
lattice model, 193
two-band configuration interaction, 192
leads
Fermi sea, 216
isolated, 224
molecule-to-lead coupling, 216
Lehmann representation, 266
level-width function, 226, 241
Lie brackets, 439, 451, 452, 462, 463
quantum, 440
light-harvesting complex (LHC), 5, 351
BChl chromophore, 11
chlorosomes, 11
CP24, CP26, CP29 antenna complex, 14
CP43, CP47, 14
LH1, 6, 11
LH2, 6, 11
LHC family, 13
LHCl, 13, 15
LHClII, 14, 15
peridinin-Chl a-protein (PCP), 15
phycobiliproteins, 14
phycobilisomes, 14
phycocyanin 645 (PC645), 16
Rhodomonas CS24, 15
Lindblad form, 372, 377
linear vibronic coupling (LVC), 193
linearized approximation, 423
linearized density matrix propagation, 417
Liouville dynamics, 417
Liouville-von Neumann equation, 364
multiconfiguration time-dependent Hartree (MCTDH) method, 185, 200
multidimensional potential energy surface (PES), 151
multipole expansion, 113
Nakajima-Zwanzig identity, 339, 341, 358
nano-devices, 214
Newton’s equation, 38, 54
non-Markovian, 198, 346
nonadiabatic dynamics, 185, 397, 415
transitions, 419
nonequilibrium equation of motion (NEOM), 275, 285
nonequilibrium Green function (NGF) method
Keldysh NGF technique, 215, 219
off-diagonal coupling, 429
Ohmic bath, 198, 204
spectral density, 428
on the fly dynamics, 36
Onsager model, 111
organic light-emitting diode (OLED), 183, 191
oscillator strength, 64
path integral, 416
PDB, 167
peridinin-chlorophyll proteins, 10
perturbative techniques
time-local (TNL), 340
time-nonlocal (TNL), 340, 348
phenomenological microscopic approach, 232
phonon-assisted exciton dissociation, 200
photocurrent, 204
photosynthesis, 3, 4, 105
photosynthetic bacteria, 4
proteins, 4
photosynthetic organisms, 5, 29
chloroplasts, 7
chlorosomes, 10
mapping
basis, 394
formulation, 423
phase space coordinates, 394
Markovian approximation, 364, 398
master equation, 229, 235
dynamics, 407
Matsubara frequencies, 341
mean-field approximation, 318
Meir-Wingreen formula, 274
Meir-Wingreen-Jauho current formula, 273
minor groove, 167, 169
mixed quantum-classical methods, 40, 47, 52, 53, 59, 67, 415, 416
mixing angle, 109
molecular dynamics (MD), 167
umbrella sampling, 168
molecular wires, 339, 352, 357
momentum shift operator, 399
momentum-jump, 420
approximation, 391, 392
Monte Carlo, 40
branching, 427
Mori theory, 198
multi-level system, 285, 312
Index 473

cyanobacteria, 6, 10
eukaryotes, 7
eukaryotic, 5
green non-sulfur bacteria, 5
green sulfur bacteria, 5
heliobacteria, 5
phycobilisomes, 10
prokaryotic, 5
purple bacteria, 5
photovoltaic diode, 184
Planck constant, 438–442, 449, 451, 453, 457, 459, 460
PMF, see potential of mean force, 171, 173, 177
Poisson bracket, 439, 448, 451, 452, 456, 465, 466
operator, 394
Polarizable Continuum Model (PCM), 23, 26
linear-response-PCM, 26
Onsager, 27
polarization, 135
polaron representation, 250
polypeptide model, 79
potential energy surfaces (PES), 147, 195
potential of mean force, 170
projection operators
 Mori-Zwanzig, 400, 404
proton transfer, 403
QM/MM method, 36, 161
quantum biology, 103
quantum coherence, 415
quantum dot, 239
 inter-dot hopping, 297
 single- and double-site, 285
quantum fluctuations, 198
quantum Liouville-von Neumann equation, 384
quantum master equation (QME)
 time-local (TL), 339, 345
quantum metaphysics, 105
New Age science, 105
quantum transport, 215
quantum-classical
 brackets, 439, 440, 452, 454, 456, 462
 equations of motion, 437, 440, 451, 452, 457, 462, 463
 limit, 440, 454, 458, 460, 461
Liouville (QCL) approach, 416, 418
Liouville dynamics, 407, 417
Liouville equation, 385, 418
Liouville method, 383
mechanics, 440, 441, 451, 453, 462
Wigner-Liouville equation, 386
radiative decay rates, 53
rectification, 214
Redfield equation, 39
reduced density operator, 364, 366, 378
Heisenberg group, 443
irreducible, 441
unitary, 441
reservoir
 bosonic, 341
 electronic, 315
 fermionic, 343
RNA, 105
Runge-Kutta algorithm, 364
sampling coordinate, 171
Schwinger-Keldysh, 270
 closed-time contour, 259
 self-energy
 contact, 224
 semiempirical PM3 approach, 148
 single-excitation configuration interaction (CIS), 188
single-molecule junctions, 214
skin cancer, 127
solar energy conversion, 105
solvent screening, 26
 factor, 26, 27
spectral density
 bath, 198, 318, 340
 Drude form, 349
 spectral function, 263
spin-boson model, 429
 asymmetric, 429
surface-hopping, 399
 fewest switches algorithm, 397
 method, 38, 397
 scheme, 392
trajectory, 426, 432
TCSPC, see time-correlated single photon counting, 129
tight binding (TB) model, 220
time-correlated single photon counting, 129, 132, 133
time-dependent density functional theory (TD-DFT), 185, 188
time-dependent Schrödinger equation, 40
time-path integration
closed, 270
time-resolved infrared spectroscopy, 144
topology-adapted
modes, 200
representation, 196
transformation
canonical, 248
Lang-Firsov, 248
polaron, 248
transient TCF, 368
transition charges, 38
transition density, 23
cube (TDC) method, 23
differences, 114
transition monopole approximation
(TMA), 23
Trotter factorization, 420
tunneling
current, 232
Hamiltonian, 230, 247
sequential, 234
time, 234
Verlet algorithm, 80
vibrational energy relaxation, 144, 363
vibrational transitions, 146
vibronic resonance, 204
vibrons, 243
electron-vibron coupling, 299
electron-vibron Hamiltonian, 299
nonequilibrium, 299
Wannier function, 191, 192
weak coupling approximation, 19
WHAM, 174
Wigner representation, 53, 400
Wigner transform, 438, 439, 443, 444, 446, 449, 458, 460, 463, 464
partial, 385, 402, 418
Z-scheme, 6