Appendix A

Mathematical Notation Used in this Book

This appendix gives a brief description of the mathematical notation used in this book, especially in Chapters 5 to 9. In all cases scalar quantities are presented in simple math mode. Examples are mass m or M; fundamental constants $c, G, \text{etc.}$; and Greek letters $\gamma, \delta, \phi, \text{etc.}$. This does not include components of vectors and tensors, which are discussed below.

A.1 Vector and Tensor Notation for Two- and Three-Dimensional Spaces

Two and three-dimensional space notation is the same, as neither contains a time coordinate.

A.1.1 Two- and Three-Dimensional Vector and 1-Form Notation

Vectors in two and three dimensions are written as bold capital letters in math mode. Examples are momentum and velocity P and V; electric and magnetic field E and B; etc. Components of vectors are written in the same font as the geometrical quantity, but not in boldface and with a upper index indicating which component it represents. Examples: P^x, V^r, E^y, and B^z.

Roman subscripts are sometimes added to vectors or their components to distinguish which object or type of physics problem is being discussed. Examples are the velocity of object #2 V_2 or orbital velocity in Schwarzschild geometry $V_{\text{orb,SH}}^\phi$.

1-Forms for the above quantities are written in bold lower-case letters, also in math mode. Examples are the momentum and velocity 1-forms p and ν; electric and magnetic 1-forms e and b; etc. Components are of these written in the same
font as the 1-form geometrical quantity, but not in boldface and with a lower index. Examples: \(p_z, v_x, e_r, \) and \(b_y\).

In flat two- and three-dimensional space, even when the coordinates are curvilinear, there usually is no distinction between vector and 1-form components. This is because they usually are written in a local orthonormal frame rather than a coordinate frame and because the metric in the that frame is simply the identity matrix. For example, in polar coordinates, the velocity \(V^\theta\) is actually the linear velocity \(V^\theta = r \, d\theta / dt\), not the speed of the angular coordinate \(\theta\) (\(V^\theta = \frac{d\theta}{dt}\)). Therefore, \(v_\theta = V^\theta\), so there is no distinction between vectors and 1-forms.

A.1.2 Tensor Notation

Contravariant tensors in two and three dimensions are written as bold, sans serif capital letters. An example is the three-dimensional stress tensor \(T\). Components are written in non-bold sans serif capital letters, with upper indices: \(T^{xx}\).

Covariant tensors in two and three dimensions also are bold, sans serif letters, but lower-case is used. The covariant version of the stress tensor is \(t\), and its components are written \(t_{xx}, t_{xy}, \) etc. The metric tensor \(g\) follows this form, but its contravariant version does not, because it is the inverse of the metric \(G = g^{-1}\).

In order to limit confusion, mixed tensors are avoided in this book.

A.2 Vector and Tensor Notation for Four-Dimensional Spacetime

In order to emphasize the fundamental difference between three-vectors and four-vectors (and between three- and four-dimensional tensors), we use a different notation for spacetime quantities.

A.2.1 Vector and 1-Form Notation in Four-Dimensional Spacetime

As above, four-vector geometric quantities are written as bold capital letters. However, the font is a roman one, not math mode. Examples are four-momentum and four-velocity \(P\) and \(U\); four-current \(J\) and four-potential \(A\). Components also are non-bold characters of the same font and again with upper indices: \(P^x, U^r, J^y, \) and \(A^z\).

Similarly, 1-form quantities in four dimensions are written as bold lower-case roman letters, with their components in non-bold roman font and having lower indices: \(p_z, u_x, j_r, \) and \(a_y\).
A.2.2 Tensor Notation in Four-Dimensional Spacetime

Contravariant tensors in four dimensions are written as bold, calligraphic capital letters. Examples are the stress-energy tensor \mathcal{T} and the Faraday and Maxwell tensors \mathcal{F} and \mathcal{M}. The components are written as upper indices: T^{ww}, F^{xy}, M^{wz}.

Because calligraphic letters are available only in upper-case, for covariant four-dimensional tensors we re-use the regular math mode letters. (There should be no ambiguity, as this notation is rarely used for three-dimensional 1-forms in this book. See above.) Examples are the metric g with components g_{xx}, etc or the Faraday 2-form f. As in three-space, the covariant forms are written with the same letter, but in lower-case. The exception again is the metric, because its contravariant form is also its inverse g^{-1}.

In the rare case when we need to express a tensor with more than two indices (e.g., the Riemann tensor), we use the Fraktur font: \mathfrak{R} or $\mathfrak{R}_{\alpha\beta\gamma\delta}$.

A.3 Miscellaneous Notation

Dipole and quadrupole moments often use similar letters to other physical quantities, so here we distinguish them by writing them in a Fraktur font. The same is true of other rare quantities used herein, including three-force per unit volume \mathfrak{F} in a Fraktur font (as opposed to a simple force F) and four-force per unit volume \mathcal{F} in a script font.

Occasionally a vector or tensor of the same spatial dimensions and rank will be needed to indicate the time and spatially-independent coefficients of a sinusoidal wave function. In that case we use the same letter (lower or upper-case) with a slightly different, but related, font. Examples are the Euler font \mathcal{A} for the coefficient of the three-vector potential A or the blackboard font \mathbb{A} for the four-vector potential A.
Appendix B

Derivatives of Vectors and Tensors: Differential Geometry

Physics, and therefore astrophysics, is described by equations that involve the spatial and time derivatives of vectors and tensors. In order to properly describe physics in a curved spacetime (and even in flat spacetime that is spanned by curvilinear coordinates) we will need to understand how gradients and divergences of these quantities are calculated when the coordinates are not Euclidean or Minkowskian. This requires the mathematics of differential geometry, which is a broad subject. Here we provide only a very brief introduction.

Gradients and divergences will depend, of course, on how the metric changes with those coordinates. The derivatives of g are best embodied by a single function, called the “Christoffel symbol” or “connection coefficient”, and it takes into account all possible derivatives:

$$\Gamma_{\lambda\mu\nu} \equiv \frac{1}{2} \left(\frac{\partial g_{\lambda\mu}}{\partial x^\nu} + \frac{\partial g_{\lambda\nu}}{\partial x^\mu} - \frac{\partial g_{\mu\nu}}{\partial x^\lambda} \right)$$

The indices λ, μ, and ν range over the dimension of the space (e.g., 0–3 for spacetime).

While the connection coefficients appear rather ugly, and the reader may be inclined to ignore them, they are of enormous importance in physics and even our daily lives. They give rise to:

- Formulae for the gradient, divergence, and curl in curvilinear coordinates that are routinely used in fluid dynamics, plasma physics, mechanics, etc.
- Pseudo-forces like centrifugal and Coriolis forces, which arise because our frame of reference is accelerated.
- The force of gravity, which in Einstein’s view is also a pseudo-force, arising because of the curvature of space and time.

1 There are a few places in this book where matrix notation is not adequate, so we shall revert to component notation. This is the case here, and in a few other places, where we must deal with quantities with more than two indices.
B.1 Covariant Gradients in Curved Spacetime

The gradient of a geometric quantity (scalar, vector, tensor) increases the number of indices on that quantity by 1: a scalar becomes a vector; a vector becomes a 2-tensor, etc. Using connection coefficients, the gradient can be written as follows:

\[
(\nabla \Phi)_\gamma = \frac{\partial \Phi}{\partial x^\gamma} \\
(\nabla V^\beta)_\gamma = \frac{\partial V^\beta}{\partial x^\gamma} + \sum_{\lambda, \mu} g^{\beta\lambda} \Gamma^\gamma_{\lambda\mu} V^\mu \\
\left(\nabla T^{\alpha\beta}\right)_\gamma = \frac{\partial T^{\alpha\beta}}{\partial x^\gamma} + \sum_{\lambda, \mu} \left[g^{\alpha\lambda} \Gamma^\gamma_{\lambda\mu} T^{\mu\beta} + g^{\lambda\beta} \Gamma^\gamma_{\lambda\mu} T^{\alpha\mu} \right] \quad (B.2)
\]

The sums in the above formulae are performed over the number of dimensions in the space or spacetime.

Similar formulae also exist for 1-forms, 2-forms, etc.

\[
(\nabla v^\beta)_\gamma = \frac{\partial v^\beta}{\partial x^\gamma} - \sum_\mu \Gamma^\gamma_{\beta\mu} v^\mu \\
(\nabla t_{\alpha\beta})_\gamma = \frac{\partial t_{\alpha\beta}}{\partial x^\gamma} - \sum_{\lambda, \mu} \left[g^{\mu\lambda} \Gamma^\gamma_{\alpha\mu} t_{\lambda\beta} + g^{\mu\lambda} \Gamma^\gamma_{\beta\mu} t_{\alpha\lambda} \right] \quad (B.3)
\]

These are called “covariant” gradients, because they can be used in physical laws that are invariant under any coordinate transformation. Furthermore, the formulae are true for any metric and so are quite amazing, if rather messy.

We can simplify the look of them, using the matrix notation we used in Chapters 6 and 7 if we define a simple derivative \(\partial_\gamma \) to be the operator

\[\partial_\gamma \equiv \frac{\partial}{\partial x^\gamma} \]

\(\partial_\gamma \) is similar to \(\nabla_\gamma \), but it takes the derivative of only the components of the geometric quantities, not of their unit vectors as well. We then can write equations (B.2) as

\[
\nabla \Phi = \partial \Phi \\
\nabla V = \partial V + \left[g^{-1} \cdot \Gamma \right] \cdot V \\
\nabla T = \partial T + \left[g^{-1} \cdot \Gamma \right] \cdot T + T \cdot \left[g^{-1} \cdot \Gamma \right] \quad (B.4)
\]

While these are much more intuitive than equations (B.3), they have much less computational power, because it is not clear over which indices the dot products occur.
B.2 Divergences in Curved Spacetime

The divergence of a geometrical quantity is simply the “contraction” of the gradient. This means that we set one upper index equal to the lower differentiating one and sum. Because it requires an upper index, the divergence applies only to vectors and tensors, not forms. Setting $\gamma = \beta$ in equations (B.2) and summing over β we have

$$\nabla \cdot \mathbf{V} = \sum_{\beta} \left\{ \frac{\partial V^\beta}{\partial x^\beta} + \sum_{\lambda, \mu} g^{\beta \lambda} \Gamma_{\lambda \mu \beta} V^\mu \right\}$$

$$(\nabla \cdot \mathbf{T}^\alpha) = \sum_{\beta} \left\{ \frac{\partial T^\alpha\beta}{\partial x^\beta} + \sum_{\lambda, \mu} \left[g^{\alpha \lambda} \Gamma_{\lambda \mu \beta} T^\mu \beta + g^{\lambda \beta} \Gamma_{\lambda \mu \beta} T^\alpha \mu \right] \right\}$$ \hspace{1cm} (B.5)

However, these can be simplified considerably by introducing the determinant of the metric

$$g \equiv |g|$$ \hspace{1cm} (B.6)

Equations (B.5) then become

$$\nabla \cdot \mathbf{V} = \frac{1}{\sqrt{|g|}} \sum_{\beta} \frac{\partial \left(\sqrt{|g|} V^\beta \right)}{\partial x^\beta}$$

$$(\nabla \cdot \mathbf{T}^\alpha) = \sum_{\beta} \left\{ \frac{1}{\sqrt{|g|}} \frac{\partial \left(\sqrt{|g|} T^\alpha\beta \right)}{\partial x^\beta} + \sum_{\lambda, \mu} \left[g^{\alpha \lambda} \Gamma_{\lambda \mu \beta} T^\mu \beta + g^{\lambda \beta} \Gamma_{\lambda \mu \beta} T^\alpha \mu \right] \right\}$$ \hspace{1cm} (B.7)

Again, we can write these in our matrix notation as

$$\nabla \cdot \mathbf{V} = \frac{1}{\sqrt{|g|}} \partial \cdot \left(\sqrt{|g|} \mathbf{V} \right)$$

$$\nabla \cdot \mathbf{T} = \frac{1}{\sqrt{|g|}} \partial \cdot \left(\sqrt{|g|} \mathbf{T} \right) + [g^{-1} \cdot \mathbf{T} : \mathbf{T}]$$ \hspace{1cm} (B.8)

In three-dimensional curvilinear coordinates, the metric is often diagonal, with elements $g_{ii} = h_i^2$. The vector divergence in equations (B.7) then gives us the familiar form for the divergence in curvilinear coordinates

$$\nabla \cdot \mathbf{V} = \frac{1}{h_1 h_2 h_3} \sum_{i=1}^{3} \frac{\partial \left(h_1 h_2 h_3 V^i \right)}{\partial x^i}$$

This equation is useful only for diagonal three-metrics; however, equations (B.7) work for any metric and so are much more powerful.
B.3 The Metric Has No Gradient or Divergence

If we plug the metric tensor g^{-1} into the tensor form of equations (B.2), (B.3), and (B.5), and use the definition of Γ (equation (B.1)), we find that

$$\nabla g^{-1} = 0$$
$$\nabla g = 0$$

and, therefore, $\nabla \cdot g = 0$. The metric, therefore, has no covariant derivative or divergence, even though its components do change, in general, as we move through spacetime. The covariant derivative ∇, therefore, picks up only those changes in a vector or tensor that are independent of the coordinates, not those that are generated by motion or curvature. This is why ∇ is used to cast the equations of physics in a coordinate-invariant (covariant) form.

In fact, we can now return to equation (B.1) and see how it was derived in the first place. We begin by simply imposing the requirement that the metric have no gradient or divergence. The formula for $\Gamma^{\lambda\mu\nu}$, therefore, must involve a linear combination of all possible derivatives of the symmetric metric tensor g

$$\Gamma^{\lambda\mu\nu} \equiv a \frac{\partial g_{\lambda\mu}}{\partial x^\nu} + b \frac{\partial g_{\lambda\nu}}{\partial x^\mu} + c \frac{\partial g_{\mu\nu}}{\partial x^\lambda} \quad (B.9)$$

If we now express ∇g in the general form (B.3), require it to be zero, require $\Gamma^{\lambda\mu\nu}$ to be symmetric in μ and ν, and solve for the coefficients a, b, and c, we recover the formula for Γ in equation (B.1).
Appendix C

Derivation of the Adiabatic Relativistic Stellar Structure Equations

This appendix derives the equations for the structure and evolution of a relativistic star in spherical symmetry. Because of this assumption, there will be no time-dependent quadrupole moment of the star’s mass and, therefore, no gravitational radiation emitted. This derivation, while fairly basic in relativistic physics is a little beyond the scope of the main part of the book. Nevertheless, it is an important demonstration of the use of the Einstein field equations (7.21) in solving for the time evolution of a relativistic gravitational field and an excellent example of black hole formation. The equations presented here were first derived by Charles Misner (University of Maryland) and David Sharp (Princeton University) [638], and independently by Michael May and Richard White of the Lawrence Radiation Laboratory (now known as Lawrence Livermore National Laboratory or LLNL) [639]. We will follow May and White’s work most closely.

C.1 The Spherical Metric in Mass Coordinates

We begin with the spherically symmetric metric written in a manner similar to the Schwarzschild metric

\[ds^2 = -\tilde{a}^2 c^2 \, d\tilde{t}^2 + \tilde{b}^2 \, dr^2 + r^2 \, d\Omega^2 \]

(C.1)

where \(d\Omega^2 = d\theta^2 + \sin^2 \theta \, d\phi^2 \). Indeed, outside the star we do have Schwarzschild geometry, with \(\tilde{a} = b^{-1} = (1 - r_S/r)^{1/2} \). However, inside the star \(\tilde{a} \) and \(\tilde{b} \) will be functions of time as well as of the radius \(r \).

For many reasons, detailed in Section 5.2.2, it is more convenient to use a coordinate system in which the independent radial coordinate is the integral of rest mass from the center of the star to some fixed specific value

\[m \equiv \int_V \rho \, dV \]

(C.2)
where dV is the Proper volume (including the curvature of space) and ρ is the rest mass density only (no internal or kinetic energy included). The amount of rest mass m inside this point will remain fixed during the evolution, but the radius of that shell $r(m, t)$ will change with time. It is helpful in this gauge to think of the star as composed of concentric shells, each with a mass $dm = \rho dV$, which can (1) collapse under their own gravitational weight if there are no other forces, (2) press against one another to keep the star in equilibrium if there are restoring pressure forces, or (3) even explode outward if the pressure can overcome gravity. A given value of m sits at the outer edge of a given mass shell and follows that shell’s motion as the star evolves.

Switching from r to the mass coordinate m, then, gives us a new metric

$$ds^2 = -a^2 c^2 dt^2 + b^2 dm^2 + r^2 d\Omega^2$$

where a, b, and r are functions of m and the new time variable t only (the spherically symmetric assumption). In particular, r will be the outer radius of the spherical mass shell at position m and radial mass width dm. (To be precise, r will be equal to $1/2\pi$ times the circumference of the mth spherical shell.)

Now, the proper three-dimensional volume element of each spherical shell in this metric is

$$dV = b dm r d\theta r \sin \theta d\phi$$

So equation (C.2) becomes

$$m = \int_0^{2\pi} d\phi \int_0^{\pi} \sin \theta d\theta \int_0^m \rho r^2 b dm$$

$$= \int_0^m 4\pi r^2 \rho b dm$$

(C.4)

Because the differential of both sides of equation (C.4) must be equal (i.e., $dm = 4\pi r^2 \rho b dm$) we immediately can write down the metric coefficient of dm

$$b = \frac{1}{4\pi r^2 \rho}$$

(C.5)

As with Newtonian stellar structure, the choice of mass coordinates automatically enforces the conservation of mass.

C.2 The Field Equations and Conservation Laws

The remainder of the metric coefficients (a and r) and the state variables (ρ and internal energy ε) are determined by two Einstein field equations and two conservation laws. We will use the stress-energy-momentum tensor written in the rest frame
of each mass shell (i.e., in the moving \([m, t]\) coordinate system) (equation (6.69)). The \(G^{tt} = 8\pi G T^{tt}/c^4\) Einstein field equation is, then

\[
\frac{c^2}{2} \frac{\partial}{\partial m} \left\{ r \left[1 + \frac{1}{a^2 c^2} \left(\frac{\partial r}{\partial t} \right)^2 - \frac{1}{b^2} \left(\frac{\partial r}{\partial m} \right)^2 \right] \right\} = 4\pi G \left(\rho + \frac{\varepsilon}{c^2} \right) r \frac{\partial r}{\partial m}
\]

(C.6)

and the \(G^{tm}\) component has no source

\[
\frac{\partial^2 r}{\partial m \partial t} - \frac{1}{a} \frac{\partial a}{\partial m} \frac{\partial r}{\partial t} - \frac{1}{b} \frac{\partial b}{\partial t} \frac{\partial r}{\partial m}
\]

(C.7)

Finally, the \(t\) and \(m\) components of \(\nabla \cdot \mathbf{T} = 0\) are

\[
\frac{\partial}{\partial t} \left(\rho + \frac{\varepsilon}{c^2} \right) = -\xi \rho \left(\frac{1}{b} \frac{\partial b}{\partial t} + \frac{2}{r} \frac{\partial r}{\partial t} \right) \quad \text{(C.8)}
\]

\[
\frac{\xi \rho c^2}{a} \frac{\partial a}{\partial m} = -\frac{\partial p}{\partial m} \quad \text{(C.9)}
\]

where we have defined the inertia per unit rest mass to be

\[
\xi \equiv 1 + \frac{(\varepsilon + p)}{\rho c^2} \quad \text{(C.10)}
\]

It is helpful, both mathematically and physically, to define the gravitational mass

\[
\mathcal{M} \equiv \int_0^m 4\pi r^2 \left(\rho + \frac{\varepsilon}{c^2} \right) \frac{\partial r}{\partial m} \, dm \quad \text{(C.11)}
\]

which \(does\) include both the internal energy and the kinetic energy, as well as rest mass, inside the shell at coordinate \(m\). It also is useful to to define two quantities

\[
u \equiv \frac{1}{a} \frac{\partial r}{\partial t} \quad \text{(C.12)}
\]

\[
W \equiv \frac{1}{b} \frac{\partial r}{\partial m} \quad \text{(C.13)}
\]

These will turn out to be the \(m\)-component of the four-velocity of the mass shell and a geometric factor \(W\) telling us how \(dm\) and \(4\pi r^2 \rho \, dr\) are related. The coordinate derivatives of the gravitational mass \(\mathcal{M}\) have simple expressions

\[
\frac{\partial \mathcal{M}}{\partial m} = 4\pi r^2 \left(\rho + \frac{\varepsilon}{c^2} \right) \frac{\partial r}{\partial m} = \left[1 + \frac{\varepsilon}{\rho c^2} \right] W \quad \text{(C.14)}
\]

\[
\frac{\partial \mathcal{M}}{\partial t} = 4\pi r^2 \frac{p}{c^2} u \frac{\partial r}{\partial t} = -4\pi r^2 \frac{a p}{c^2} u \quad \text{(C.15)}
\]
The first of these follows directly from the mass derivative of equation (C.11). The second can be derived by taking the time derivative of that equation, folding in equations (C.7) to (C.10), and integrating over dm. (It also can be derived by computing the [redundant] $G^{rr} = 8\pi G T^{rr}/c^4$ Einstein field equation, which is an equivalent amount of work.)

C.3 The Adiabatic, Relativistic Stellar Evolution Equations

We now are in a position to solve for some of the variables and put the equations in simple, familiar forms.

C.3.1 The Mass Shell Geometric Factor

Using equation (C.14) we can replace the right-hand side of equation (C.6) with $G \partial M/\partial m$ and integrate over dm. Applying definition (C.13), this gives

$$W^2 = 1 + \frac{u^2}{c^2} - \frac{2G M}{c^2 r} \quad \text{(C.16)}$$

If there were no gravity ($G = 0$), the geometric factor W would be simply the Lorentz factor. On the other hand, if we had gravity but no motion ($u = 0$), then W would have the Schwarzschild form $\left(1 - \frac{2G M}{c^2 r}\right)^{1/2}$.

C.3.2 The Density Equation

Equations (C.5) and (C.12) can be differentiated with respect to t and m, respectively, and plugged into equation (C.7) to yield an equation analogous to the Newtonian density equation (5.58)

$$\frac{1}{\rho r^2} \frac{1}{a} \frac{\partial (\rho r^2)}{\partial t} = - \frac{\partial u/\partial m}{\partial r/\partial m}$$

This looks exactly like the Newtonian version if we identify

$$\frac{1}{a} \frac{\partial}{\partial t} = \frac{\partial}{\partial \tau} \quad \text{(C.18)}$$

as the time derivative in the rest frame of each mass shell (cf., equation (C.12)).
C.3.3 Conservation of Energy Equation

If we substitute the mass metric coefficient (equation (C.5)) and its time derivative into the conservation of energy equation (equation (C.8)), we obtain

$$\frac{\partial \varepsilon}{\partial t} = \frac{(\varepsilon + p)}{\rho} \frac{\partial \rho}{\partial t}$$ \hspace{1cm} (C.19)

which is the first law of thermodynamics (equation (5.50)) with no heating or cooling (adiabatic flow). The lack of any heat flow terms (T_{tm}) in the stress-energy tensor is where the adiabatic assumption was made. This ensures that the gas remains isentropic.

C.3.4 Equation of Motion in Mass Coordinates

Because the mass shell coordinate system is a moving (Lagrangian) one, it should come as no surprise that the conservation of momentum equation comes mainly from the Einstein field equation (the rr one) with only some help from equation (C.9), rather than the other way around. To derive it, we differentiate the equation for the geometric factor W with respect to time

$$W \frac{\partial W}{\partial t} = \frac{u}{c^2} \frac{\partial u}{\partial t} - \frac{G}{c^2 r} \frac{\partial M}{\partial t} + \frac{G M}{c^2 r^2} \frac{\partial r}{\partial t}$$ \hspace{1cm} (C.20)

We then substitute into the above equation an expression for $\partial W/\partial t$ derived from equations (C.5), (C.7), (C.9), and (C.13)

$$\frac{\partial W}{\partial t} = -\frac{4\pi r^2}{\xi c^2} \frac{\partial p}{\partial m} \frac{\partial r}{\partial t}$$ \hspace{1cm} (C.21)

plus the expressions for $\partial M/\partial t$, and $\partial r/\partial t$. The result, after multiplying by c^2/ν, is

$$\frac{1}{a} \frac{\partial u}{\partial t} = -4\pi r^2 \frac{W}{\xi} \frac{\partial p}{\partial m} - \frac{G (M + 4\pi r^3 p/c^2)}{r^2}$$ \hspace{1cm} (C.22)

This is the relativistic version of the Newtonian conservation of momentum in mass coordinates (equation (5.61)). In the non-relativistic Newtonian limit, the mass contributed by pressure and internal energy in equation (C.22) will be negligible ($\xi \to 1$ and $4\pi r^3 p/M c^2 \to 0$). Also, because of equation (C.9), the lapse function a will become be unity throughout the star, so $\partial \tau = \partial t$, and we will have $W \to 1$ as well. So the equation of motion does indeed reduce to the Newtonian one derived in Chapter 5.
C.3.5 Equation of Motion in Schwarzschild–Hilbert-like Coordinates

We also can write the relativistic equation of motion in terms the radial pressure gradient. It still will be in the Lagrangian frame of reference, but will appear more familiar.

Because r is a monotonic function of m at any time t, we can write

$$\frac{\partial p}{\partial m} = \frac{\partial p}{\partial r} \frac{\partial r}{\partial m} = \frac{\partial p}{\partial r} W b = \frac{W}{4\pi r^2 \rho} \frac{\partial p}{\partial r}$$ \hspace{1cm} (C.23)

So we now can convert equation (C.22) into one involving derivatives in proper time τ and the shell radius r

$$\frac{\partial u}{\partial \tau} = - \left(1 + \frac{u^2}{c^2} - \frac{r_S}{r} \right) \frac{\partial p}{\partial r} - \left(1 + \frac{4\pi r^3 \rho}{G M c^2} \right) \xi \frac{G M \rho}{r^2}$$ \hspace{1cm} (C.24)

The relativistic corrections in equation (C.23) have the following interpretations: acceleration term (inertia due to internal energy and pressure must be included); pressure term (one factor of W comes from the $\partial / \partial r$ gradient and one comes from a Lorentz-like boost of the pressure itself); gravitational force (as pressure increases, its gravitational mass must be included, both in the enthalpy inertia and in the inertia of the mechanical force itself).
Appendix D

Derivation of the General Relativistic MHD Equations from Kinetic Theory

The equations of general relativistic magnetohydrodynamics, which play a central role in this book, can be derived from the general relativistic Boltzmann equation in a two-step process. First, we take velocity moments of that equation to generate the multi-fluid GRMHD equations. Then we perform weighted sums of those equations, over mass and over charge, to produce conservation laws for mass, charge, four-momentum, and four-current. The derivation presented here follows an article by D. Meier [346] on the generalized Ohm’s law (conservation of current).

D.1 The Multi-Fluid Equations of General Relativistic Magnetohydrodynamics

D.1.1 The Zeroth Moment: Conservation of Particle Number

We begin by re-writing the general relativistic Boltzmann equation (9.2) as

\[\mathbf{U}_i \cdot \nabla N_i + \mathbf{F}_i \cdot \nabla P N_i = \dot{N}_i,_{\text{coll}} \]

(D.1)

where \(\mathbf{U}_i = P/m_i \) is a function (like \(\mathbf{F}_i \)), not a coordinate.\(^1\) It can be shown [346] that the momentum integral of the second term on the left and of the collision term on the right vanish. And, because \(X \) and \(P \) are independent phase space coordinates, \(\nabla \cdot \mathbf{U}_i \propto \nabla \cdot P = 0 \), so the zeroth velocity moment of the Boltzmann equation becomes simply

\[\nabla \cdot \iiint \mathbf{U}_i \, \dot{N}_i \, d^4 P = 0 \]

(D.2)

\(^1\) As in Chapter 9, we use the blackboard font to indicate quantities pertaining to a given volume in eight-dimensional phase space (\(X, P, U, F \)) and the script font in six-dimensional phase space (\(X, P, V, F \)), while regular bold characters are used for average quantities in four- or three-dimensional physical space. See Appendix A.
This can be written in a more familiar form if we decompose \(U_i \) into an average center-of-mass velocity

\[
U \equiv \frac{\sum_i m_i \int \int \int \int U_i \mathcal{N}_i \, d^4P}{\sum_i m_i \int \int \int \mathcal{N}_i \, d^4P}
\]

(D.3)

and the drift velocity \(\mathbb{V}_i \), which is always orthogonal to \(U \), giving us

\[
U_i = \gamma_i (U + \mathbb{V}_i)
\]

(D.4)

where the Lorentz factor for each volume of phase space is defined as

\[
\gamma_i \equiv -\frac{1}{c^2} (U \cdot U_i) = (1 - \mathbb{V}_i \cdot \mathbb{V}_i)^{-1/2}
\]

(D.5)

The second half of equation (D.5) is true if we measure the components of \(\mathbb{V}_i \) in the rest frame of the fluid. Note that, while \(\mathbb{V}_i \) is formally a four-vector, because \(U \cdot \mathbb{V}_i = 0 \), \(\mathbb{V}_i \) has only three non-zero (spatial) components in the rest frame of the fluid. The \(w \) (time) component of \(\mathbb{V}_i \) is zero and can be ignored.

Equation (D.2) now can be written as the conservation of particle species \(i \)

\[
\nabla \cdot n_i (U + \mathbb{V}_i) = 0
\]

(D.6)

where the particle density of species \(i \) is

\[
n_i = \int \int \int \gamma_i \mathcal{N}_i \, d^4P = \int \int \int f_i \, d^3P
\]

(D.7)

and the average drift velocity for that species is

\[
\mathbb{V}_i = \frac{1}{n_i} \int \int \int \gamma_i \mathbb{V}_i \mathcal{N}_i \, d^4P = \frac{1}{n_i} \int \int \int \mathbb{V}_i f_i \, d^3P
\]

(D.8)

(Here we have used the relation between \(\mathcal{N}_i \) and \(f_i \) (equation (9.4)) and have performed the integral over the mass shell, as discussed in Section 9.1.) With these definitions we see that equation (D.3) implies that the mass weighted drift velocity vanishes.

\[
\sum_i n_i m_i \mathbb{V}_i = 0
\]

(D.9)

D.1.2 The First Moment: Conservation of Particle Four-Momentum

The first velocity moment of the general relativistic Boltzmann equation can be obtained by first multiplying equation (D.1) by \(U_i \). This produces a vector Boltzmann
\[\nabla \cdot (\mathbf{R}_i \mathbf{U}_i \mathbf{U}_i) + \mathbf{U}_i \left[\frac{q_i}{m_i c} (\mathbf{U}_i \cdot \mathbf{F}_i) \cdot \nabla P \right] = \mathbf{U}_i \dot{\mathbf{R}}_i, \text{coll} \]

With \(\mathbf{F}_i \) given by equation (9.3), the integral of this equation over momentum four-space yields the conservation of four-momentum for particles of species \(i \)

\[
\nabla \cdot \left[n'_i \mathbf{U}_i \mathbf{U}_i + n_i \mathbf{U} \mathbf{V}_i + n_i \mathbf{V}_i \mathbf{U} + \Pi_i \right] = \frac{1}{m_i c} \mathbf{J}_i \cdot \mathbf{F} - \nu n_i (\mathbf{U} + \mathbf{V}_i)
\]

where we now see two new averaged quantities: the relativistic particle density

\[
n'_i \equiv \int \int \int \gamma_i^2 \mathbf{R}_i \, d^4P = \int \int \int \gamma_i f_i \, d^3P
\]

and the beamed drift velocity

\[
\mathbf{V}'_i \equiv \frac{1}{n_i} \int \int \int \gamma_i^2 \mathbf{V}_i \mathbf{R}_i \, d^4P = \frac{1}{n_i} \int \int \int \gamma_i \mathbf{V}_i f_i \, d^3P
\]

We also now have a definition of the partial electric current contributed by each particle species

\[
\mathbf{J}_i \equiv q_i n_i (\mathbf{U} + \mathbf{V}_i)
\]

and the partial pressure tensor

\[
\Pi_i \equiv \int \int \int \gamma_i^2 (\mathbf{V}_i \mathbf{V}_i \mathbf{R}_i) \, d^4P = \int \int \int \gamma_i (\mathbf{V}_i \mathbf{V}_i f_i) \, d^3P
\]

Equations (D.6) and (D.10) are the general relativistic multi-fluid MHD equations for each particle species density \(n_i \) and velocity \(\mathbf{U} + \mathbf{V}_i \). These equations do not close (i.e., have the same number of equations as unknowns), because \(\Pi_i \) involves the second velocity moment, which we have not computed yet. There are only two ways to continue with the calculation and compute \(\Pi_i \); (1) compute the second velocity moment of equation (D.1) (which will only perpetuate the problem by producing an equation that needs the third velocity moment) or (2) assume a known equilibrium form for \(f_i(P) \), which allows us to explicitly calculate \(\Pi_i \) (and also \(n'_i \)). We choose the second method and further assume that \(f_i(P) \) is isotropic over the solid angle in momentum three-space

\[
\int \int f_i \, d^3P = f_i \frac{4 \pi P^2 \, dP}{P} \equiv \frac{dn_i}{dP} \, dP
\]

The partial pressure tensor then becomes diagonal.
\[\Pi_i = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & p_i & 0 & 0 \\ 0 & 0 & p_i & 0 \\ 0 & 0 & 0 & p_i \end{pmatrix} \]

where the partial pressure is given by

\[
p_i = \frac{1}{3} \int \mathcal{P} v_i \frac{dn_i}{d\mathcal{P}} d\mathcal{P}
\]

(D.11)

since \(\mathcal{P} = \gamma_i m_i v_i \).

D.2 The One-Fluid Equations of General Relativistic Magnetohydrodynamics

The most popular form of the MHD equations eliminates all reference to individual particle species \(i \) and considers the system to be composed of a single neutral fluid in which currents are generated by the collective drift of charge.

D.2.1 Conservation of Rest Mass and Four-Momentum

If we multiply equations (D.6) and (D.10) by the particle mass \(m_i \) and then sum over all species \(i \), we reduce these equations to the familiar forms

\[
\nabla \cdot (\rho U) = 0 \\
\nabla \cdot T_{\text{GAS}} = \frac{1}{c} J \cdot \mathbf{F}
\]

(D.12)

(D.13)

The gas stress-energy tensor obtained from this sum is given by

\[
T_{\text{GAS}} = \left(\rho + \frac{\varepsilon}{c^2} \right) U U + \frac{1}{c^2} [Q U + U Q] + p \mathcal{P}
\]

(D.14)

where the projection tensor is given by

\[
\mathcal{P} = \frac{1}{c^2} U U + g
\]

the rest mass density is given by
the total internal energy and total pressure are given by the sum over all particle species

\[\varepsilon = \sum_i \varepsilon_i \quad p = \sum_i p_i \]

and the heat flux four-vector is given by

\[Q = \sum_i n_i m_i c^2 V'_i = \sum_i n_i m_i c^2 (V'_i - V_i) \]

(The second equality is valid because of equation (D.9).) In addition to the partial pressure \(p_i \), we now have an integral expression for the internal (kinetic) energy of a relativistic gas

\[\varepsilon_i = (n'_i - n_i) m_i c^2 = m_i c^2 \int \int \int (\gamma_i - 1) f_i d^3P \]

or

\[\varepsilon_i = \int \varepsilon_{iK} \frac{dn_i}{dP} dP \tag{D.15} \]

where \(\varepsilon_{iK} \equiv (\gamma_i - 1) m_i c^2 \) is defined as the particle kinetic energy. Since the right-hand side of equation (D.13) can be written as the divergence of a tensor

\[\frac{1}{c} J \cdot F = - \nabla \cdot T_{EM} \]

where \(T_{EM} \) is given by equation (6.119). Equation (D.13) then becomes, simply,

\[\nabla \cdot T = 0 \]

where \(T = T_{GAS} + T_{EM} \). This exercise, therefore, shows us specifically how to calculate the stress-energy tensor for a conducting fluid in an electromagnetic field. It is this \(T \) that must be inserted into Einstein’s field equations (7.21) in order to generate the evolution equations for the gravitational field.

D.2.2 Conservation of Charge and Four-Current

Another summation over all particle species can be done if we instead multiply equations (D.6) and (D.10) by the particle charge \(q_i \) before summing. We then obtain the conservation of charge and of four-current
\[\nabla \cdot \mathbf{J} = 0 \]
(D.16)

\[\nabla \cdot \mathbf{C} = \frac{\omega_p^2}{4\pi} \left[\frac{1}{c} (\mathbf{U} + h \mathbf{3}) \cdot \mathbf{F} - \eta_q (\rho_q \mathbf{U} + \mathbf{3}) \right] \]
(D.17)

where the spatial current four-vector is given by
\[\mathbf{3} \equiv \mathbf{J} - \rho_q \mathbf{U} \]
and is orthogonal to the four-velocity
\[\mathbf{U} \cdot \mathbf{3} = 0 \]

The *total* four-current density and charge density are defined as
\[\mathbf{J} \equiv \sum_i \mathbf{J}_i \]
\[\rho_q \equiv \sum_i q_i n_i \]

The charge-current tensor looks similar to the stress-energy tensor
\[\mathbf{C} = \left(\rho_q + \frac{\varepsilon_q}{c^2} \right) \mathbf{U} \mathbf{U} + \mathbf{U} \mathbf{3}' + \mathbf{3}' \mathbf{U} + p_q \mathbf{P} \]
(D.18)

and the *beamed* spatial current is defined as
\[\mathbf{3}' \equiv \sum_i q_i n_i \mathbf{V}_i' \]

In addition to \(\rho_q \), some other new charge-weighted thermodynamic quantities appear, like the charge-weighted internal energy
\[\varepsilon_q \equiv \sum_i q_i c^2 \int \int \int (\gamma_i - 1) f_i \, d^3P \]
\[= \sum_i q_i c_2 \int (\gamma_i - 1) \frac{dn_i}{dP} \, dP \]
\[= \sum_i \frac{q_i}{m_i} \varepsilon_i \]

and the charge-weighted pressure
Finally, we see new plasma state variables, like the plasma frequency

$$\omega_p = \left[4\pi \sum_i q_i^2 n_i m_i \right]^{1/2}$$

the electrical resistivity

$$\eta_q \equiv 4\pi \frac{\nu}{\omega_p^2}$$

and the coefficient of the Hall-effect term

$$h \equiv \frac{4\pi}{\omega_p^2 |\mathbf{3}|} \sum_i q_i m_i |\mathbf{3}|$$

which is related to the classical Hall coefficient R_H as

$$R_H = \frac{h}{\eta_q c} |\mathbf{B}|$$

($|\mathbf{B}|$ being the strength of the magnetic field).

Equation (D.17) is often referred to as the generalized Ohm’s law. When the left-hand side is small compared to the terms on the right (i.e., when ω_p^{-1} is much smaller than other time scales in the system), we obtain the classical Ohm’s law, with the Hall term

$$\frac{1}{c} (\mathbf{U} + h \mathbf{3}) \cdot \mathbf{F} = \eta_q \mathbf{J}$$

(which eventually reduces to the well-known $V = IR$ Ohm’s law taught in freshman physics and electrical engineering classes). If the time-dependent terms on the left-hand side (in the four-divergence of \mathbf{C}) are not negligible, the generalized Ohm’s law shows how the current evolves toward its equilibrium value given above.
Appendix E

Derivation of the General Relativistic Grad–Schlüter–Shafranov Equation

The Grad–Schlüter–Shafranov equation is a general statement of force-free degenerate electrodynamics (FFDE) under the assumptions of a steady state and axisymmetry. The non-relativistic version is used to study the structure of Tokamak and other terrestrial and solar system fields, while the relativistic version is used to study the electrodynamics of pulsars and black holes. Here I re-derive the GSS equation in the Kerr metric using the general relativistic notation employed in this book, with the electrodynamic definitions of B, D, E, and H given in Section 9.5.1 (adopted from Komissarov [322]), to arrive at the version published by Uzdensky [486] (but with $c \neq G \neq 1$; see also [640] for the Schwarzschild case). Equation (E.11) below is useful for analyzing the magnetospheres of black holes in Kerr spacetime, as well as those of pulsars in a flat metric.

E.1 The Magnetic Induction Equation

In the Kerr metric in Boyer–Lindquist coordinates, under the assumption of axisymmetry ($\partial / \partial \phi = 0$) Maxwell’s solenoidal condition ($\nabla \cdot B = 0$) gives the following poloidal magnetic induction

$$B_p = \frac{1}{R} \nabla \Psi \times \hat{e}_\phi$$ \hspace{1cm} (E.1)

where $B_p = B_p(B_r, B_\theta, 0)$ and the cylindrical radius is given by

$$R \equiv \frac{\Sigma \sin \theta}{\rho}$$

and Σ and ρ are the usual Kerr area and radius parameters. The magnetic flux is a function of the poloidal coordinates.
\[\Psi(r, \theta) = \frac{1}{2\pi} \int B \cdot dS = RA_\phi \]

(E.2)

integrated over a disk surface with radius \(R \) that is centered on, and normal to, the rotation axis. \(A_\phi \) is the azimuthal component of the three-vector potential \(A \). The goal of this derivation is to find a single partial differential equation for the magnetic flux function \(\Psi \). Then, using secondary equations we will be able to derive all other electromagnetic quantities (\(B, H, D, \) and \(E \)) from \(\Psi \).

The azimuthal component of the magnetic induction comes from Ampère’s law (with \(\partial/\partial t = 0 \)), integrated over the same surface \(dS \)

\[B_\phi = \frac{H_\phi}{\alpha} = -\frac{I}{\alpha Rc} \]

(E.3)

where \(H_\phi \) is the \(\phi \) component of the magnetic field, \(\alpha \) is the Kerr lapse function, and the current distribution function is

\[I = -\frac{1}{2} \int J \cdot dS \]

(E.4)

Because \(I \) and \(\Psi \) are integrals over the same surface, \(I \) is a function of \(\Psi \), or

\[I = I(\Psi) \]

Together, equations (E.1) and (E.3) give the complete magnetic induction three-vector for steady-state, axisymmetric FFDE

\[B = \frac{1}{R} \nabla \Psi \times e_\phi - \frac{I}{\alpha Rc} e_\phi \]

(E.5)

E.2 The Electric and Magnetic Field Equations

The degeneracy condition of FFDE (\(B \cdot D = 0 \); see Section 9.5.2) implies that the electric displacement three-vector must be (equation (9.126))

\[D = -\frac{1}{\alpha c} (V_f - \alpha \beta c) \times B \]

where \(\beta \) is the Kerr drift vector. (This is also the ideal form of Ohm’s law.) Furthermore, in order for \(B \) and \(D \) to be perpendicular, the field velocity \(V_f \) must be in the \(\phi \) direction only. So we now can define a field angular velocity to be

\[\Omega_f = \frac{|V_f|}{R} \]

Plugging in \(B \) from equation (E.5) we obtain \(D \) in terms of \(\Psi \)
\[D = -\frac{(\Omega_f - \omega)}{\alpha c} \nabla \Psi \]
(E.6)

where \(\omega \) is the angular velocity in the Kerr metric. We also get \(E \) in terms of \(\Psi \)

\[E = -\frac{\Omega_f}{c} \nabla \Psi \]
(E.7)

Note that, as implied by equations (7.67) \(D \) and \(E \) are the electric field measured in
the rotating and fixed frames, respectively. As they both depend on \(\nabla \Psi \) only, they
are both poloidal functions only.

Finally, now that we know \(D \), we can calculate the magnetic field from the right-hand part of equation (9.124) as

\[H = \frac{\alpha}{R} \left[1 + \frac{R^2}{\alpha^2 c^2} \omega (\Omega_f - \omega) \right] \nabla \Psi \times e_\phi - \frac{I}{R c} e_\phi \]
(E.8)

E.3 The Charge and Current Densities

From Gauss’s law, we can immediately determine the charge density

\[\rho_q = -\frac{1}{4\pi c} \nabla \cdot \left[\frac{(\Omega_f - \omega)}{\alpha} \nabla \Psi \right] \]
(E.9)

Calculation of the current density is a little more tricky: it is best done by computing the poloidal \((J_p) \) and toroidal \((J_\phi e_\phi) \) components separately and then combining the results.

Because \(I = I(\Psi) \), and therefore

\[\nabla I = \frac{dI}{d\Psi} \nabla \Psi \]

then the poloidal current \(J_p \) must be parallel to the poloidal magnetic field \(B_p \). From equations (E.2) and (E.4), this proportionality must be

\[J_p = -\frac{1}{4\pi} \frac{dI}{d\Psi} B_p \]

which gives us the poloidal component of the current density.

The toroidal component is found by dotting \(e_\phi \) into a version of equation (9.122),
also with \(\partial / \partial t = 0 \), to obtain

\[J_\phi = \frac{c}{B^2} \rho_q (E \times B)_\phi + \frac{1}{B^2} (B \cdot J) B_\phi \]
The total current density, then, is the vector sum of both components

$$\mathbf{J} = \rho q \Omega_f R e_{\phi} - \frac{1}{4\pi} \frac{dI}{d\Psi} \mathbf{B}$$ \hspace{1cm} (E.10)

That is, the current is the sum of that flowing along the twisted magnetic field (second term) plus those charges that are dragged around as the magnetic field rotates (first term).

E.4 The GSS Equation

The only independent equation that we have not yet incorporated into this discussion is the ϕ component of Ampère’s law (right-hand equation (9.123)). (The r and θ components of Ampère’s law are redundant with the definition of the current I.) Because the spatial part of the Kerr metric in Boyer–Lindquist coordinates is diagonal, equation (E.8) gives

$$\nabla \times \mathbf{H} = -R \nabla \cdot \left(\frac{c}{R} \nabla \Psi \right)$$

Inserting this and $4\pi J_{\phi}/c$ into the ϕ component of Ampère’s law, and noting that \mathbf{D} has no ϕ component and $\partial/\partial t = 0$, and combining some terms, gives us the general relativistic version of the GSS equation

$$\nabla \cdot \left\{ \alpha R^2 \left[1 - \frac{R^2}{\alpha^2 c^2} (\Omega_f - \omega)^2 \right] \nabla \Psi \right\} + \frac{(\Omega_f - \omega)}{\alpha c^2} \frac{d\Omega_f}{d\Psi} (\nabla \Psi)^2 + \frac{1}{2} \frac{dI^2}{d\Psi} = 0$$ \hspace{1cm} (E.11)

where we have used the relation

$$\nabla \Omega_f(\Psi) = \frac{d\Omega_f}{d\Psi} \nabla \Psi$$

The GSS equation, plus appropriate boundary conditions, gives us an equation for the scalar potential Ψ, under the assumptions of time independence and axisymmetry, in the stationary and axisymmetric Kerr metric.
Appendix F

Derivation of the Equations for Stationary, Axisymmetric Ideal SRMHD in Newtonian Gravity

Ideal, stationary, axisymmetric magnetohydrodynamics is the main method for treating the acceleration and collimation of jets in black hole systems. This appendix begins with the standard ideal MHD vector equations, given in Section 9.5.1, and shows how the assumptions of stationarity and axisymmetry simplify these to the ones used in Section 9.5.6. The discussion generally will follow that in Mestel’s 1961 paper on the subject [641], but we will do the derivations using the relativistic equations. While we will retain the possibility of flow near the speed of light, we will assume a Newtonian gravitational field only (i.e., \(GM/(Re^2) \ll 1 \)), with no appreciable frame dragging (Kerr drift vector \(\beta = 0 \)). The actual use of the resulting equations to study jet acceleration and collimation is in Section 15.1.

The MHD derivations here are the counterpart to the force-free electrodynamic ones given in Appendix E, except there we retained the possibility of a Kerr black hole metric.

F.1 The Axisymmetric, Stationary Equation(s) Parallel to the Magnetic Field

Under the assumptions of stationarity and axisymmetry magnetohydrodynamics generates two main differential equations, one perpendicular to the magnetic field (as in force-free electrodynamics) and a new one parallel to the field. The new equation describes the flow of plasma along the magnetic field lines, and was not needed in FFDE (where we ignored the matter entirely). We will derive the pieces of this equation below from Maxwell’s laws of electromagnetism and from conservation laws for fluid flow. Then we will discuss the cross-field equation in the MHD case.
F.1.1 Faraday’s and Ohm’s Laws and Conservation of Mass: The Frozen-in Magnetic Field

The time-independent form of Faraday’s law (9.103) states that
\[\nabla \times E = 0 \]
or \[E = \nabla \Phi + E_0, \] where \(\Phi \) is the scalar electric potential and \(E_0 \) is a vector uniform in space and constant in time. With the ideal Ohm’s law (9.105), Faraday’s law becomes
\[\nabla \times (V \times B) = 0 \] (F.1)

Now, let us decompose \(V \) and \(B \) into poloidal and toroidal components
\[V = V_p + V_t \quad B = B_p + B_t \]
where, for example, in cylindrical coordinates in flat space we have
\[V_p = V_R e_R + V_Z e_Z \quad V_t = V_\phi e_\phi \]
Equation (F.1) then can be written as two equations, one in the poloidal plane and one in the toroidal direction
\[0 = [\nabla \times (V \times B)]_p = \nabla \times (V_p \times B_p) = -c \nabla \times (E_\phi e_\phi) \] (F.2)
\[0 = [\nabla \times (V \times B)]_t = \nabla \times [(V_p \times B_t) + (V_t \times B_p)] \] (F.3)
Note that equation (F.2) has only one term because \(V_t \times B_t = V_\phi B_\phi (e_\phi \times e_\phi) = 0 \).

F.1.1.1 The Poloidal Velocity – Magnetic Field Relation

First, we will examine the \textit{poloidal} equation (F.2). It has the solution
\[E_\phi = [\nabla \Phi]_\phi = \frac{1}{R} \frac{\partial \Phi}{\partial \phi} \]
But the axisymmetric assumption means that \(\partial / \partial \phi = 0 \) for any function, so \(E_\phi = 0 \). That is, \(V_p \) is parallel to \(B_p \)
\[V_p = K B_p \] (F.4)
where \(K \) is a scalar function of \((R, Z) \).
F.1.1.2 The Toroidal Velocity – Magnetic Field Relation and the Field Angular Velocity

Next, we will examine the toroidal component (F.3). In cylindrical coordinates this can be written as

\[
\frac{\partial}{\partial R} \left[B_R (V_\phi - \mathcal{K} B_\phi) \right] + \frac{\partial}{\partial Z} \left[B_\phi (V_\phi - \mathcal{K} B_\phi) \right] = 0 \tag{F.5}
\]

We now can combine this equation with the axisymmetric version of the solenoidal condition

\[
\nabla \cdot B_p = \frac{1}{R} \left[\frac{\partial (RB_R)}{\partial R} + \frac{\partial (RB_\phi)}{\partial Z} \right] = 0 \tag{F.6}
\]

to produce simply

\[
B_p \cdot \nabla \left(\frac{V_\phi - \mathcal{K} B_\phi}{R} \right) = B \cdot \nabla \left(\frac{V_\phi - \mathcal{K} B_\phi}{R} \right) = 0
\]

This means that the gradient of the quantity above in the parentheses is zero along a given magnetic field line. That is, the following is constant along each field line

\[
\frac{V_\phi - \mathcal{K} B_\phi}{R} = \text{constant} \equiv \Omega_f \tag{F.7}
\]

which we identify as the angular velocity of the magnetic field line \(\Omega_f \).

Why is \(V_\phi \) not equal to \(R \Omega_f \)? The reason is that, if the magnetic field has a toroidal component (\(B_\phi \)), then no matter what the field rotation rate plasma can flow freely in the \(e_\phi \) direction at the velocity \(\mathcal{K} B_\phi \), i.e., with the same proportionality as in the poloidal direction. So the total toroidal velocity of the plasma is, therefore,

\[
V_t = V_\phi e_\phi = (\mathcal{K} B_\phi + R \Omega_f) e_\phi \tag{F.8}
\]

If there were no field rotation (\(\Omega_f = 0 \)), then plasma would flow along the field line with the same proportionality in all dimensions. On the other hand, if there were no matter (as in FFDE), then \(\mathcal{K} = 0 \) and \(V_\phi \) simply would be equal to \(R \Omega_f \).

Combining equations (F.4) and (F.8), we find that the total three-velocity and total magnetic field are related as

\[
V = \mathcal{K} B + R \Omega_f e_\phi
\]

F.1.1.3 Determining the Proportionality Constant

We now can determine the value of \(\mathcal{K} \) by considering the conservation of mass equation (9.100)
\[0 = \nabla \cdot (\gamma \rho \mathbf{V}) = \nabla \cdot (\gamma \rho \mathbf{KB}) + \frac{1}{R} \frac{\partial (R \Omega_f)}{\partial \phi} \]

If we again apply both the axisymmetry and solenoidal conditions, the conservation of mass reduces to the conservation of another scalar along a field line \(\mathbf{B} \cdot \nabla (\gamma \mathcal{K} \rho) = 0 \). For mathematical purposes we define this scalar to be another constant \(k \) divided by \(4\pi \)

\[\gamma \mathcal{K} \rho = \text{constant} \equiv \frac{k}{4\pi} \quad \text{(F.9)} \]

Note that \(k \) is not unitless; it is the ratio of the constant local poloidal mass flux \((4\pi \gamma \rho \mathbf{V} \cdot dS_p)\) to the constant local poloidal magnetic flux \((\mathbf{B} \cdot dS_p)\), where \(dS_p \) is a small poloidal area vector. The final combination of the laws of Faraday, Ohm, and mass conservation yields the axisymmetric, stationary frozen-in condition

\[\mathbf{V} = \frac{k}{4\pi \gamma \rho} \mathbf{B} + R \Omega_f \mathbf{e}_\phi \quad \text{(F.10)} \]

F.1.2 Conservation of Specific Angular Momentum

We now will use the toroidal component of the momentum equation (9.101), which also makes use of Gauss’s (9.117) and Ampère’s (9.116) laws, to derive a third scalar constant along a magnetic field line – the angular momentum per unit mass or specific angular momentum. The full axisymmetric, stationary vector equation of motion in a Newtonian gravitational potential \(\psi \) is

\[\nabla \cdot \mathbf{T} = - \left(\gamma \rho + \frac{E}{c^2} \right) \nabla \psi \quad \text{(F.11)} \]

The component of this along \(\mathbf{e}_\theta \) has no gravitational force

\[\frac{1}{R} \frac{\partial}{\partial R} \left[R (RT_{\theta \hat{R}}) \right] + \frac{\partial (RT_{\theta \hat{Z}})}{\partial Z} = 0 \quad \text{(F.12)} \]

where the two components of the stress tensor are determined from equation (9.113)

\[RT_{\theta \hat{i}} = \frac{k}{4\pi} \left[\gamma \left(1 + \frac{h}{c^2} \right) RV_{\theta} - \frac{RB_{\theta}}{k} \right] B_i \]

\(h \equiv h/\rho \) is the enthalpy per unit mass, and \(i = (Z, R) \). (Recall that \(E_{\phi} = 0 \) because of axisymmetry.) The momentum equation can be combined with the solenoidal condition again to obtain the conservation of another scalar quantity along a magnetic field line
\[γ \left(1 + \frac{\hbar}{c^2}\right) RV_\phi - \frac{RB_\phi}{k} = \text{constant} \equiv \ell \]

which we identify as the angular momentum per unit mass of the plasma \(\ell \).

F.1.3 Conservation of Specific Entropy

The assumption of an adiabatic equation of state in equation (9.112) leads to a fourth quantity that is conserved along a field line: the entropy per unit mass

\[\frac{S}{\rho} \propto \frac{p}{\rho^\Gamma} \Rightarrow K_\Gamma \text{ constant} \]

While entropy must remain constant along a given field line, different field lines can have different values for \(K_\Gamma \).

F.1.4 Conservation of Specific Energy

The final equation along each magnetic field line is the conservation of energy per unit mass. The master energy equation (9.102) in Newtonian gravity is

\[\nabla \cdot \left[c^2 (\Psi - \gamma \rho V)\right] = -\Psi \cdot \nabla \psi \]

with the axisymmetric, poloidal momentum given by

\[\Psi = \frac{k}{4\pi} \left[γ \left(1 + \frac{\hbar}{c^2}\right) - \frac{RB_\phi}{k\Omega_f} \right] B_p \]

Dropping one term in equation (F.15) that is proportional to \(\psi^2/c^4 \) and using the solenoidal condition, we obtain a fourth conserved quantity: the Bernoulli constant (specific total energy)

\[(\epsilon - 1)c^2 + \epsilon \psi = \text{constant} \equiv Be \]

where \(\epsilon c^2 \) is the total specific internal energy of the plasma, including rest mass

\[\epsilon = γ \left(1 + \frac{\hbar}{c^2}\right) - \frac{RB_\phi}{k\Omega_f} \]

When (F.16) is combined with (F.10), (F.13), and (F.14), we can eliminate \(\rho, V_\phi, B_\phi, \) and \(p \), producing a single equation that relates poloidal velocity to poloidal
magnetic field. This energy equation is essentially the equation of motion along each magnetic field line and is governed by the five free parameters of the problem:

- \(\Omega_f \): field line angular velocity;
- \(k \): plasma mass loading of the field line;
- \(\ell, K_f, Bc \): specific angular momentum, entropy, and total energy of the plasma.

F.2 The Axisymmetric, Stationary Equation(s) Normal to the Magnetic Field

We have only two remaining equations in the set (9.100) to (9.117) to consider: the \(R \) and \(Z \) components of the equation of motion (F.11). The projection of these vector components parallel to the poloidal magnetic field is essentially the equation along the field described above. The projection normal to the field is the cross-field equation that is analogous to the GSS equation derived in Appendix E for force-free electrodynamics. Formally, the component normal to \(B \) and in the poloidal plane is

\[
(e_\phi \times b) \cdot \left[\nabla \cdot T + \left(\gamma \rho + \frac{\xi}{c^2} \right) \nabla \psi \right] = 0
\]

where \(b \equiv B_p/|B_p| \). In cylindrical coordinates this equation becomes

\[
\begin{align*}
\frac{b_\dot{Z}}{R} \frac{\partial (RT R\dot{R})}{\partial R} - \frac{b_\dot{R}}{R} \frac{\partial (RT \dot{Z})}{\partial R} + b_\ddot{Z} \frac{\partial T \ddot{Z}}{\partial Z} - b_\ddot{R} \frac{\partial T \ddot{R}}{\partial Z} \\
- b_\dot{Z} \frac{T \dot{\phi}}{R} + \left(\gamma \rho + \frac{\xi}{c^2} \right) \left(b_\dot{Z} \frac{\partial \psi}{\partial R} - b_\dot{R} \frac{\partial \psi}{\partial Z} \right) = 0
\end{align*}
\]

where

\[
egin{align*}
T_{\dot{R}\dot{R}} &= \left[p + \frac{1}{8\pi} (B^2 + E^2) \right] + \gamma^2 \left(\rho + \frac{h}{c^2} \right) V_R^2 - \frac{1}{4\pi} (B_R^2 + E_R^2) \\
T_{\dot{R}\dot{Z}} &= \gamma^2 \left(\rho + \frac{h}{c^2} \right) V_R V_Z - \frac{1}{4\pi} (B_R B_Z + E_R E_Z) \\
T_{\dot{Z}\dot{Z}} &= \left[p + \frac{1}{8\pi} (B^2 + E^2) \right] + \gamma^2 \left(\rho + \frac{h}{c^2} \right) V_Z^2 - \frac{1}{4\pi} (B_Z^2 + E_Z^2) \\
T_{\dot{\phi}\dot{\phi}} &= \left[p + \frac{1}{8\pi} (B^2 + E^2) \right] + \gamma^2 \left(\rho + \frac{h}{c^2} \right) V_\phi^2 - \frac{1}{4\pi} B_\phi^2
\end{align*}
\]

The cross-field equation (F.18) becomes quite complex as we substitute in the expressions for \(T_{ij} \), so we will not do that here. Specific cases of the cross-field equation, and their implications for jet production in black hole engines, are discussed in Chapter 15.
Appendix G

Physical and Astrophysical Constants
Used in this Book

Table G.1: Physical constants used in this book

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Value in cgs/Gaussian units</th>
<th>Value in SI units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avogadro’s number</td>
<td>N_A</td>
<td>6.02214×10^{23} mol$^{-1}$</td>
<td>6.02214×10^{23} mol$^{-1}$</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>k</td>
<td>1.38065×10^{-16} erg K$^{-1}$</td>
<td>1.38065×10^{-23} K$^{-1}$</td>
</tr>
<tr>
<td>Charge on electron</td>
<td>e</td>
<td>4.80321×10^{-10} esu b</td>
<td>1.60218×10^{-19} C</td>
</tr>
<tr>
<td>Electronvolt</td>
<td>e</td>
<td>1.60218×10^{-12} erg</td>
<td>1.60218×10^{-19} J</td>
</tr>
<tr>
<td>Gas constant</td>
<td>\mathcal{R}</td>
<td>8.31446×10^7 erg mol$^{-1}$ K$^{-1}$</td>
<td>8.31446 J mol$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>Gravitation constant</td>
<td>G</td>
<td>6.6738×10^{-8} erg cm g$^{-2}$</td>
<td>6.6738×10^{-11} J m kg$^{-2}$</td>
</tr>
<tr>
<td>Mass of electron</td>
<td>m_e</td>
<td>9.1094×10^{-28} g</td>
<td>9.1094×10^{-31} kg</td>
</tr>
<tr>
<td>Mass of proton</td>
<td>m_p</td>
<td>1.6726×10^{-24} g</td>
<td>1.6726×10^{-27} kg</td>
</tr>
<tr>
<td>Planck’s constant (/2π)</td>
<td>h</td>
<td>6.62607×10^{-27} erg s</td>
<td>6.62607×10^{-34} Js</td>
</tr>
<tr>
<td>Planck’s constant</td>
<td>\hbar</td>
<td>1.05457×10^{-27} erg s</td>
<td>1.05457×10^{-34} Js</td>
</tr>
<tr>
<td>Radiation constant</td>
<td>a</td>
<td>7.5658×10^{-15} erg cm$^{-3}$ K$^{-4}$</td>
<td>7.5658×10^{-16} J m$^{-3}$ K$^{-4}$</td>
</tr>
<tr>
<td>Speed of light</td>
<td>c</td>
<td>2.997925×10^{10} cm s$^{-1}$</td>
<td>2.997925×10^8 m s$^{-1}$</td>
</tr>
<tr>
<td>Stefan–Boltzmann constant</td>
<td>σ</td>
<td>5.6704×10^{-5} erg s$^{-1}$ cm$^{-2}$ K$^{-4}$</td>
<td>5.6704×10^{-8} W m$^{-2}$ K$^{-4}$</td>
</tr>
<tr>
<td>Thomson cross-section</td>
<td>σ_T</td>
<td>6.65246×10^{-25} cm2</td>
<td>6.65246×10^{-29} m2</td>
</tr>
</tbody>
</table>

a Source: National Institute of Standards and Technology (http://physics.nist.gov/cuu/Constants/).

b Note: 1 esu = 2997924580 $\sqrt{\pi \varepsilon_0}$ C.

Table G.2: Astrophysical constants used in this book

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Value in cgs/Gaussian units</th>
<th>Value in SI units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astronomical unit</td>
<td>AU</td>
<td>1.496×10^{13} cm</td>
<td>1.496×10^{11} m</td>
</tr>
<tr>
<td>Light year</td>
<td>ly</td>
<td>9.461×10^{17} cm</td>
<td>9.461×10^{15} m</td>
</tr>
<tr>
<td>Parsec</td>
<td>pc</td>
<td>3.086×10^{18} cm</td>
<td>3.086×10^{16} m</td>
</tr>
<tr>
<td>Solar mass</td>
<td>M_\odot</td>
<td>1.989×10^{33} g</td>
<td>1.989×10^{30} kg</td>
</tr>
<tr>
<td>Solar luminosity</td>
<td>L_\odot</td>
<td>3.839×10^{33} erg s$^{-1}$</td>
<td>3.839×10^{26} W</td>
</tr>
<tr>
<td>Solar radius (average)</td>
<td>R_\odot</td>
<td>6.955×10^{10} cm</td>
<td>6.955×10^{8} m</td>
</tr>
<tr>
<td>Jansky (unit of radiative flux)</td>
<td>Jy</td>
<td>10^{-15} erg s$^{-1}$ Hz$^{-1}$</td>
<td>10^{-26} W Hz$^{-1}$</td>
</tr>
</tbody>
</table>

a Source: International Astronomical Union (http://www.iau.org/science/publications/proceedings_rules/units/).
References

Chapter 1

Chapter 2

68. URL: http://heasarc.nasa.gov/docs/cgro/images/epo/gallery/agns/agn_spectra.gif

143. URL: http://heasarc.nasa.gov/docs/cgro/images/epo/gallery/agns/agn_up_model.gif

Chapter 3

References

References

Chapter 4

References

Chapter 5

Chapter 6

Chapter 7

References

Chapter 8

Chapter 9

Chapter 10
Chapter 11

Chapter 12

References

Chapter 13

Chapter 14

References

Chapter 15

References

Chapter 16

References

Appendix C

Appendix E

Appendix F
<table>
<thead>
<tr>
<th>Glossary Item</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C</td>
<td>Third Cambridge catalog (of radio sources)</td>
</tr>
<tr>
<td>3CR</td>
<td>Third Cambridge catalog (Revised)</td>
</tr>
<tr>
<td>3CRR</td>
<td>Third Cambridge catalog (Revised a second time)</td>
</tr>
<tr>
<td>AAAS</td>
<td>American Association for the Advancement of Science</td>
</tr>
<tr>
<td>AAS</td>
<td>American Astronomical Society</td>
</tr>
<tr>
<td>ADAF</td>
<td>Advection-Dominated Accretion Flow</td>
</tr>
<tr>
<td>ADIOS</td>
<td>Advection-Dominated Inflow–Outflow Solutions (for accretion disk winds)</td>
</tr>
<tr>
<td>ADM formalism</td>
<td>Arnowitt–Deser–Misner formalism for expressing Einstein’s equations</td>
</tr>
<tr>
<td>AGN</td>
<td>Active Galactic Nucleus</td>
</tr>
<tr>
<td>AIGRMHD</td>
<td>Adiabatic Ideal General Relativistic MagnetohydroDynamics</td>
</tr>
<tr>
<td>AP</td>
<td>Alfvén Point (on the MHD Alfvén surface)</td>
</tr>
<tr>
<td>APS</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>AS</td>
<td>Alfvén Surface</td>
</tr>
<tr>
<td>ASCA</td>
<td>Advanced Satellite for Cosmology and Astrophysics</td>
</tr>
<tr>
<td>ASIAA</td>
<td>Astronomica Sinica Institute of Astronomy and Astrophysics (Taiwan)</td>
</tr>
<tr>
<td>ASJ</td>
<td>Astronomical Society of Japan</td>
</tr>
<tr>
<td>ASP</td>
<td>Astronomical Society of the Pacific</td>
</tr>
<tr>
<td>ATNF</td>
<td>Australia Telescope National Facility</td>
</tr>
<tr>
<td>AU</td>
<td>Astronomical Unit</td>
</tr>
<tr>
<td>AUI</td>
<td>Associated Universities, Inc.</td>
</tr>
<tr>
<td>AXP</td>
<td>Anomalous X-ray Pulsar</td>
</tr>
<tr>
<td>BAL</td>
<td>Broad Absorption Line (QSO)</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>BATSE</td>
<td>Burst And Transient Source Experiment, on the Compton Gamma-Ray Observatory</td>
</tr>
<tr>
<td>BEL</td>
<td>Broad Emission Line (QSO)</td>
</tr>
<tr>
<td>BH</td>
<td>Black Hole</td>
</tr>
<tr>
<td>BL</td>
<td>Boyer–Lindquist (coordinate system)</td>
</tr>
<tr>
<td>blazar</td>
<td>Generic name for highly variable AGN (BL Lacteal objects, OVV quasars, etc.)</td>
</tr>
<tr>
<td>BLR</td>
<td>Broad-Line Region (of AGN)</td>
</tr>
<tr>
<td>BLRG</td>
<td>Broad-Line Radio Galaxy</td>
</tr>
<tr>
<td>blue blazar</td>
<td>see HBL</td>
</tr>
<tr>
<td>BP</td>
<td>Blandford and Payne 1982 paper on non-relativistic MHD winds from accretion disk [507]</td>
</tr>
<tr>
<td>BSO</td>
<td>Blue Stellar Object (early name for QSO)</td>
</tr>
<tr>
<td>BSSN method</td>
<td>Baumgarte–Shapiro–Shibata–Nakamura method for solving Einstein’s equations</td>
</tr>
<tr>
<td>BZ</td>
<td>Blandford and Znajek 1977 paper on model for black hole magnetospheres [484]</td>
</tr>
<tr>
<td>CD</td>
<td>Current-Driven</td>
</tr>
<tr>
<td>CDI</td>
<td>Current-Driven Instability</td>
</tr>
<tr>
<td>CfA</td>
<td>Center for Astrophysics (Harvard University)</td>
</tr>
<tr>
<td>CGRO</td>
<td>Compton Gamma-Ray Observatory</td>
</tr>
<tr>
<td>CGS</td>
<td>Centimeter–Gram–Second (system of units)</td>
</tr>
<tr>
<td>Chandra</td>
<td>Chandra X-ray mission</td>
</tr>
<tr>
<td>CITA</td>
<td>Canadian Institute for Theoretical Astrophysics</td>
</tr>
<tr>
<td>CND</td>
<td>Circum-Nuclear Disk</td>
</tr>
<tr>
<td>CNO</td>
<td>Carbon–Nitrogen–Oxygen (nuclear burning cycle)</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>Compton depth (y)</td>
<td>measure of photon optical depth and energy transfer by Compton electron scattering</td>
</tr>
<tr>
<td>CR</td>
<td>Co-Rotation (disk radius)</td>
</tr>
<tr>
<td>CS</td>
<td>Cusp Surface</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation, Australia</td>
</tr>
<tr>
<td>CUP</td>
<td>Cambridge University Press</td>
</tr>
<tr>
<td>CV</td>
<td>Cataclysmic Variable (binary star)</td>
</tr>
<tr>
<td>DD</td>
<td>Doubly-Degenerate (binary star)</td>
</tr>
<tr>
<td>EBBH</td>
<td>Equal-mass Binary Black Hole</td>
</tr>
<tr>
<td>ED</td>
<td>ElectroDynamics</td>
</tr>
<tr>
<td>Eddington ratio</td>
<td>ratio of a source’s total radiative luminosity to the Eddington luminosity for its mass</td>
</tr>
<tr>
<td>EGRET</td>
<td>Energetic Gamma-Ray Experiment Telescope, on the Compton Gamma-Ray Observatory</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>EM</td>
<td>ElectroMagnetic</td>
</tr>
<tr>
<td>EMRIBH</td>
<td>Extreme Mass-Ratio Inspiral Black Hole</td>
</tr>
<tr>
<td>ESAC</td>
<td>European Space Astronomy Centre</td>
</tr>
<tr>
<td>ESO</td>
<td>European Southern Observatory</td>
</tr>
<tr>
<td>EUV</td>
<td>Extreme UltraViolet (radiation)</td>
</tr>
<tr>
<td>FB</td>
<td>Flaring Branch (of neutron star Z sources)</td>
</tr>
<tr>
<td>FBG diagram</td>
<td>Fender–Belloni–Gallo diagram; see HID</td>
</tr>
<tr>
<td>FFDE</td>
<td>Force-Free Degenerate Electrodynamics</td>
</tr>
<tr>
<td>FIDO</td>
<td>FiDucial Observer (coordinate system)</td>
</tr>
<tr>
<td>FIX</td>
<td>FIXed (FIDO) coordinate system</td>
</tr>
<tr>
<td>FMS</td>
<td>Fast Magnetosonic Surface; classical fast surface</td>
</tr>
<tr>
<td>FMSS</td>
<td>Fast Magnetosonic Separatrix Surface</td>
</tr>
<tr>
<td>FR</td>
<td>Fanaroff & Riley radio source morphological classification, 1974 paper [38]</td>
</tr>
<tr>
<td>FSRQ</td>
<td>Flat Spectrum Radio Quasar</td>
</tr>
<tr>
<td>GHz</td>
<td>Giga-Hertz (billion cycles per second)</td>
</tr>
<tr>
<td>GJ</td>
<td>Goldreich–Julian (pulsar magnetosphere model)</td>
</tr>
<tr>
<td>GLAST</td>
<td>Gamma-ray Large Area Space Telescope; a.k.a. Fermi gamma-ray telescope</td>
</tr>
<tr>
<td>GRB</td>
<td>Gamma-Ray Burst</td>
</tr>
<tr>
<td>GRHD</td>
<td>General Relativistic HydroDynamics</td>
</tr>
<tr>
<td>GRMHD</td>
<td>General Relativistic MagnetoHydroDynamics</td>
</tr>
<tr>
<td>GRO</td>
<td>Gamma-Ray Observatory; see CGRO</td>
</tr>
<tr>
<td>GRS</td>
<td>GRanat Source</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>GSS</td>
<td>Grad–Schlüter–Shafranov (general relativistic magnetosphere equation)</td>
</tr>
<tr>
<td>GW</td>
<td>Gravitational Wave</td>
</tr>
<tr>
<td>Gyr</td>
<td>Giga-year (billion years)</td>
</tr>
<tr>
<td>H I</td>
<td>atomic Hydrogen</td>
</tr>
<tr>
<td>H II</td>
<td>ionized Hydrogen</td>
</tr>
<tr>
<td>HartRAO</td>
<td>Hartebeesthoek Radio Astronomy Observatory</td>
</tr>
<tr>
<td>HB</td>
<td>Horizontal Branch (of neutron star Z sources)</td>
</tr>
<tr>
<td>HBL</td>
<td>High-frequency BL Lacertae object</td>
</tr>
<tr>
<td>HD</td>
<td>HydroDynamics</td>
</tr>
<tr>
<td>HF QPO</td>
<td>High Frequency Quasi-Periodic Oscillation</td>
</tr>
<tr>
<td>HiBAL</td>
<td>High-ionization Broad Absorption Line QSOs</td>
</tr>
<tr>
<td>HID</td>
<td>Hardness–Intensity Diagram</td>
</tr>
<tr>
<td>HLX</td>
<td>Hyper-Luminous X-ray source</td>
</tr>
<tr>
<td>HMXB</td>
<td>High-Mass X-ray Binary</td>
</tr>
<tr>
<td>Glossary</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>horizon, (magneto)soniclocus</td>
<td>locus of points in space beyond which component of flow characteristics along streamlines all have the same sign</td>
</tr>
<tr>
<td>horizon, black hole</td>
<td>Surface surrounding the collapsed star interior to which events cannot affect the outside universe</td>
</tr>
<tr>
<td>HP</td>
<td>Horizon-Penetrating (coordinate system)</td>
</tr>
<tr>
<td>HR diagram</td>
<td>Hertzsprung–Russell (color–magnitude) diagram</td>
</tr>
<tr>
<td>HST</td>
<td>Hubble Space Telescope</td>
</tr>
<tr>
<td>HyLIRG</td>
<td>Hyper-Luminous InfraRed Galaxy</td>
</tr>
<tr>
<td>HYMOR</td>
<td>HYbrid MORphology (FR I/II) radio source</td>
</tr>
<tr>
<td>ICC</td>
<td>Interstellar Cloud Core</td>
</tr>
<tr>
<td>IDV</td>
<td>Intra-Day Variable blazar</td>
</tr>
<tr>
<td>IGM</td>
<td>InterGalactic Medium</td>
</tr>
<tr>
<td>IKI</td>
<td>Institut Kosmicheskix Issledovanii (Space Research Institute, Moscow)</td>
</tr>
<tr>
<td>IMBH</td>
<td>Intermediate Mass Black Hole</td>
</tr>
<tr>
<td>IMF</td>
<td>Initial Mass Function (for newborn stars)</td>
</tr>
<tr>
<td>INTEGRAL</td>
<td>INTErnational Gamma-Ray Astrophysics Laboratory</td>
</tr>
<tr>
<td>IR</td>
<td>InfraRed (radiation)</td>
</tr>
<tr>
<td>IRAS</td>
<td>Infrared Astronomy Satellite</td>
</tr>
<tr>
<td>IRS</td>
<td>InfraRed Source</td>
</tr>
<tr>
<td>IS</td>
<td>Island State (of neutron star atoll sources)</td>
</tr>
<tr>
<td>ISCO</td>
<td>Innermost Stable Circular Orbit (of a black hole)</td>
</tr>
<tr>
<td>ISM</td>
<td>InterStellar Medium</td>
</tr>
<tr>
<td>IXO</td>
<td>Intermediate X-ray luminosity Object; ULX</td>
</tr>
<tr>
<td>JCMT</td>
<td>James Clerk Maxwell Telescope</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>JWST</td>
<td>James Webb Space Telescope</td>
</tr>
<tr>
<td>KACST</td>
<td>King Abdulaziz City for Science and Technology</td>
</tr>
<tr>
<td>KER</td>
<td>KERr (metric)</td>
</tr>
<tr>
<td>KER–NEW</td>
<td>KERr–NEWman (metric)</td>
</tr>
<tr>
<td>KFD</td>
<td>Kinetic- (energy) Flux-Dominated</td>
</tr>
<tr>
<td>KH</td>
<td>Kelvin–Helmholtz</td>
</tr>
<tr>
<td>KHI</td>
<td>Kelvin–Helmholtz Instability</td>
</tr>
<tr>
<td>KITP</td>
<td>Kavli Institute for Theoretical Physics</td>
</tr>
<tr>
<td>LB</td>
<td>Lower Banana state (of neutron star atoll sources)</td>
</tr>
<tr>
<td>LBL</td>
<td>Low-frequency BL Lacertae object</td>
</tr>
<tr>
<td>LBV</td>
<td>Luminous Blue Variable (star)</td>
</tr>
<tr>
<td>LCB</td>
<td>Li, Chiueh, and Begelman 1992 paper on cold, relativistic MHD winds [537]</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>LF QPO</td>
<td>Low Frequency Quasi-Periodic Oscillation</td>
</tr>
<tr>
<td>LGRB</td>
<td>Long-duration Gamma-Ray Burst</td>
</tr>
<tr>
<td>LIGO</td>
<td>Laser Interferometer Gravitational wave Observatory</td>
</tr>
<tr>
<td>LINER</td>
<td>Low-Ionization Nuclear Emission-line Region</td>
</tr>
<tr>
<td>LIRG</td>
<td>Luminous InfraRed Galaxy</td>
</tr>
<tr>
<td>LISA</td>
<td>Laser Interferometer Space Antenna</td>
</tr>
<tr>
<td>LLAGN</td>
<td>Low-Luminosity AGN</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratory (formerly Lawrence Radiation Labo-</td>
</tr>
<tr>
<td></td>
<td>ratory)</td>
</tr>
<tr>
<td>LMC</td>
<td>Large Magellanic Cloud</td>
</tr>
<tr>
<td>LMXB</td>
<td>Low-Mass X-ray Binary</td>
</tr>
<tr>
<td>LNRF</td>
<td>Local Non-rotating Reference Frame (FIDO coordinate system)</td>
</tr>
<tr>
<td>LoBAL</td>
<td>Low-ionization Broad Absorption Line QSOs</td>
</tr>
<tr>
<td>LSU</td>
<td>Louisiana State University</td>
</tr>
<tr>
<td>MACHO</td>
<td>MAssive Compact Halo Object</td>
</tr>
<tr>
<td>MBH</td>
<td>Massive Black Hole</td>
</tr>
<tr>
<td>MCG</td>
<td>Morphological Galaxy Catalog</td>
</tr>
<tr>
<td>MDAF</td>
<td>Magnetically-Dominated Accretion Flow</td>
</tr>
<tr>
<td>MERLIN</td>
<td>Multi-Element Radio Linked Interferometry Network</td>
</tr>
<tr>
<td>MFP</td>
<td>Modified Fast Point (on the MHD modified fast surface)</td>
</tr>
<tr>
<td>MFS</td>
<td>Modified Fast Surface; FMSS</td>
</tr>
<tr>
<td>MHD</td>
<td>MagnetoHydroDynamics</td>
</tr>
<tr>
<td>MHz</td>
<td>Mega-Hertz (million cycles per second)</td>
</tr>
<tr>
<td>microqua-</td>
<td>Binary black hole system, usually with a jet; μQSR</td>
</tr>
<tr>
<td>sar</td>
<td></td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MK</td>
<td>Mega-Kelvin; million kelvins</td>
</tr>
<tr>
<td>MOV</td>
<td>MOVing-body (coordinate system)</td>
</tr>
<tr>
<td>MPG</td>
<td>Max-Planck-institute for Gravitational physics</td>
</tr>
<tr>
<td>MRI</td>
<td>Magneto-Rotational shearing Instability</td>
</tr>
<tr>
<td>MSFC</td>
<td>Manned Space Flight Center</td>
</tr>
<tr>
<td>MSP</td>
<td>Modified Slow Point (on the MHD modified slow surface)</td>
</tr>
<tr>
<td>MSS</td>
<td>Modified Slow Surface; SMSS</td>
</tr>
<tr>
<td>MSSSO</td>
<td>Mount Stromlo & Siding Springs Observatories</td>
</tr>
<tr>
<td>Myr</td>
<td>Mega-year (million years)</td>
</tr>
<tr>
<td>N-galaxy</td>
<td>Galaxy (generally elliptical) with a bright Nucleus; NLRG, BLRG</td>
</tr>
<tr>
<td>NAOJ</td>
<td>National Astronomical Observatory of Japan</td>
</tr>
<tr>
<td>NB</td>
<td>Normal Branch (of neutron star Z sources)</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>neutrinosphere</td>
<td>the surface of last neutrino absorption in a source</td>
</tr>
<tr>
<td>NGC</td>
<td>New General Catalog (of Nebulae and Clusters of Stars)</td>
</tr>
<tr>
<td>NLR</td>
<td>Narrow-Line Region (of AGN)</td>
</tr>
<tr>
<td>NLRG</td>
<td>Narrow-Line Radio Galaxy</td>
</tr>
<tr>
<td>NLSy1</td>
<td>Narrow-Line Seyfert (Type 1) galaxy</td>
</tr>
<tr>
<td>NOAO</td>
<td>National Optical Astronomy Observatory</td>
</tr>
<tr>
<td>NRAF</td>
<td>Non-Radiative Accretion Flow (computational approximation to RIAF/ADAF)</td>
</tr>
<tr>
<td>NRAO</td>
<td>National Radio Astronomy Observatory</td>
</tr>
<tr>
<td>NRHD</td>
<td>Non-Relativistic HydroDynamics</td>
</tr>
<tr>
<td>NRMHD</td>
<td>Non-Relativistic MagnetoHydroDynamics</td>
</tr>
<tr>
<td>NS</td>
<td>Neutron Star</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation, USA</td>
</tr>
<tr>
<td>NuSTAR</td>
<td>Nuclear Spectroscopic Telescope ARray</td>
</tr>
<tr>
<td>OGLE</td>
<td>Optical Gravitational Lensing Experiment</td>
</tr>
<tr>
<td>OIS</td>
<td>Observer-at-Infinity/Synchronous (coordinate system)</td>
</tr>
<tr>
<td>ONeMg</td>
<td>Oxygen–Neon–Magnesium (stellar core)</td>
</tr>
<tr>
<td>peribarathron</td>
<td>minimum distance of star orbiting a BH</td>
</tr>
<tr>
<td>PFD</td>
<td>Poynting- (energy) Flux-Dominated</td>
</tr>
<tr>
<td>photosphere</td>
<td>the surface of last photon absorption in a source</td>
</tr>
<tr>
<td>PNS</td>
<td>Proto-Neutron Star</td>
</tr>
<tr>
<td>PP</td>
<td>Papaloizou–Pringle (instability)</td>
</tr>
<tr>
<td>PWN</td>
<td>pulsar wind nebula</td>
</tr>
<tr>
<td>QPO</td>
<td>Quasi-Periodic Oscillation</td>
</tr>
<tr>
<td>QSO</td>
<td>Quasi-Stellar Object; optically-identified quasar (usually RQQ)</td>
</tr>
<tr>
<td>QSR</td>
<td>Quasi-Stellar Radio source; quasar</td>
</tr>
<tr>
<td>quasar</td>
<td>QUAsi-StellAr Radio source</td>
</tr>
<tr>
<td>red blazar</td>
<td>see LBL</td>
</tr>
<tr>
<td>RIAF</td>
<td>Radiatively-Inefficient Accretion Flow; ADAF</td>
</tr>
<tr>
<td>RIKEN</td>
<td>RIKEN science institute (Japan)</td>
</tr>
<tr>
<td>RLQ</td>
<td>Radio Loud Quasar; classical quasar</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>ROSAT</td>
<td>ROentgen SATellite</td>
</tr>
<tr>
<td>RQQ</td>
<td>Radio Quiet Quasar</td>
</tr>
<tr>
<td>RRAT</td>
<td>Rotating RAdio Transient</td>
</tr>
<tr>
<td>RSG</td>
<td>Red SuperGiant star</td>
</tr>
<tr>
<td>RXTE</td>
<td>Rossi X-ray Timing Explorer</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>SAS-1</td>
<td>First Small Astronomy Satellite (Uhuru)</td>
</tr>
<tr>
<td>SAS-2</td>
<td>Second Small Astronomy Satellite</td>
</tr>
<tr>
<td>SASI</td>
<td>Standing Accretion Shock Instability</td>
</tr>
<tr>
<td>SBH</td>
<td>Stellar-mass Black Hole</td>
</tr>
<tr>
<td>SCattersphere</td>
<td>the surface of last photon scattering in a source</td>
</tr>
<tr>
<td>SCH</td>
<td>SCHwarzchild (metric)</td>
</tr>
<tr>
<td>SCUBA</td>
<td>Submillimeter Common-User Bolometer Array</td>
</tr>
<tr>
<td>SDSS</td>
<td>Sloan Digital Sky Survey</td>
</tr>
<tr>
<td>SEW</td>
<td>Super-Eddington Wind</td>
</tr>
<tr>
<td>Seyfert</td>
<td>Galaxy (generally spiral) with a bright nucleus, originally discovered by Carl Seyfert; AGN</td>
</tr>
<tr>
<td>SGR</td>
<td>Soft Gamma-ray Repeater</td>
</tr>
<tr>
<td>SGRB</td>
<td>Short-duration Gamma-Ray Burst</td>
</tr>
<tr>
<td>SH</td>
<td>Schwarzschild–Hilbert (coordinate system)</td>
</tr>
<tr>
<td>SHB</td>
<td>Short Hard Burst; SGRB</td>
</tr>
<tr>
<td>SIM</td>
<td>Space Interferometer Mission</td>
</tr>
<tr>
<td>SIS</td>
<td>Singular Isothermal Sphere (distribution of stars)</td>
</tr>
<tr>
<td>SISSA</td>
<td>Scuola Internazionale Superiore di Studi Avanzati</td>
</tr>
<tr>
<td>SLE</td>
<td>Shapiro–Lightman–Eardley (accretion disk solution)</td>
</tr>
<tr>
<td>SMBH</td>
<td>SuperMassive Black Hole</td>
</tr>
<tr>
<td>SMC</td>
<td>Small Magellanic Cloud</td>
</tr>
<tr>
<td>SMG</td>
<td>SubMillimeter Galaxy</td>
</tr>
<tr>
<td>SMS</td>
<td>Slow Magnetosonic Surface</td>
</tr>
<tr>
<td>SMSS</td>
<td>Slow Magnetosonic Separatrix Surface</td>
</tr>
<tr>
<td>SN</td>
<td>SuperNova</td>
</tr>
<tr>
<td>SNR</td>
<td>SuperNova Remnant</td>
</tr>
<tr>
<td>SPH</td>
<td>Smooth Particle Hydrodynamics</td>
</tr>
<tr>
<td>SPL</td>
<td>Steep Power-Law (X-ray binary accretion state)</td>
</tr>
<tr>
<td>SRMHD</td>
<td>Special Relativistic MagnetoHydroDynamics</td>
</tr>
<tr>
<td>SS</td>
<td>Shakura–Sunyaev (accretion disk solutions)</td>
</tr>
<tr>
<td>STScI</td>
<td>Space Telescope Science Institute</td>
</tr>
<tr>
<td>surface, critical</td>
<td>locus of points in space where flow characteristics appear or disappear</td>
</tr>
<tr>
<td>surface, separatrix</td>
<td>locus of points in space where component of flow characteristics along a streamline changes sign</td>
</tr>
<tr>
<td>surface, singular</td>
<td>locus of points in space where denominator of a mathematical accretion/wind equation vanishes</td>
</tr>
<tr>
<td>SXT</td>
<td>Soft X-ray Transient source</td>
</tr>
<tr>
<td>TOV equation</td>
<td>Tolman–Oppenheimer–Volkoff relativistic stellar structure equation</td>
</tr>
<tr>
<td>traceless-Lorenz gauge</td>
<td>see TT gauge</td>
</tr>
<tr>
<td>TT gauge</td>
<td>Transverse–Traceless gauge for the Einstein equations</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>UB</td>
<td>Upper Banana state (of neutron star atoll sources)</td>
</tr>
<tr>
<td>UC</td>
<td>University of California</td>
</tr>
<tr>
<td>UCLA</td>
<td>University of California Los Angeles</td>
</tr>
<tr>
<td>UCSB</td>
<td>University of California Santa Barbara</td>
</tr>
<tr>
<td>UCSC</td>
<td>University of California Santa Cruz</td>
</tr>
<tr>
<td>UFO</td>
<td>Ultra-Fast Outflow (from AGN central engines)</td>
</tr>
<tr>
<td>ULIRG</td>
<td>Ultra-Luminous InfraRed Galaxy</td>
</tr>
<tr>
<td>ULX</td>
<td>Ultra-Luminous X-ray source</td>
</tr>
<tr>
<td>UNAM</td>
<td>Universidad Nacional Autónoma de México</td>
</tr>
<tr>
<td>UT</td>
<td>University of Texas</td>
</tr>
<tr>
<td>UV</td>
<td>UltraViolet (radiation)</td>
</tr>
<tr>
<td>UVOIR</td>
<td>UltraViolet–Optical–InfraRed (radiation)</td>
</tr>
<tr>
<td>VH</td>
<td>Very High (X-ray binary accretion state)</td>
</tr>
<tr>
<td>VHS</td>
<td>Very High State (for X-ray binaries)</td>
</tr>
<tr>
<td>VK</td>
<td>Vlahakis and Königl 2003 paper on warm, relativistic MHD winds</td>
</tr>
<tr>
<td>VLA</td>
<td>Very Large Array</td>
</tr>
<tr>
<td>VLBA</td>
<td>Very Long Baseline Array</td>
</tr>
<tr>
<td>VLBI</td>
<td>Very Long Baseline Interferometry</td>
</tr>
<tr>
<td>VMS</td>
<td>Very Massive Star</td>
</tr>
<tr>
<td>VTST</td>
<td>Vlahakis, Tsinganos, Sauty, and Trussoni 2000 paper on warm, non-relativistic MHD winds [549]</td>
</tr>
<tr>
<td>WC</td>
<td>Wolf–Rayet star with strong Carbon emission lines</td>
</tr>
<tr>
<td>WD</td>
<td>White Dwarf</td>
</tr>
<tr>
<td>WLRG</td>
<td>Weak-Lined Radio Galaxy</td>
</tr>
<tr>
<td>WN</td>
<td>Wolf–Rayet star with strong Nitrogen emission lines</td>
</tr>
<tr>
<td>WNE</td>
<td>see WN</td>
</tr>
<tr>
<td>WO</td>
<td>Wolf–Rayet star with strong Oxygen emission lines</td>
</tr>
<tr>
<td>WPVS</td>
<td>Wamsteker, Prieto, Vitores, Schuster et al. $H\alpha$ galaxy survey</td>
</tr>
<tr>
<td>XDIN</td>
<td>X-ray Dim Isolated Neutron star</td>
</tr>
<tr>
<td>XMM</td>
<td>X-ray Multi-mirror Mission; a.k.a., XMM Newton</td>
</tr>
<tr>
<td>XRB</td>
<td>X-ray binary</td>
</tr>
<tr>
<td>XTE</td>
<td>X-ray Timing Explorer; see RXTE</td>
</tr>
<tr>
<td>ZAMO</td>
<td>Zero-Angular-Momentum Observer (FIDO coordinate system)</td>
</tr>
<tr>
<td>ZAMS</td>
<td>Zero-Age Main Sequence (main locus of stars in HR diagram)</td>
</tr>
</tbody>
</table>
Index of Names

Abel, Tom, 414
Abramowicz, Marek, 95, 515
Akiyama, Shizuka, 730
Alfvén, Hannes O. G., 364
Aloy, Miguel Ángel, 708
Andrew, Bryan H., 30
Anninos, Peter, 336
Antonucci, Robert, 38, 39, 671
Argelander, Friedrich W. A., 30
Arnowitt, Richard L., 246
Baade, W. H. Walter, 68, 84
Baker, John, 272, 276
Balbus, Steven A., 374, 547, 551
Bash, Frank N., 123
Baumgardt, Holger, 123
Baumgarte, Thomas W., 272
Becklin, Eric E., 124, 125
Begelman, Mitchell C., 119, 391, 492, 515, 555, 582, 656, 673, 674, 684, 782
Bell, S. Jocelyn, 64
Belloni, Tomaso, 93, 95, 776
Berger, Edo, 110
Bicknell, Geoffrey, 22, 710, 822
Biermann, Peter L., 589
Blaes, Omer M., 552
Blandford, Roger D., 17, 26, 39, 479, 582, 610, 614, 624, 636, 642, 655, 656, 660, 664, 666, 672, 685, 701, 714, 721, 759, 761
Bogovalov, Sergey V., 656, 680, 687
Bolton, John G., 64
Bondi, Sir Herman, 439, 442, 487
Boroson, Todd A., 60, 792
Boyer, Robert H., 235
Bromm, Volker, 414
Browne, Ian W. A., 29
Burns, Jack, 713
Burrows, Adam, 391
Camenzind, Max, 672
Camm, G. Leslie, 448
Campanelli, Manuela, 272, 274
Campbell, W. Wallace, 14
Castro-Tirado, Alberto J., 92, 105
Celotti, Annalisa, 32
Centrella, Joan M., 272
Chadwick, Sir James, 68
Chandrasekhar, Subrahmanyan, 63, 161
Chen, Xingming, 525
Cheung, C. C., 820
Chiang, James, 49, 564
Chiu, Hong-Yee, 24
Chiueh, Tzihong, 673, 674, 684
Clarke, David, 706, 710, 713
Cohen, Marshall H., 27

Cohn, Haldan, 448
Colgate, Stirling, 650
Comastri, Andrea, 32
Combes, Françoise, 453
Contopoulos, Ioannis (John), 597, 628, 656, 665, 673, 675, 678, 680, 692
Conway, John, 29
Coroniti, Ferdinand V., 620, 636
Couette, Maurice M. A., 371
Cowling, Thomas G., 551
Curtis, Heber D., 14, 19
Czerny, Bożena, 515, 525
Danby, J. M. Anthony, 448
De Villiers, Jean-Pierre, 336, 556, 625, 653
Deser, Stanley, 246
Di Matteo, Tiziana, 751
Doppler, Christian A., 189
Dreyer, John L. E., 14
Duncan, G. Comer, 705, 708, 721
Duncan, Robert C., 70
Dunlop, James S., 59
Eardley, Douglas M., 507, 512, 514, 519
Ebisuuzaki, Toshikazu, 431, 464, 808
Eddington, Sir Arthur, 5, 10
Edgington, Samantha, 648
Eggleton, Peter P., 472
Einstein, Albert, 165, 177, 209, 210, 217, 273
Eisenhardt, Peter M. E., 45
Elitzur, Moshe, 792
Elvis, Martin, 816
Emden, J. Robert, 157
Esin, Ann A., 527
Euclid of Alexandria, 166, 176
Euler, Leonhard, 155
Fabber, Sandra M., 429, 443
Falcke, Heino, 587, 589, 759
Fanaroff, Bernard L., 21
Fath, Edward A., 14
Fender, Robert, 74, 95, 741, 747, 751, 755, 766, 773
Fendt, Christian, 597
FitzGerald, George F., 179
Flammang, Richard A., 489
Fossati, Giovanni, 32, 34
Fowler, William A., 63
Fragile, P. Christopher, 336, 558, 650
Franck, Juhan, 448
Freitag, Marc D., 422
Friedrichs, Kurt O., 364
Fryer, Chris L., 393, 730
Gallo, Elena, 95, 766
Gammie, Charles F., 336, 339
Garofalo, David, 632, 672, 817, 820, 830
Gebhardt, Karl, 121
Gehrels, Neil, 110
Genzel, Reinhard, 54, 125
Gerssen, Joris, 122
Ghez, Andrea, 8, 125
Ghisellini, Gabriele, 32
Giacconi, Riccardo, 63, 64
Gillessen, Stefan, 54, 55
Godon, Patrick, 648
Goldreich, Peter, 594, 597, 599
Grad, H., 344
Green, George, 145
Greiner, Jochen, 93
Griffiths, Richard E., 118
Groot, Paul J., 407
Gunn, James E., 68
Gursky, Herbert, 63
Haehnelt, Martin G., 429
Halpern, Jules P., 42, 72
Hameury, Jean-Marie, 77
Hansen, Brad M. S., 125
Hardee, Philip, 706, 719
Harding, Alice K., 603
Harmon, B. Alan, 94
Harris, Daniel E., 820
Harrison, Fiona A., 46
Hawley, John F., 336, 374, 547, 551, 625
Hazard, Cyril, 23
Heckman, Timothy M., 53
Heger, Alexander, 393, 397, 481, 730, 744
Heinz, Sebastian, 751
Hewish, Antony, 64
Hirose, Shigenobu, 552, 625, 653
Hirotani, Kouchi, 634, 639
Hjellming, Robert M., 94
Ho, Luis C., 57, 123, 792
Hoffmeister, Cuno, 30
Höflich, Peter, 406
Hooley, Sir Fred, 439, 442
Hubble, Edwin P., 14
Hughes, Philip A., 705, 708–710, 721
Hughes, Scott A., 479
Kazanas, Demosthenes, 597
Kerr, Roy P., 234
Khalikian, Edward Y., 16
Khokhlov, Alexei, 406
King, Andrew, 77, 119, 430, 805, 812
King, Ivan, 417
van der Klis, Michiel, 74, 737, 739, 742, 826
Klużniak, Włodek, 95
Koide, Shinji, xx, 238, 240, 246, 250, 336, 620, 629, 639, 641, 651
Koldoba, Aleksander V., 605
Komissarov, Serguei S., xx, 246, 335, 336, 339, 614, 617, 619, 628, 639, 641, 700, 716
Königl, Arieh, 26, 39, 656, 685, 692, 694, 699
Kormendy, John, 801
Krasnopolsky, Rubin, 664
Krolik, Julian H., 552, 625
Kudoh, Takahiro, 246, 629, 639, 650
Kulsrud, Russell M., 448
Lacy, Mark, 59
Lagrange, Joseph-Louis, 148
Larson, Richard B., 432
Lasota, Jean-Pierre, 77, 91, 515
LeBlanc, James M., 391, 704
Li, Hui, 650
Li, Zhi-Yun, 664, 673, 674, 684
Lightman, Alan P., 448, 507, 512, 514, 519
Lind, Kevin, 648, 710, 714
Lindquist, Richard W., 235
Liu, Bifang, 525
Livio, Mario, 498, 642, 653
Long, Knox S., 117
Longair, Malcolm S., 701
Lorentz, Hendrik A., 185, 194
Lorenz, Ludwig V., 194
Lousto, Carlos O., 272
Lovelace, Richard V. E., 605, 655, 656, 665, 673, 690
Lynden-Bell, Donald, 419, 646, 650
Lyttleton, Raymond A., 439
Maccarone, Thomas J., 120, 128
Macdonald, Douglas A., 246
MacFadyen, Andrew I., 108, 646
MacLeod, John M., 30
Mahadevan, Rohan, 520
Maillard, Jean-Pierre, 126
Malin, David, 15
Maraschi, Laura, 32
van der Marel, Roeland P., 57
Margon, Bruce H., 81
Markarian, Benik E., 16
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markoff, Sera</td>
<td>587, 695, 696, 757, 759, 818, 821</td>
</tr>
<tr>
<td>Marscher, Alan</td>
<td>821</td>
</tr>
<tr>
<td>Matsumoto, Ryoji</td>
<td>508, 650</td>
</tr>
<tr>
<td>May, Michael M.</td>
<td>841</td>
</tr>
<tr>
<td>Mazurek, Ted J.</td>
<td>406</td>
</tr>
<tr>
<td>McClintock, Jeffrey E.</td>
<td>762, 775, 777, 801</td>
</tr>
<tr>
<td>McKinney, Jonathan C.</td>
<td>336, 339, 558, 617, 619, 628, 638, 698, 700, 721</td>
</tr>
<tr>
<td>McLure, Ross J.</td>
<td>59</td>
</tr>
<tr>
<td>McMillan, Stephen L. W.</td>
<td>118, 422, 784</td>
</tr>
<tr>
<td>Meier, David L.</td>
<td>22, 309, 391, 480, 515, 558, 568, 648, 650, 670, 695, 710, 714, 717, 782, 847</td>
</tr>
<tr>
<td>Meissner, F. Walther</td>
<td>619</td>
</tr>
<tr>
<td>Merloni, Andrea</td>
<td>751</td>
</tr>
<tr>
<td>Merritt, David</td>
<td>432, 448</td>
</tr>
<tr>
<td>Messier, Charles</td>
<td>14, 64</td>
</tr>
<tr>
<td>Mészáros, Peter</td>
<td>103</td>
</tr>
<tr>
<td>Metzger, Mark R.</td>
<td>101</td>
</tr>
<tr>
<td>Meyer, Friedrich</td>
<td>525</td>
</tr>
<tr>
<td>Meyer-Hofmeister, Emmi</td>
<td>525</td>
</tr>
<tr>
<td>Michel, F. Curtis</td>
<td>614</td>
</tr>
<tr>
<td>Migliari, Simone</td>
<td>741, 747, 751, 773</td>
</tr>
<tr>
<td>Miller, John C.</td>
<td>508</td>
</tr>
<tr>
<td>Miller, Joseph S.</td>
<td>38, 39</td>
</tr>
<tr>
<td>Miller, Mark A.</td>
<td>405, 708, 721</td>
</tr>
<tr>
<td>Milosavljević, Miloš</td>
<td>125, 432</td>
</tr>
<tr>
<td>Minkowski, Hermann</td>
<td>68, 178</td>
</tr>
<tr>
<td>Minkowski, Rudolph L. B.</td>
<td>68</td>
</tr>
<tr>
<td>Mirabel, I. Felix</td>
<td>91, 93, 94</td>
</tr>
<tr>
<td>Misner, Charles W.</td>
<td>165, 246, 841</td>
</tr>
<tr>
<td>Mizuno, Yosuke</td>
<td>719</td>
</tr>
<tr>
<td>Moore, Joseph H.</td>
<td>14</td>
</tr>
<tr>
<td>Morgan, Edward H.</td>
<td>93, 776</td>
</tr>
<tr>
<td>Muno, Michael P.</td>
<td>776</td>
</tr>
<tr>
<td>Murnig, Paul G.</td>
<td>88</td>
</tr>
<tr>
<td>Murphy, David W.</td>
<td>29</td>
</tr>
<tr>
<td>Murray, Norman</td>
<td>49, 564</td>
</tr>
<tr>
<td>Nakamura, Fumitaka</td>
<td>414</td>
</tr>
<tr>
<td>Nakamura, Masanori</td>
<td>356, 650, 710, 712, 717, 718, 820, 822</td>
</tr>
<tr>
<td>Nakamura, Takashi</td>
<td>272</td>
</tr>
<tr>
<td>Narayan, Ramesh</td>
<td>520, 583, 638</td>
</tr>
<tr>
<td>Natarajan, Priyamvada</td>
<td>479</td>
</tr>
<tr>
<td>Nelemans, Gijs</td>
<td>400, 407</td>
</tr>
<tr>
<td>Neugebauer, Gerald</td>
<td>124, 125</td>
</tr>
<tr>
<td>Newman, Ezra T.</td>
<td>244</td>
</tr>
<tr>
<td>Newton, Sir Isaac</td>
<td>133, 166</td>
</tr>
<tr>
<td>Nishikawa, Ken-Ichi</td>
<td>708, 719</td>
</tr>
<tr>
<td>Nordström, Gunnar</td>
<td>210</td>
</tr>
<tr>
<td>Norman, Michael L.</td>
<td>704, 710, 713</td>
</tr>
<tr>
<td>Noyola, Eva</td>
<td>122</td>
</tr>
<tr>
<td>O’Leary, Ryan M.</td>
<td>421</td>
</tr>
<tr>
<td>Ogilvie, Gordon</td>
<td>498, 642, 653</td>
</tr>
<tr>
<td>Oppenheimer, J. Robert</td>
<td>287</td>
</tr>
<tr>
<td>Osmer, Patrick S.</td>
<td>43</td>
</tr>
<tr>
<td>Osterbrock, Donald</td>
<td>xix, 42</td>
</tr>
<tr>
<td>Ostriker, Jeremiah P.</td>
<td>68</td>
</tr>
<tr>
<td>Owen, Frazer N.</td>
<td>22</td>
</tr>
<tr>
<td>Paczyński, Bohdan</td>
<td>103, 510</td>
</tr>
<tr>
<td>Padovani, Paolo</td>
<td>60</td>
</tr>
<tr>
<td>Paolini, Frank</td>
<td>63</td>
</tr>
<tr>
<td>van Paradijs, Johannes (Jan)</td>
<td>101</td>
</tr>
<tr>
<td>Parker, Eugene N.</td>
<td>486, 487</td>
</tr>
<tr>
<td>Payne, David G.</td>
<td>642, 648, 656, 660, 666, 672, 685, 714, 759</td>
</tr>
<tr>
<td>Pearson, Timothy J.</td>
<td>27</td>
</tr>
<tr>
<td>Perley, Richard A.</td>
<td>29</td>
</tr>
<tr>
<td>Phinney, E. Sterl</td>
<td>636</td>
</tr>
<tr>
<td>Pineda, Jorge L.</td>
<td>452</td>
</tr>
<tr>
<td>Piran, Tsvi</td>
<td>106</td>
</tr>
<tr>
<td>Pogge, Richard</td>
<td>42</td>
</tr>
<tr>
<td>Poisson, Siméon-Denis</td>
<td>145</td>
</tr>
<tr>
<td>Polko, Peter</td>
<td>695, 697, 759</td>
</tr>
<tr>
<td>Portegies Zwart, Simon F.</td>
<td>118, 126, 422, 784</td>
</tr>
<tr>
<td>Postnov, Konstantin A.</td>
<td>399, 401</td>
</tr>
<tr>
<td>Pretorius, Frans</td>
<td>272</td>
</tr>
<tr>
<td>Price, Richard M.</td>
<td>246, 512</td>
</tr>
<tr>
<td>Pringle, James</td>
<td>479, 498, 514</td>
</tr>
<tr>
<td>Proga, Daniel</td>
<td>49</td>
</tr>
<tr>
<td>Ptak, Andrew</td>
<td>118</td>
</tr>
<tr>
<td>Punsly, Brian</td>
<td>620, 636</td>
</tr>
</tbody>
</table>
Pythagoras of Samos, 166
Quataert, Eliot, 520

Readhead, Anthony C. S., 17, 18, 29
Rees, Sir Martin J., 17, 27, 103, 448, 576, 701
Remillard, Ronald A., 93, 762, 775–777, 801
Rhoads, James E., 105
Ricci-Curbastro, Gregorio, 218
Rich, R. Michael, 122
Riemann, G. F. Bernhard, 213
Riley, Julia M., 21
Roche, Édouard A., 446
Rodriguez, Luis F., 91, 93
Romanova, Marina M., 605, 606, 608, 650, 690, 737
Rosen, Alexander, 705
Rossi, Bruno B., 63
Różańska, Agata, 525
Ruderman, Malvin A., 601
Rupen, Michael P., 94
Russell, David, 766
Ryle, Sir Martin J., 17, 64, 701

Sadun, Alberto, 710
Salmonson, Jay D., 336
Salpeter, Edwin E., 99, 803
Sathyaprakash, B. S., 258, 267
Sauty, Christophe, 680, 685
Scalo, John M., 411
Scheuer, Peter A. G., 701
Schlüter, A., 344
Schmidt, Maarten, 23, 36, 52, 818
Schmitt, John L., 30
Schwarzschild, Karl, 222
Schwarzschild, Martin, 222
Seyfert, Carl K., 16
Shafranov, Vitalii D., 344
Shakura, Nikolay I., 494, 496, 507, 551
Shapiro, Stuart L., 272, 286, 448, 512, 514
Sharp, David H., 841

Shibata, Kazunari, 246, 629, 639, 644, 645, 648, 650
Shibata, Masaru, 272
Shields, Gregory A., 447, 478
Shklovskii, Iosif S., 73
Slipher, Vesto M., 14
Smarr, Larry, 704
Smith, Harding E., 383
Smith, Malcolm G., 43
Smith, Michael D., 704
Soleri, Paolo, 766
Spitkovsky, Anatoly, 599, 733
Stanek, Krzysztof Z., 114
Stawarz, Łukasz, 820
Stern, Daniel, 45
Sunyaev, Rashid A., 334, 494, 496, 507, 551, 795
Sutherland, Peter G., 601
Szuszkiewicz, Ewa, 508, 515

Taam, Ron, 776
Takahashi, Masaaki, 620, 626, 628, 631, 635
Tan, Loke K., 122
Tanaka, Yasuo, 41
Tassis, Konstantinos, 452, 454
Taylor, Joseph H., 84
Teukolsky, Saul A., 286
Thompson, Christopher, 70
Thorne, Kip S., 165, 242, 246, 269, 489, 512
Thorsett, Stephen E., 113
Tingay, Steven, 94
Titarchuk, Lev G., 334, 795
Tolman, Richard C., 287
Tomimatsu, Akira, 626, 628, 631, 635
Tóth, Gábor, 336
Tout, Christopher A., 400
Tremaine, Scott, 816
Trussoni, Edoardo, 680, 685
Tsinganos, Kanaris, 680, 685
Turner, Neal J., 552
Turnshek, David, 50, 51

Uchida, Yutaka, 644, 645, 648
Ulvestad, James S., 122
Umemura, Masayuki, 414
Urry, C. Megan, 60
Ustyugova, Galina V., 605, 608, 645, 650, 656, 690
Uzdensky, Dmitri A., 598, 628, 630, 633, 646, 855
Van Riper, Kenneth, 286
Velusamy, Thangasamy, 452
Vlahakis, Nektarios, 656, 685, 692, 694, 699
Volkoff, George M., 287
Wald, Robert M., 618
Walker, R. Craig, 15
Wang, Lifan, 86, 729
Weaver, Thomas A., 397, 744
Webster, B. Louise, 88
Weedman, Daniel W., 16
Werner, Michael J., 43
Wheeler, J. Craig, 391, 406, 447, 478, 480, 729
Wheeler, John A., 24, 48, 165
White, Richard H., 841
Wiita, Paul J., 510
Wilson, James R., 391, 480, 704
Winkler, Karl-Heinz A., 704
Wood, Roger, 419
Woosley, Stanford E., 108, 383, 393, 397, 730, 744
Wright, Edward L., 45
Yi, Insu, 520, 583
Young, Peter J., 447, 478
Yu, Qingjuan, 816
Zepf, Stephen E., 120
Zhang, S. Nan, 94
Znajek, Roman, 610, 614, 636, 761
Zwicky, Fritz, 68, 84
Żytkow, Anna N., 489
Subject Index

Accretion of angular momentum, 437, 475–481, 537–541, 558
in binary systems, 476–477
in black hole mergers, 268–277, 479–480
spin–orbit coupling, 274
in collapsing supernova cores, 480–481
onto central BHs in AGN/globular clusters, 477–480
onto central BHs in galaxy mergers, 478–480, 830
accretion disk/hole alignment, 479, 480, 830
BH spinup and spindown, 476, 478–480, 616, 635, 818
galaxy core spinup, 478
spin–orbit coupling, 277, 479

Accretion of matter, carburetion of fuel
in binary systems
Roche/tidal stripping of companion star, 471–474
stars in galactic centers, 444–448
BH mass limit for tidal disruption, 447
loss cone, angle, 448
loss cone, depletion, 434, 448
loss cone, refilling, 434, 448
tidal disruption accretion rate, 448–451
tidal disruption of stars by BHs, 446–448
tidal orbit, 447
tidal radius/Roche limit, 446, 461–463, 465, 466, 468, 483

Accretion of matter, efficiency compared with nuclear burning, 438
onto black holes, 231, 239, 438
onto Jupiter, 438
onto neutron stars, 439
onto the earth, 438
onto the Sun, 438
onto white dwarfs, 438

Accretion of matter, general, 437–475
critical surfaces, 698, 699
in binary systems, 470–475
in collapsing supernova cores, 475
onto BHs in the ISM, 439–442
onto central BHs in AGN/globular clusters, 442–470
onto central BHs in galaxy mergers, 790, 802–806, 812–813
stagnation surface, 698, 699
wind, ingoing, 698, 699
wind, outgoing, 699
Accretion of matter, magnetically-dominated disk theory, 529–547
magnetically-adveective (transitional) accretion, 532–536, 768
physical structure, 532–533
stability, 535
thermal structure, 533
magnetically-dominated accretion flow (MDAF), 535–547, 768, 825
ADAF vs. MDAF, 546–547
example MDAF disk, 542–544
MDAF “end-game” accretion, 544–546
physical structure (magneto-centrifugal accretion), 535–542
singular (Alfvén) surface, 538
singular and non-singular solutions, 537–541
thermal structure, 542
observational appearance, 766–771
simulations, 558–560
Accretion of matter, numerical simulations
general MRI simulations, 547–560
limitations, 548–549
power and promise, 547–548
global MRI simulations, 555–560
non-radiative, with jets, 555–558
radiative, 558–560
local MRI simulations, 549–553
Cowling anti-dynamo theorem, 549, 551
Maxwell stress, 549–551
Reynolds stress, 549–551
shearing box approximation, 549
semi-local MRI simulations, 551–555
radiation-pressure-dominated, 552–555
Accretion of matter, sources of fuel
gas in early-type galaxy mergers
cluster inspiral does not fuel SMBHs, 469–470, 811–812
interstellar gas from mergers, 812–813
gas in late-type galaxy centers, 451–470
bar accretion process, 452–455
cloud collisions vs. tidal disruption, 458–459
cluster tidal stripping, 465–468
dynamical friction of HI clumps, 460–464
dynamical friction process, 455–460
dynamical friction time, 460, 461, 465
nuclear star-formation ring/shock, 454, 461–465
star cluster inspiral, 462, 464–470
gas in the ISM, 439–442
accretion by a moving star, 440–442
accretion by a stationary star, 440–441
generic Bondi–Hoyle–Lyttleton accretion, 442
mass transfer in binary systems, 470–475
Roche lobe overflow, 472–474
dynamical, 473
secular, 474
thermal, 474
wind from companion, 474–475
stars in galactic centers, 442–451
mean free path for star–star encounters, 446
two-body relaxation, 445–446
Accretion of matter, spherical wind/accretion theory
thermal, sub-Eddington (Bondi) accretion, 485–492
accretion equation, polytropic, non-relativistic, 486–489
accretion equation, polytropic, relativistic, 489–490
general solutions, 486
isothermal, 488
regular solutions, 486–488
singular/critical (sonic) surface, 486–488
thermal, super-Eddington (Begelman) accretion, 490–492
advection of photons, 490–491
Bondi vs. Begelman accretion, 491–492
photon mean free path, 492
trapping radius, 490–491
Accretion of matter, turbulent disk theory, 492–529
instabilities, 504–508
secular (viscous), “inner” region, 507, 509
thermal, “inner” region, 507–509
thermal, SLE model, 515
numerical models, 508–511, 519, 521, 525–529
observational appearance, 494–496, 764–766, 771–784
physical structure, 493–498
alpha-model, 496–498
effective temperature, 495
frictional heating, optically thick spectrum, 494–496
one-zone approximation, 494
stability, 507
vertical disk magnetic field, 498
simulations, 549–558
theoretical models, 492–529, 536, 546, 765, 768, 774, 776, 780, 781, 783
thermal structure, general, 498–529
parameters, 500–501
$\Sigma^{-\dot{m}}$ plane, 506, 526
stability, 507–508
thermal structure, geometrically thick
“slim” (super-Eddington) disks, 515–519, 780, 781, 783, 825
ADAF (very sub-Eddington) disks, 519–525, 765, 768, 825
SLE disks (unstable), 511–515
thermal structure, geometrically thin
SS disks, “inner” region, 503–504, 776, 780, 781, 783, 825
SS disks, “middle” region, 502–503, 505, 765, 768, 774, 776, 780, 781, 783, 825
SS disks, “outer” region, 499–502, 505, 765, 768, 774, 776, 825
Active galactic nuclei, xix, 13–55, see also Black holes, massive; Black holes, supermassive
BALs, 48–50, 61, 450, 451, 566, 567, 671, 755, 796–798, 806, 812, 826, 829
HiBALs vs. LoBALs, 49, 51
blazars, 30–37, 60, 679
BL Lacertae objects, 30, 32, 37, 679, 821–822
blue blazars/HBLs, 32–34, 37
IDVs, 33–35
radio selected, 32
red blazars/LBLs, 32–34, 37
X-ray selected, 32
BSOs, 42–43
components
BLR, 16, 22, 24, 791–796, 798, 806, 828
dusty torus, 38–42, 46, 49, 53, 60, 478, 791
light cusp, 9, 57, 121, 445, 449, 821, 822
NLR, 16, 22, 24, 39, 46, 791
UFO, 776, 794–795, 797, 829
warm absorber, 41–42
evolution, 35–37, 52
H II nuclei, 46, 52–53
host galaxies, 14, 17, 32, 47–48, 59, 60, 276, 449, 789, 790, 796, 807
“inactive” galactic nuclei, 55–58, 122, 425, 443, 807
LINERs, 46, 52–53, 800
LLAGN, 52–55, 93, 127, 425, 449, 450, 775, 789, 790, 800, 807
radio cores, 53
models, see also Black holes, massive (MBHs): accretion models
central ionizing source, 791, 792, 795, 828
broad line clouds, 791–794
narrow line clouds, 38–40, 791
ultra-fast outflows, 794–795, 797, 829
radio properties of AGN, 790, 796–801, 805–806, 810, 815–823
QSOs, see Active galactic nuclei: quasars: QSOs
QSRs, see Active galactic nuclei: quasars: QSRs
FR I quasars, 24
FR II quasars, 21, 24, 29, 37, 50, 59, 796, 797
FSRQs, 25–27, 29, 32–34, 36, 37, 119, 679
RLQs/QSRs, 13, 23–37, 42, 45, 47–51, 59–61, 63, 425, 766, 774, 791, 796, 810, 815–823, 826, 829, 830
RQQs/QSOs, 41–52, 58–61, 425, 754, 766, 774, 776, 790–801, 804, 816, 828
radio galaxies, xix, 6, 13, 17–23, 40, 52, 53, 60, 74, 425, 447, 529, 701, 710, 818, see also Black holes, supermassive
BLRGs, 22, 24–25
FR I radio sources, 21, 22, 24, 36–37, 51, 679, 695, 708–725, 775, 818–823, 830
FR I–II break, 22, 29, 816, 823
FR I–II dichotomy, 819, 830
HYMORs, 22
N-galaxies, 22–24, 47, 53, 790
NLRGs, 22
WLRGs, 53
dwarf Seyfert galaxies, 52–53
NLSy1s, 42, 61, 450, 795–796, 798, 800, 801, 806, 826, 829
Type 1, see Active galactic nuclei: Type 1: Seyferts
Type 2, see Active galactic nuclei: Type 2: Seyferts
transition-type, 52–53
Type 1
QSOs, 42–43, 47–52, 790–801, 828
radio galaxies, see Active galactic nuclei: radio galaxies: BLRGs
Seyferts, 14, 16, 22, 38–44, 51, 790–801, 828
Type 2
HyLIRGs, 45, 46, 53, 425, 434, 785, 798, 811, 812
LIRGs, 44–46, 53, 458, 459
QSOs, 43–46, 49, 804
radio galaxies, see Active galactic nuclei: radio galaxies: NL-RGs
Seyferts, 16, 22, 38–42, 44, 53, 791, 804
SMGs, 45
ULIRGs, 45, 46, 111, 425, 434, 458, 459, 785, 798, 811, 812, 824
Type 3
AGN/QSOs, 46–47
Binary black holes (BBHs), see different mass classes, e.g. Black holes, stellar-mass (SBHs): binary
Binary stars
black hole, see different mass classes, e.g. Black holes, stellar-mass (SBHs): binary
close, types
contact, 472
detached, 472
semi-detached, 472
doubly-degenerate, 402, 407–408
effective binary potential, 471, 643, 644
evolution, see Stellar evolution: binary stars
gravitational waves from BH ring-down, 269, 270
kick velocities, 275–277
gravitational waves from inspiraling binaries, 263–270
cirp mass, 266
cirp signal, 265, 266
coalescence time, 265–266, 268
EBBHs, 267, 268
EMRIBHs, 267, 268
LIGO/LISA predictions, 266–268
gravitational waves from merging binaries, 268–277
numerical relativity, 268–277
orbital hangup, 273–275, 404
perturbation methods, 269
post-Newtonian methods, 269
mass function, 7, 142
neutron star, see Neutron stars (NSs): binary
orbits
circular, 140–142
general, 135–137, 142–143
Keplerian frequency, 142
Lagrangian points, 472
orbital phase angle, 140, 141
Trojan points, 472
X-ray (XRBs), xx, 4, 13, 42, 142, 334, 397, 472, 476, 580, 670, 696
jets, 827
masses, 7
theoretical models, 746–760
X-ray novae/SXTs, 77–78, 91–92, 519
Black body
multi-colored, 496, 747, 789
Planckian distribution, 315, 318, 329, 496
radiation, 6, 45, 78, 495
radius, 6
Black hole astrophysics summary
accretion power, see also Accretion of matter, ...
low \(\dot{m}\), 746–747, 750–752
intermediate/hard-state \(\dot{m}\), 746–747, 750–753
intermediate-to-high \dot{m}, 747, 752–753
high sub-Eddington \dot{m}, 747–748, 754
moderate super-Eddington \dot{m}, “slim” disk accretion, 748–750, 754–755
high super-Eddington \dot{m}, super-Eddington wind, 748–750, 754–755
jet launching
by rotating accretion disks, 755–757
by rotating BHs, 755–757
jet acceleration and collimation
MHD jet models, 758–760
thermal jet models, 757–758
jet power
observed radio luminosity estimates, 751
total jet luminosity, 751
jet suppression
by super-Eddington accretion, 671, 754
in the ADAF-to-MDAF transition, 753
in the geometrically thick-to-thin disk transition, 753
Black hole binaries (BHBs), see different mass classes, e.g. Black holes, stellar-mass (SBHs): binary
Black hole engine
combustion chamber, 291, 481–562
energy generation by gravitational accretion, 127, 437–439, 490–492, 522, 546, 571, 736, 746–750, 816
engine block, 381–435
exhaust systems, angular momentum
electromagnetic winds and jets, 291, 589–725
gravitational waves, 254–277
viscous transport, 291, 493–498, 585
exhaust systems, energy
loss down the hole, 291, 522, 640, 777
photon loss, 291, 498–529
thermal- and radiation-driven wind loss, 291, 562–589
fueling and carburetion, 291, 435–481
Black holes
Galactic population, 99–100, 760, see also Sources in the Milky Way: black holes
horizon
definition, 3
formation, 270–289, 405
magnetic field, 609–641
Schwarzschild, 223–224, 229–233
Kerr, 236, 699, 756
Kerr–Newman, 245
of SBHs, 743
of IMBHs, 784
of MBHs, 790
of SMBHs, 810
magnetospheres, accreting, 621–641
black hole spindown, 615–616, 818
BZ process/effect, 638, 640, 742, 755–757
closed vs. open field solutions, 630–634
field line types, 624–625
GJ space charge density, role of, 625–630
magnetic Penrose process, 635, 639–640
negative energy at infinity, 639–640
sources of black hole magnetic field, 622–625
very weak intrinsic magnetic fields, 622–623
when disk does not reach horizon, 625–635
when disk reaches into ergosphere, 635–640
wind, ingoing, 634–635, 698, 699
wind, outgoing, 634–635, 699
magnetospheres, isolated, 609–621
BZ process/effect, 615–616, 619–620, 634
force free model, 614–616
frame dragging, 611, 621
GJ space charge density, role of, 619–620
GSS equation and singular surfaces, 611–614, 627, 853–858, 864
numerical models, 616–621
prograde vs. retrograde BHs, 612–613
weak intrinsic magnetic fields, 610–611
wind, ingoing, 620–621
wind, outgoing, 621
Black holes, accretion states
hard state (with jet), 762–771
ADAF model, 764–766
fluctuation spectrum, 763, 766
photon spectrum, 763–766
ADAF steady jet radio power, 766
in SBHs, 764–766, 827
in IMBHs, 786–787, 828
in MBHs, 806
in SMBHs, 806
soft state, 771–775
SS disk “middle” region model, 773–775
fluctuation spectrum, 772–773
photon spectrum, 772–773
suppression of MHD disk jet in the soft state, 773–775
in SBHs, 771–775, 827
in IMBHs, 787–788, 828
not in MBHs or SMBHs, 789
unstable state, 775–777
SS disk “inner” region model, 775–777
“middle” region-like (soft) substate, 775–776
ADAF-like (hard) substate, 775–776
limit cycle behavior, 775–776
unsteady jet ejection, 775–777
in SBHs, 775–777, 827
in IMBHs, 788, 828
in MBHs, 790–795, 806–809, 828–829
in SMBHs, 807–809
SPL state, 777–781
“slim” disk model, 777–781
fluctuation spectrum, 777–780
photon spectrum, 777, 778
suppression of MHD disk jet in the SPL state, 779, 780
in SBHs, 777–781, 826, 827
in IMBHs, 788, 828
in MBHs, 795–798, 805–809, 829
in SMBHs, 812–813
super-soft state, 781–784
super-Eddington wind model, 781–784
in SBHs, 781–784, 826, 827
in IMBHs, 788–789, 828
in MBHs, 803–805, 807–809
predicted hard state sources in ISM, 786, 828
jet production, see Black hole astrophysics summary: jet...
Black holes, massive (MBHs), 13–16, 39–42, 52–55, 789–809, 828–829, see also Active galactic nuclei: Type 1, 2; Seyfert galaxies; LINERs; LLAGN definition, 13, 790
accretion models, 802–809, 824, see also Active galactic nuclei: models
LLAGN as the hard state, 807, 824
outliers(?) as intermediate states, 806, 824
Type 1/2 AGN as the unstable state, 806, 824
NLSy1s and BAL AGN as the SPL state, 805–806, 824
hidden and unveiled AGN as the super-Eddington wind state, 803–805, 824
binary, 432–435
formation, growth, and fueling, 801–809
in galaxy mergers (hidden and unveiled AGN), 802–806
with cluster inspiral, 807–809
with interstellar gas, 451–470
with stars, 442–451, 807
without galaxy mergers, 806–809
horizon, 790
jet production, see Black holes, supermassive (SMBHs): jet production
definition, 63, 743
accretion models, see Black hole astrophysics summary: accretion power
binary, 88–100, 397–408, 471, 761–784, 827
HMXBs, 90–92, 98–100, 402, 745, 762
LMXBs, 90–100, 402, 745, 762
microquasars, 98–100, 119, 121, 562, 761–784, 827–828
X-ray novae, 91–92, 95, 100
formation, 743–746, see also γ-ray bursts (GRB)
direct collapse of stellar core, 393, 410, 729, 743
failed core-collapse supernovae, 108, 393, 394, 397, 410, 729, 743
in binary star systems, 109–110, 399, 401–405
in LGRBs, 108–109, 399
in massive stars, 106, 108–109, 394–399, 403, 408, 409, 729, 743, 744
in Pop I/II VMSs, 396
in SGRBs, 109–110, 405
in single stars, 394–397, 409
horizon, 743
isolated, 87–88, 471, 609–621, 827
detection, 760–761
OGLE/MACHO 1999, 11, 88
jet production, see Black hole astrophysics summary: jet...
Black holes, supermassive (SMBHs), 16–37, 42–53, 55–58, 809–823, 829–830, see also Active galactic nuclei: BALs; blazars; RLQs, RQQs, WL-RGs, etc.
definition, 13, 810
accretion models, see Black holes, massive (MBHs): accretion models
binary, 432–435
formation, growth, and fueling, 423–435, see also Black holes, massive (MBHs): formation, growth, and fueling
horizon, 810
jet production, 815–823
FR I vs. FR II dichotomy, 20–22, 29, 700–725, 816, 822–823
recollimation features in radio-loud AGN, 694–700, 818–823
rotating SMBH power, 615–616, 633–634, 815–817
why are gE galaxies so radio-loud?, 817–818
Blazars, see Active galactic nuclei: blazars

Catalogs and surveys
optical sources
Hubble deep field, 48
Markarian catalog, 16
Messier catalog, 14, 64
NGC catalog, 14
SDSS, 48
radio sources
3CR survey, 20, 23, 27

Causality, EM
light cone, 181–182
singular surfaces, 611–614
causality limit surfaces, 612–614
light surfaces, 612
Causality, HD, 360–363
characteristics, 362–363
critical (sonic) surface, 362–363
Mach cone, 361–362
sonic future, 361–362
Causality, MHD, 360, 366–368, 679–685
characteristics, 366–369, 681
critical surfaces, 681
cusp surface (CS), 366, 367, 369, 681
fast magnetosonic surface (FMS),
368, 369, 681
slow magnetosonic surface (SMS),
368, 369, 681
separatrix surfaces, 681–682
Alfvén surface (AS), 368, 369,
681, 682
fast magnetosonic separatrix
surface (FMSS), 681, 682
slow magnetosonic separatrix
surface (SMSS), 681, 682
singular surfaces, 682
Causality, RaHD, 573–578
critical surface, 574, 576–578
Chandrasekhar mass/limit
definition, 161
in core-collapse SN, 63, 86, 162,
386, 389, 407
in Type Ia SN, 385, 406, 407,
731
Charge dynamics, non-relativistic
generalized Ohm’s law, 310
Charge dynamics, relativistic
conservation of beamed current,
see generalized Ohm’s law
beamed spatial current, 307–310,
852
charge-current tensor, 307, 852
charge-weighted thermodynamic
quantities, 308, 852–853
conservation of charge, 306–307,
852
current beaming factor, 308
current four-vector, 307, 851
equations of state, see Equations
of state: charge dynamic
general relativistic Boltzmann equa-
tion, 296, 847
generalized Ohm’s law, 307–312,
852
Hall effect and Hall MHD, 310
Lorentz effect and ideal MHD,
309
resistive losses and resistive
MHD, 310–311
spatial current four-vector, 307,
308, 852
Conservation laws
from the Boltzmann equation, 297–
298, 308, 846–853
generated by gauge symmetries,
see Gauge field theory: Bianchi
identities/symmetries: con-
servation laws from
Newtonian
conservation of mass, 147–149,
155, 352
conservation of energy and mo-
momentum, 149–153, 155, 352
conservation of charge, 192
conservation of current (Ohm’s
law), 310
relativistic
conservation of rest mass, 299,
850
conservation of energy-momentum,
299–306, 850, 851
conservation of rest charge, 306–
307, 851
conservation of beamed cur-
rent (Ohm’s law), 307–312,
851
Core
galaxy, 9, 57, 430, 443, 449, 478–
480
cusp, 9, 57, 121, 445, 449, 821
mass, 58, 123
radius, 9, 57, 58, 123, 417,
418, 421, 443, 445, 469
spinup, 478
molecular cloud, 456
star cluster, 121–123, 163, 416,
423–428
core collapse, 163, 415, 418–
423, 428, 431, 789
stellar
C/O, 385–386, 395, 405–408,
410
core collapse, 85, 388–397, 408, 411, 475, 480–481, 728, 826, 827
iron/pre-supernova, 85, 389, 475, 480–481, 728, 743
Doppler
boosting, see Relativistic motion/beaming effect/shift, 23, 41, 189, 190
factor, 28, 189, 190
Dynamics
charge dynamics, see Charge dynamics
electrodynamics (ED), see Electrodynamics
fluid dynamics, see Hydrodynamics and MHD
galaxy dynamics, see Globular cluster and galaxy structure & dynamics
globular cluster dynamics, see Globular cluster and galaxy structure & dynamics
hydrodynamics (HD), see Hydrodynamics and MHD
magnetohydrodynamics (MHD), see Hydrodynamics and MHD
radiation hydrodynamics (RaHD), see Hydrodynamics and MHD: RaHD
stellar dynamics, see Stellar structure & dynamics
thermodynamics, see Thermodynamics
Eddington accretion rate
definition, 439, 501
in spherical accretion, 490–492
Eddington luminosity/limit
as a lower limit on BH mass, 5–6, 116–117
definition, 5
Eddington ratio, 60, 439, 449, 450, 564, 791–792
in disk accretion, 517, 561, 670, 744, 748, 754, 775
in spherical accretion, 492
in winds, 563–582, 782, 805
in NSs, 740
in SBHs, 521, 781–784, 827
in IMBHs, 787–789, 828
in MBHs, 791–792, 803–806, 808, 829
in SMBHs, 430, 791–792, 803–806, 811, 829
Electrodynamics
Minkowskian 3+1, 191–200
conservation laws and gauge freedom, 193–194
conservation of charge, 191–192
conservation of current (Ohm’s law), 309–312
Lorentz force and Joule heating, 193
Maxwell’s field equations, potential form, 193–194
Maxwell’s field equations, vector form, 191
Minkowskian covariant
conservation laws and gauge freedom, 204
conservation of rest charge, 202
conservation of beamed current (Ohm’s law), 307–310
Lorentz force and Joule heating, 203
Maxwell’s field equations, potential form, 204
Maxwell’s field equations, tensor form, 202
Maxwell’s field equations, vector form, 205
ADM 3+1 (stationary metrics)
Lorentz force and Joule heating, 193, 341
Maxwell’s field equations, vector form, 248–250

equations of state, see Equations of state: electrodynamic

force-free/FFDE, see Hydrodynamics and MHD: FFDE

Engine, black hole, see Black hole engine

Equations of state

charge dynamic

charge-weighted internal energy and pressure, 308, 852–853

Hall coefficient, 309, 853

plasma frequency, 309, 853

resistivity/conductivity, 309, 853

electrodynamic

electric permittivity, 191, 250

magnetic permeability, 191, 250

in conservation laws, 312

radiative opacity and heat transport, see also Radiative processes (short wavelength)

bound–bound, 328, 564–565

bound–free, 326–328

electron scattering opacity, 326

free–free, 326–328

thermal conductivity, 322–323

importance of, 323

thermodynamic, internal energy/pressure

adiabatic index, 152, 153, 159, 161, 287, 315, 318, 583, 588, 705, 706, 714
degenerate electrons, 319
degenerate neutrons, 320

nonthermal gases, 320–322

perfect fluid/gas, 315

photons, 318

polytropic, 152–153, 156, 157, 161, 278, 287, 300, 315, 317, see also Polytropes

thermal gases, 314, 315, 317

thermodynamic, other

average molecular weight per electron, 161, 316

average molecular weight per gas particle, 315–316

chemical potential, 150, 313–314

Fermi temperature, 319

specific heats, 151–152, 315, 317, 322

viscosity

bulk, 301–302

importance of, 324

particle, 323–324

shear, 301–303

turbulent, 324–325, 496–498

Fluid mechanics, see Hydrodynamics and MHD

Frames of reference/coordinate systems

binary star

center-of-mass, 135–137, 140, 141, 143, 264, 471, 472

inertial, 136, 137, 143, 471

star-centered (non-inertial), 136

circumferential, 213, 222
curvilinear, 187, 212, 214, 217, 226, 251, 342, 626, 834, 837, 839
cylindrical, 176, 351, 371, 493, 505, 520, 532, 536, 658, 663, 689, 860, 861, 864

Galactic, 68

mass coordinates (“MOV”), 153–154, 282, 283, 841–842, 845

non-relativistic

Eulerian (“FIX”), 147, 154–156

Lagrangian (“MOV”), 146–154, 844–846

phase space, 295–297, 415, 847, 848
polar, 168–170, 172, 175, 176, 216, 834
relativistic
drifting/shifting, 233, 234, 242–243, 245, 247, 251, 841
harmonic, 272
horizon-penetrating (HP), 234, 242–243, 245, 339, 639
locally-Lorentz fixed/FIDO/ZAMO (FIX), 224, 225, 237, 238, 305
moving-body (MOV), 224, 225, 238, 305
observer-at-infinity/synchronous (OIS), 237–239, 305
Free fall
collapse parameter, 138, 282, 283, 285
free-fall time, 456, 570, 650, 653, 748
free-fall/escape speed, 229, 277, 392, 422, 538, 543, 558, 649, 650, 673, 677, 814
in Newtonian gravity, see Gravity: Newton’s law/theory of:
free fall
in stationary Schwarzschild metric, see Geometry/metrics:
Schwarzschild: free fall
in evolving Schwarzschild metric, 281–286
in Kerr metric, see Geometry/metrics:
Kerr: free fall
Galaxies
AGN hosts, see Active galactic nuclei: host galaxies
irregulars, 15, 85, 109, 114, 811
radio, see Active galactic nuclei: radio galaxies
Seyfert, see Active galactic nuclei: Seyfert galaxies
Galaxy components
H I clumps, 412–413, 454–455, 460–466, 470, 808
stars, 415–423, 442–451
γ-ray bursts (GRBs), 100–114
beaming break, 103, 105
long-duration γ-ray bursts (LGRBs), 102–109
mechanisms
collapsar, 106, 108–109
neutron star merger, 109–110, 404–405
relativistic fireball, 102–104
short-duration γ-ray bursts (SGRBs), 102, 109–110
stages, 105–107
supernova connection, 107–108

Gauge field theory
Bianchi identities/symmetries
algebraic symmetries, 214–215
conservation laws from, 191–192, 202, 205, 218, 261
differential symmetries, 202, 205, 210, 215–219, 261
need for gauge constraints, 191–192, 202, 218
constrained transport, 192, 202
gauge conditions, 191, 194–196, 199, 205, 206, 255, 257, 271, 272
gauge freedom, 193–200, 204, 207, 220
gauge invariance, 194, 202
gauge transformation, 194, 195, 220
general description
conservation laws, 192, 203–206, 218, 298
equations of state, 312
field equations, 191, 192, 203–206, 217, 220, 221
gauge constraints, 191, 192, 203–206, 220
transverse (Lorenz) gauges, 194–196, 199, 205, 206, 256, 257

Geometry/metrics, general
2-forms, 173, 201, 203, 204, 249, 305, 835, 838
2-tensors, 173, 210, 217–219, 838
4-tensors, 165, 212–218, 835
basis 1-forms, 171
basis vectors, 171
contravariant tensors, 173, 201, 219, 254–256, 834, 835
coordinate transformations
boosts, 185, 201, 238
coordinate change, 168, 170–171, 174–175, 225, 233, 242
general, 171–173, 184–185, 201
global absolute, 167, 174, 175
global differential, 168, 170–171, 174, 175, 233, 242
local differential, 174–175, 185, 201, 225, 238, 259
rotation, 167, 168, 259
translation, 167, 168
covariant tensors, 173, 256, 834, 835
curvature, 209–221, 247, 621, 837, 840, 842
tensors and 2-forms, 172–173, 187–188, 200–204
vectors, 171

Geometry/metrics, non-stationary
perturbed Minkowskian, 219, 254–268
metric/line element, 254
evolving Schwarzschild, 277–289, 840–846
gravitational collapse, 277–289
metric/line element, 841
ADM 3+1 spacetime split, 247–250, 268–277
drift vector, 247, 251
lapse function, 247, 251
line element, 247
metric, 247
shift vector, 247
three-metric, 247–249

Geometry/metrics, stationary
Pythagorean, 166–175, see also
Vector and tensor physics:
two-vectors
coordinate transformations, 167–175
coordinates, Cartesian, 167–170, 172, 174, 175
coordinates, polar, 168–170, 172, 175
distance, 166–168, 172
metric/line element in Cartesian coordinates, 166, 169
metric/line element in polar coordinates, 169, 170
plane geometry, 166–167
tensors and 2-forms, 172–173
vectors and 1-forms, 170–172
Euclidean, 175–176, see also Vector and tensor physics: three-vectors
coordinate transformations, 176
coordinates, Cartesian, 175
coordinates, cylindrical, 176
coordinates, spherical-polar, 176
distance, 175
metric/line element in Cartesian coordinates, 175
metric/line element in cylindrical coordinates, 176
metric/line element in spherical-polar coordinates, 176
tensors and 2-forms, 176
vectors and 1-forms, 176
Minkowskian, 176–183, see also Vector and tensor physics: four-vectors
coordinates, Cartesian, 187
events, 178, 182–183
FitzGerald contraction, 179–180
gedesics, 182–183
light cone, 181–184
Lorentz transformations (general), 184–185
metric/line element, 178, 183–184
null surface, 178, 181, 182
proper distance, 178–183
proper time, 182–183
rest mass, 185, 188
tensors and 2-forms, 187–188, 200–204
time dilation, 179–180
vectors and 1-forms, 183–187, 201, 203–206, 225
Schwarzschild, 221–234
coordinates, horizon-penetrating (HP), 234
coordinates, locally-Lorentz fixed (FIX), 224, 225
coordinates, locally-Lorentz moving (MOV), 224, 225
coordinates, mass, 282, 283, 841–842, 845
coordinates, Schwarzschild–Hilbert (SH), 222, 224–226, 228, 229, 231, 232, 235, 271, 280, 283, 626, 845
free fall, 229
laws of motion, 226–228
metric/line element in ingoing HP coordinates, 233
metric/line element in SH coordinates, 222
orbits, ISCO, 231
orbits, marginally bound, 232
orbits, particle, 230–232
orbits, photon, 229–230
Schwarzschild radius, 222–224
time warp, 227–228
Kerr, 234–243
dimensionless angular momentum parameter j, 235
angular velocity of space, 235, 237
coordinates, Boyer–Lindquist (BL), 209, 234, 242, 246, 248, 250, 305, 338, 339, 618, 639, 672, 693, 855, 858
coordinates, horizon-penetrating (HP), 242–243, 339, 639
coordinates, locally-Lorentz fixed/ FIDO/ZAMO (FIX), 237, 238, 305
coordinates, observer-at-infinity/ synchronous (OIS), 237, 239, 305
equatorial ergosphere radius, 236, 242, 243
equatorial ISCO radius, 241–243
free fall, 240
gravitational radius, 235
horizon radius, 236, 242, 243
in 3+1 notation, 248, 250–251
laws of motion, 239
metric/line element in BL coordinates, 234
metric/line element in ingoing HP coordinates, 243
negative-energy trajectories, 239
orbits, equatorial marginally bound, 241–243
orbits, equatorial particle, 240–241
orbits, equatorial photon, 241–243
Penrose process, 240
retrograde/prograde BH spin, 235, 241–243
Kerr–Newman, 243–245
dimensionless charge parameter q, 244
coordinates, Boyer–Lindquist (BL), 244, 245
coordinates, horizon-penetrating (HP), 245
metric/line element in BL coordinates, 244
metric/line element in ingoing HP coordinates, 245
ADM 3+1 spacetime split
electrodynamics, 248–250
orthonormal vectors in three-space, 250–251
Globular cluster structure & dynamics, see Star cluster and spheroidal galaxy structure & dynamics

Gravity
circular orbits, 139–142
free fall, 137–139
general potential theory, 144–146
gravitational collapse, 138, 162
Green’s function solution, 145
Poisson’s equation, 145–146, 155, 211
Roche’s equation, 471, 643, 644
pseudo-Newtonian, 510, 862
Einstein’s theory of, see also Geometry/metrics
connection to Newton’s theory, 209–212, 219–220
Einstein tensor, 217–221
field equations, 210–212, 217–221, 254–256, 270, 272, 276, 278, 335, 404, 841–845, 851
Schwarzschild, see Geometry/metrics, stationary: Schwarzschild
evolving Schwarzschild, see Geometry/metrics, non-stationary: evolving Schwarzschild
Kerr, see Geometry/metrics, stationary: Kerr
Kerr–Newman, see Geometry/metrics, stationary: Kerr–Newman
ADM 3+1 spacetime split, see Geometry/metrics, non-stationary: ADM 3+1 spacetime split

Green’s functions, 145, 197, 260

Horizon
event
Schwarzschild, 223–224, 229–233
Kerr, 236, 699, 756
Kerr–Newman, 245
general, 270–289, 405
magnetosonic (FMSS), 539, 679–692, 694, 696–700, 724, 758–760, 821
Hydrodynamics and MHD
Electrodynamics, 305–306
Eulerian frame, 154–156
FFDE, 340–346
alternate form, 346–347
cross-field equation, 345, 858
current equation, 342, 858
drift current, 342
force-free condition, 341, 346, 599
GSS equation, 344–346
pulsar equation, 346
standard form, 341–342
stationary and axisymmetric, 344–346, 853–858
general
conserved variables, 337–340, 349
evolution equations, conservative form, 155, 337, 339, 348
gas particle heat flux and viscosity, 300–303
gas pressure and internal energy, 300, 303, 314, 317
primitive variables, 297, 337, 340
pseudo-forces, centrifugal, 187, 211, 227, 230, 240, 339, 471, 557, 837
pseudo-forces, Coriolis, 187, 211, 339, 372, 837
pseudo-forces, frame dragging, 339
pseudo-forces, gravity, 209, 211, 212, 220, 227
stress-energy-momentum tensor, 303
GRHD, 335, 347–348
GRMHD, 846–853
Hall MHD, 310
ideal MHD, 311–312
metric shear, 338, 339, 654
multi-fluid, 293, 847–850
one-fluid, 293, 850–853
resistive MHD, 310–311
Lagrangian frame, 146–154, 844–846
NRHD, 143–163
accretion disk structure, 355, 493
Couette flow, 370–372
stellar structure & dynamics, 153, 156, 355
vortex flow, 372
NRMHD, 335, 351–355
accretion flow structure, 536
MRI analysis, 372
RaHD, 303–305, 569–570, 574–578
general radiation stress-energy-momentum tensor, 305
radiation heat flux and viscosity, 304–305
radiation pressure and internal energy, 303, 304, 318
SRMHD, general, 348–349
SRMHD, stationary and axisymmetric, 349–351, 858–864
cross-field equation, 351, 864
field-parallel equation, 349–351, 859–864
frozen-in condition, 350, 859–862
mass-loading parameter k, 350, 864
relation to stationary and axisymmetric FFDE, 349, 859, 861
Inactive galactic nuclei, see Active galactic nuclei: “inactive” galactic nuclei
Initial mass function (IMF), 99, 411, 745
Instabilities
accretion disk
secular/Lightman–Eardley/viscous, 506–509, 514, 526
thermal, of SLE hot disk model, 506, 514–515, 526
thermal, of SS “inner” region, 507–509

HD
Kelvin–Helmholtz (KH), 705–708, 717, 721, 723
Rayleigh criterion, 371–372, 376
rotational shearing, 370–372
in black hole feeding
cluster inspiral instability, 808–809
in supernovae
pair instability, 409–411, 785
photodisintegration instability, 411
standing accretion shock instability (SASI), 391
MHD, helical-kink/current-driven (CD), 717–721, 723, 725, 823
MHD, magneto-rotational shearing/MRI, 372–377
strong-field, 375–377
suppression, 375–377, 535
weak-field, 373–375
MHD, Parker, 497, 542
Irreducible mass, 235–237, 476
accretion of, see Accretion of matter, ...

Jet propagation, HD jets and FR II sources, 701–711, 823
one-D, supersonic jets, 702–704
contact discontinuity, 703
forward shock, 703
reverse shock, 703
two-D, supersonic jets, 704–706
ambient medium, 704, 705
bow shock, 704, 705
cocoon, 704, 705
relativistic vs. non-relativistic, 705–706
working surface/Mach disk, 704, 705
three-D, supersonic jets, 705–709
KH instability, 706–708
relativistic vs. non-relativistic, 708–709
birth of the jet concept, 701–702
models for FR II jet formation, 725, 823
magnetic field dissipation, 725, 823
recollimation shock, 724–725, 821–823, 830
Jet propagation, MHD jets and FR I sources, 711–723, 818–823
one-D simulations, super-slow-magnetosonic jets, 712–713
contact discontinuity, 712, 713
forward fast-mode (bow) shock, 712, 713
forward slow-mode shock, 712, 713
reverse slow-mode shock, 712, 713
two-D simulations, super-fast-magnetosonic jets, 713–717
magnetic chamber, 715, 716
nose cone, 714–716
relativistic vs. non-relativistic, 716–717
reverse fast-mode shock, 715, 716
three-D simulations, super-slow-magnetosonic jets, 717–722
CD instability/helical kink, 717–721
KH instability, 721–722
relativistic vs. non-relativistic, 721
models for FR I jet formation, 708–711, 724–725, 822–823
HD (disrupted FR II flows), 708–711, 822–823
MHD (failed FR II formation), 724–725, 818–823

Jets
acceleration and collimation, see Wind and jet acceleration theory
current-carrying, see Jet propagation, MHD jets
kinetic-flux-dominated (KFD), see Jet propagation, HD jets
launching, see Wind and jet launching...
Poynting-flux-dominated (PFD), see Jet propagation, MHD jets
propagation, see Jet propagation...

King star cluster model, see Star cluster and spheroidal galaxy structure & dynamics: King model core, see also Core: galaxy

Lane–Emden equation, 157–163

Lensing, gravitational
MACHO project, 11, 87
microlensing, 10–11, 87, 760
OGLE project, 11, 87
Lorenz (transverse) gauge/condition, 194–196, 199, 205, 206, 255, 257

Macroquasars, see Active galactic nuclei...
Magnetars, 70–71, see also Neutron stars (NSs): isolated: AXPs or SGRs
Magnetospheres
black hole, see Black holes: magnetospheres...
general
current sheet, 309, 342, 595, 600, 615, 617, 618, 627, 629
field angular velocity, 593, 611, 614, 619, 620, 648, 662, 666, 674, 694, 860–861, 864
magnetosphere condition, 342–344, 621
pulsar, see Pulsars: magnetospheres...
stationary electrodynamics, see Hydrodynamics and MHD: FFDE: stationary and axisymmetric

Mass function
binary, see Binary stars: mass function
stellar initial, see Initial mass function

Microquasars, 13, 61–114, 762
black hole, see Black holes, stellar-mass (SBHs): binary: microquasars
classical, 92–98
formation, 403
galactic orbits, 760
neutron star, see Neutron stars (NSs): binary: microquasars
Miniquasars, 115–129, see also Black holes, intermediate mass

Neutron stars (NSs), 65–87, 727–743, 826
binary, 72–84, 397–408, 566, 735–743, 826, see also Binary stars: X-ray (XRBs)
atoll sources, 73–75, 79, 738–743, 826
HMXBs, 74–76, 402, 735
LMXBs, 74–76, 402, 735–739
microquasars, 73–75, 81, 737–743, 826
recycled (millisecond) binary pulsars, 83, 403
X-ray novae, 77–78, 100
X-ray pulsars, 75, 78, 603–609, 736–737
Z sources, 73–75, 79, 736–743, 824, 826
formation, 84–87, 727–731, see also Supernovae
in binary star systems, 399, 401–405, 731
in core-collapse supernovae, 386–394
in intermediate-mass stars, 386–388
in massive stars, 84–87, 388–394, 398, 403, 409, 729, 744, 826
in Pop III stars, 409, 410
in single stars, 386–394, 396, 409
neutron star window, 396–397, 744
Galactic population, 68, 72, 99, 100, see also Sources in the Milky Way: neutron stars
isolated, 65–72, 731–735, 826, see also Pulsars: radio
AXPs, 67, 70
detection, 732, 734
radio pulsars, see Pulsars: radio
RRATs, 67, 71–72
SGRs, 67, 70, 734
XDINs, 71–72
jets in binary systems
MHD disk wind-driven jets, 739–742
pulsar propeller-driven jets, 735, 739–742, 826
radio power at low accretion rate, 742–743
suppression of MHD disk jets, 739–742
jets in isolated systems, see Pulsars: radio
magnetospheres, see Pulsars: magnetospheres...
Nobel Prize, 273
1935, discovery of the neutron, 68
1970, magnetohydrodynamics and plasma physics, 364
1974, radio astronomy imaging techniques and discovery of pulsars, 17, 64
1983, theoretical work on stars and nucleosynthesis, 63
1993, discovery of the binary pulsar and applications to gravitation, 84
2002, discovery of cosmic neutrinos and X-ray sources, 64

Orbits
in Newtonian gravity
binary, see Binary stars: orbits
circular, see Gravity: Newton’s law/theory of: circular orbits
in Schwarzschild metric, see Geometry/metrics: Schwarzschild: orbits
in Kerr metric, see Geometry/metrics: Kerr: orbits

Particle distribution functions
gases, nonthermal, 320–322
gases, thermal, 313–320
general, 313–315
Fermi–Dirac, general, 318–320
Fermi–Dirac, non-relativistic, 319
Fermi–Dirac, relativistic, 319
Maxwellian, general, 316–317
Maxwellian, non-relativistic, 314–316
Maxwellian, relativistic, 317
Planckian, 317–318
Poisson’s equation, 145–146, 155, 211

Polytropes
analytic solution ($n = 1$), 159–160, 287
general, 152–153, 157–159
isentropic perfect gas ($n = 3/2$), 152, 159–161, 287, 315
relativistic gas ($n = 3$), 152, 159–162, 287, 304
singular isothermal sphere (SIS; \(n = \infty \)), 54, 159, 162–163, 413, 415–418, 430, 443–444, 449, 459, 464–466, 468, 469

Pulsars
magnetospheres, accreting, 603–609
accretion regime, 605–607
co-rotation radius, 605, 608
magnetic radius, 604, 608, 741
propeller spindown time, 609
propeller/wind turbine regime, 605, 607–609, 735, 739–742, 826
unstable magnetic field at high \(\dot{m} \), 606–607
magnetospheres, isolated, 592–603
aligned rotator FFDE models, 596–598
curvature radiation, 602
force-free model, 594–603
Goldreich–Julian charge density, 594
light cylinder radius \(R_L \), 346, 593, 596, 674, 696, 732
oblique rotator FFDE simulations, 598–600
particle creation, 601–602
pulsar emission mechanism, 600–603
pulsar equation and singular surface, 346, 597
pulsar spindown time, 66
vacuum breakdown and spark gaps, 601–603
wind, outgoing, 595–596
radio, 65–70
binary, 84
dead, 68, 72, 603, 731–732, 734, 742, 826
interstellar dispersion, 66
proper motion/kicks, 68–70, 394, 730, 733
PWN, 69, 732

rotating magnetic dipole radiation, 66–67, 592–594, 601, 734
X-ray, see Neutron stars (NSs):
 binary: X-ray pulsars
X-ray, anomalous, see Neutron stars (NSs): isolated: AXPs

Quasars
compact, see Active galactic nuclei: quasars: FSRQs
extended, see Active galactic nuclei: quasars: RLQs
hidden, see Active galactic nuclei: Type 2, 3
QSOs, see Active galactic nuclei: quasars: RQQs/QSOs
QSRs, see Active galactic nuclei: quasars: RLQs/QSRs

Radiation hydrodynamics (RaHD), see Hydrodynamics and MHD: RaHD
Radiative processes (long wavelength), see Waves and radiation (long wavelength)
Radiative processes (short wavelength)
 bound–bound
 bound–bound absorption, 328, 564–565, 794
 force multiplier, 564–566, 574, 575, 744
 iron K\(\alpha \), 39–41
 line emission, 14, 16, 22, 23, 43, 44, 52, 82
 P Cygni lines, 49
bound–free
 bound–free absorption, 326–328, 331, 499, 504, 521
 recombination emission, 327
electron scattering
 Compton cooling, 33, 326, 332–334, 513, 671, 755
 Compton heating, 79, 326, 566–567
Compton parameter y, 333, 334, 513, 795
Compton reflection, 39–41, 588, 817
Compton thick media, 334, 789, 792, 804
Compton thin media, 334, 514
Klein–Nishina cross-section, 326
opacity, 5, 326, 501, 564
Thomson cross-section, 326, 865
free–free
Bremsstrahlung emission, 329–330, 332, 333, 504, 765
free–free absorption, 326–328, 331, 499, 504, 521
synchrotron
nonthermal, 19, 588
thermal, 330–332, 521, 559, 755
Reducible mass, 235–237, 476, 639
accretion of, see Accretion of angular momentum
Relativistic motion/beaming, 11, 26–36, 47, 105, 112–114, 119, 188–190, 227, 308
Relativity
general, 207–251
numerical, 268–277
3+1 ADM method, 271–272
BSSN modifications, 272, 273
gauge conditions (slicing), 271, 272
harmonic coordinates, 272
history, 271–273
initial data, 272, 275
singularity excision/punctures, 271, 273
special, 163–207
Sources in active galactic nuclei
1823+568, 29, 31
1H 0707-495, 817
3C 9, 23
3C 47, 21, 24, 29
3C 48, 23
3C 120, 94, 510, 511, 562, 791, 794, 799, 817
3C 273, 23, 25–27, 31, 33, 794
3C 279, 33
3C 345, 25
3C 371, 22
3C 390.3, 21, 22, 817
Andromeda (M31), 121, 787
BL Lac, 30, 37, 821–822
Centaurus A (NGC 5128), 17, 25, 787, 810
Cygnus A, 17–19, 21, 25, 701, 704, 705
Hercules A, 17
M51, 478
M81, 52, 588
M84 (3C 272.1, NGC 4374), 21, 52
M87/Virgo A, 4, 9, 14, 15, 17, 19–21, 30, 53, 57, 445, 751, 810, 818–823
M104, 52
MCG 6-30-15, 41, 817
Milky Way (Galaxy/Sgr A*), see Sources in the Milky Way:
black holes: Sgr A*
Mkn 421, 33
Mkn 501, 33
NGC 1068, 14, 16, 38, 39
NGC 2787, 809
NGC 4051, 799–801
NGC 4151, 14, 16
NGC 4258, 52, 478
NGC 4261, 39, 40, 478
NGC 4472, 120, 783
NGC 5728, 39, 40
NGC 6251, 17, 18, 20, 31
Q1413+113, 50
Sources in globular clusters and dwarf ellipticals
G1 (Mayall II), 121–123
M15, 122, 123
Omega Centauri (NGC 5139), 122, 123
Subject Index

RZ 2109 in NGC 4472, 120, 783
Sources in other galaxies
M82 ULX-1, 117, 118
N1 in M81, 781
P098 in M101, 569, 781–784, 789, 794, 826
Sources in the Milky Way, 63–115, 121–128, 268, 746, 760, 786, 828
black holes
1E 1740.7-2942, 91–93
A0620-00, 92
Cygnus X-1 (HDE 226868), 64, 88, 89, 91, 92, 99, 394, 399, 475, 512, 515, 521, 530, 747, 769, 781, 782, 794
GRO J1655-40, 94–95, 670, 751, 756, 763, 764, 768, 770
GRS 1915+105, 92–95, 97, 121, 394, 510–512, 553, 560, 562, 756, 762–764, 768–770, 776, 777, 787, 788, 801, 829
GS 1124-684, 92
GS 2000+251, 92
GX 339-4, 91, 95, 553, 740, 756, 764
IRS 13E, 125–129
J0422+32, 92
LMC X-1, 91
LMC X-3, 91
Sgr A*, 4, 8, 52–55, 530, 588, 695, 790, 825
XTE J1550-564, 95, 756, 764, 801
XTE J1859+226, 95
neutron stars
Aquila X-1, 77, 740
Centaurus X-3, 73, 76, 88, 399
Circinus X-1, 77, 566, 567
Crab Pulsar, 65–70, 73, 84, 108, 594, 730, 733
Geminga, 72, 731
Hercules X-1, 73, 75, 736
LSI +61 303, 77
millisecond pulsar, 83
rapid burster, 77, 111
Scorpius X-1, 64, 65, 73, 75
Vela Pulsar, 69, 730, 733
other, see also Supernovae: remnants
IRS 16, 124–126
SS433, 81–83, 99, 400, 671, 755, 781, 798, 826, 827
Spheroidal galaxy structure & dynamics, see Star cluster and spheroidal galaxy structure & dynamics
Star cluster and spheroidal galaxy structure & dynamics, see also
Core: galaxy
analytic, singular isothermal sphere/
$n = \infty$ polytrope model,
core density, 417, 443, 444, 449
core galaxy, 57, 58, 417–418, 443, 444, 449, 450
core mass, 58, 417, 444
cusp/power-law galaxy, 57, 416–417, 444, 445, 450
mass deficit, 418, 444
core collapse, equal-mass stars, 418–420
core collapse, mass-segregated, 420–421
Fokker–Planck formalism, 415, 418
King model, 416–419, 444
core (King) radius, 417, 418, 421, 443, 445, 469
tidal radius, 162, 417
loss cone
depletion, 434, 448
refilling, 434, 448
spheroidal cluster as a single star
binary burning, 419–420
binary hardening, 421, 427, 432–434
ensemble of stars as a gas, 415–423
gravo-thermal catastrophe, 418–420
heat conduction, 419–420
isothermal velocity distribution, 417
temperature/velocity dispersion, 415
Stars
binary, see Binary stars
black holes, see Black holes...
evolution, see Stellar evolution...
ieteriors, see Stellar structure &
dynamics
lifetimes, 384
luminosities, 384
mass classes
brown dwarfs, 87, 383, 790
low-mass, 75, 77, 383–384, 396
solar-type, 24, 384–385, 396,
402, 403, 406, 447–450, 729,
807, 810
moderate-mass, 385–386, 396,
406
intermediate-mass, 386–390, 403,
406, 408
massive, 68, 76, 84–87, 106–
109, 388–398, 403, 406, 408,
409, 420, 422–423, 434, 474,
481, 729, 743, 744, 803, 826,
828
very massive (VMSs), 118, 409–
414, 422–423, 784
supermassive, 6, 411, 414, 785,
789
neutron, see Neutron stars (NSs)
Population I, 118, 412, 414–423,
784–785, 828
Population II, 118, 412, 414–423,
784–786, 803, 828
Population III, 116, 408–414, 423,
425–428, 785–786
red giants, 112, 114, 384, 386,
395, 398, 400, 419, 420, 447,
449, 451, 729, 790, 807
red supergiants, 54, 85, 386, 395,
397, 398, 400, 403, 447, 449–
451, 729, 783, 790, 810, 812,
828
structure, see Stellar structure &
dynamics
variable, 30
white dwarfs
C/O, 385–386, 407, 408, 731
doubly-degenerate binaries, 407–
408
ONeMg, 407, 408, 731
Stellar evolution, binary stars
γ-ray bursts mechanisms
neutron star merger, 109–110,
404–405
close binaries, 397–408
cataclysmic variable stars, 402,
405–407, 731
common envelope stage/phase,
399–403, 408
formation of HMXBs, 398–
402
formation of LMXBs, 401, 403
mass transfer Cases A–D, 398,
403–404
merger rates of compact ob-
ject binaries, 402, 403
spinup of millisecond pulsars,
83, 403, 477
super-Eddington wind phase(Cyg
X-1 on steroids), 399, 403,
783
supernova explosion mechanisms
carbon deflagration/detonation,
405–407, 731
Stellar evolution, single stars, 381–
394
γ-ray bursts mechanisms
collapsar, 106, 108–109
core-collapse supernova stage, 386–
388
Subject Index

- dissociation of iron, 387
- electron capture, 387
- neutrino emission and neutrinosphere, 387–388
- PNS (proto-neutron star) phase, 387

formation, 462–464
- initial mass function, 411–414
- initial metallicity, 396, 409, 410, 412, 414
- Jeans mass, 412–414
- Pop I stars, 411–413
- Pop III stars, 411–414

main sequence stages, 383–386
- hydrogen-burning, proton–proton chain, 384
- hydrogen-burning, CNO cycle, 384, 386, 389
- helium-burning, 384, 389, 395
- lifetimes, 384
- luminosities, 384

red giant stages, 384
- He core, 384, 389
- hydrogen shell burning, 384, 386, 389
- C/O core, 385, 389
- helium shell burning, 385–386, 389
- carbon-burning, degenerate, 385
- planetary nebula formation, 385
- carbon shell burning, 386

red supergiant stages, 386, 389
- carbon-burning, non-degenerate, 386, 389
- ONeMg core, 386, 389
- carbon shell burning, 389
- neon-burning, 389
- OMgSi core, 389
- neon shell burning, 389
- oxygen-burning, 389
- SiS core, 389
- oxygen shell burning, 389
- silicon-burning, 389
- FeNi core, 389
- silicon shell burning, 389

stellar wind mass loss, 395–396
- Wolf–Rayet phase, 395–396

supernova explosion mechanisms
- core-collapse, magnetic/MHD bipolar outflow, 391–393
- core-collapse, neutrino heating, 388
- pair production, 414

synthesis of heavy elements/metals, 381–394

Stellar structure & dynamics
- non-relativistic stars, see also Hydrodynamics and MHD: NRHD:
 stellar structure & dynamics
- Chandrasekhar mass limit, 63, 86, 161, 162, 385, 386, 389, 406, 407, 731
- collapse parameter, 138
- free-fall time, 138, 570
- Lane–Emden equation, 157–163
- mass coordinates, 153–154
- polytropes, 156–163

relativistic stars
- black hole/horizon formation, 277–289
- collapse of relativistic pressureless dust cloud, 281–286
- collapse of relativistic star with pressure, 286, 288
- collapse parameter, 282, 283, 285
- free-fall time, 282
- mass coordinates, 282, 283, 841–842, 845
- static structure, 286–288
- thermodynamic equation of state, 286–287

Supernovae
- core-collapse, 84–87, 99, 107, 386–388, 727–731, 743
- explosion types
Type Ia, 84, 99, 391, 402, 405–408, 731
Type Ib, 84–86, 107, 112, 390, 396, 405, 406, 408
Type Ic, 84–86, 107, 112, 390, 395, 396, 405, 406, 408
Type Ic-BL (“Id”, “hypernovae”), 86, 87, 107, 111
Type II, 85–86, 390, 395, 396, 406
Type “Ia”, 85
Type IIb, 85, 86, 395
mechanisms, binary stars, see Stellar evolution, binary stars: supernova explosion mechanisms
mechanisms, single stars, see Stellar evolution, single stars: supernova explosion mechanisms
observed explosions
Crab supernova, 85, 388
rates, 87, 113
core-collapse, 72, 99, 108, 397, 744
Type Ia, 407–408
remnants
Crab Nebula (M1), 64, 68, 69
Vela Nebula, 69
W50, 81, 82

Telescopes and techniques
ground
Einstein (gravitational wave) Telescope, 267
JCMT, 45
LIGO, 109, 110, 255, 267, 268, 273, 402, 405
MERLIN, 26, 29
Ryle 5-km telescope, 18
SCUBA, 45
VLA, 19, 29, 31, 47, 82, 93, 679, 760, 818
VLBA, 15, 819–821
VLBI, 17, 18, 25–27, 29, 30, 53, 630, 679, 705, 815, 818, 819
space
Aerobee sounding rocket, 63
ASCA, 41, 118, 119
Beppo-Sax, 101
CGRO, 89, 94, 101, 102
Chandra, 42, 69, 118, 120, 127
Einstein X-ray observatory, 42, 91, 117
Fermi/GLAST, 33, 89
GRANAT, 92
HST, 9, 15, 19, 26, 39, 40, 44, 48, 55, 122, 478
INTEGRAL, 127
IRAS, 44
JWST, 111, 435, 824
LISA, 255, 267, 268, 273, 402, 435
NuSTAR, 46, 127, 731, 760, 786, 803, 804, 826
ROSAT, 72, 109, 118
RXTE, 93, 94
SIM, 435
Spitzer Space Telescope, 43–46, 803
Swift γ-ray burst mission, 109, 110
Uhuru (SAS-1), 73, 88, 92
Vela nuclear monitoring satellites, 65
XMM, 120

Thermodynamics
adiabatic index, see Equations of state: thermodynamic, internal energy/pressure: adiabatic index
equations of state, see Equations of state: thermodynamic
first law (conservation of energy), 150–152, 845
specific heat coefficients, see Equations of state: thermodynamic, other: specific heats
Time warps, 227–228

Vector and tensor physics, see also Geometry/metrics ...

notation

two-dimensional and three-dimensional, 833–834
four-dimensional, 834–835
two-vectors
inner/scalar/dot product, 169, 171–172

three-vectors
inner/scalar/dot product, 155, 176
outer/dyadic product, 155, 337
unit, 135, 139, 141, 366
velocity, 134, 833
force, 133–135, 143–146, 149, 156, 192–193, 296
current density, 191–193, 249, 338, 858
electric field, 191–193, 249, 337, 857
electric displacement, 191–193, 249, 338, 857
magnetic induction, 191–193, 249, 337, 856
magnetic field, 191–193, 249, 338, 857
magnetic vector/three-potential, 193–200, 856

four-vectors
outer/dyadic product, 255
unit, 187, 838
momentum, 185–187, 202, 226, 294, 296–297, 834, 847–849
force, 187, 202–203, 221, 226–228, 294, 296, 849
current density, 202, 204–205, 210, 249, 307, 309, 834, 851
electromagnetic field, 204–205, 210
magnetic potential, 203–206, 254–256, 834, 835
spatial current density, 307–310, 852
beamed spatial current density, 307–310, 852
tensors
identity, 156, 169, 198, 203, 347, 834
projection, 301, 310, 850
shear, 302, 353, 495
stress-energy-momentum, 188, 203, 217, 221, 256, 261, 299–301, 303, 305, 835, 850
charge-current, 307, 852
Faraday 2-form/tensor, 201, 203, 249, 305, 835
Maxwell 2-form/tensor, 201, 204, 835
metric, 169–170, 175, 222, 234, 244, 247, 254, 841
Riemann 4-tensor, 212–218, 835
Riemann symmetries/Bianchi identities, 202, 205, 210, 215–219
Ricci 2-tensor, 217–219
Ricci scalar, 217, 218
Einstein 2-tensor, 217–221
inner/scalar/double-dot product, 203, 218, 256, 260
vector and tensor derivatives
simple gradient, 251, 838
Christoffel symbols/connection coefficients, 214, 219, 226, 254, 837
covariant gradient, 837–838
curl, 251
divergence, 251, 838–839
metric has no gradient or divergence, 839–840

Waves and radiation (long wavelength)
dipole, electric, 197–200

dipole, magnetic, 66–67

equations, Maxwell’s in covariant form, 202, 205

equations, Maxwell’s in stationary 3+1 metrics, 191, 193, 249

equations, wave, 194, 205

gauge, Lorenz transverse, 194, 205

in a vacuum, 194–197, 205–206

in media, 191, 250

polarization, 196, 206

Poynting energy flux/power, 199–200

velocity of, 195, 206

wave generation, 197–200

general

dispersion relations, 357–358

Friedrich’s polar diagrams, group, 359, 360, 364, 366

Friedrich’s polar diagrams, phase, 359, 360, 364, 365

velocity, group, 357, 358

velocity, phase, 357, 358

wave number, 356, 357

gravitational, 254–277, see also

Binary stars: gravitational waves

equations, Einstein’s in covariant form, 220

equations, wave, 256

gauge is the coordinate system, 257–258

gauge, transverse traceless (Lorenz), 257

in a vacuum, 256–260

polarization, 258–260

Poynting energy flux/power, 260–263

quadrupole, 260–263

stress-energy-momentum of, 256

wave generation, close binaries, 263–268

wave generation, general, 260–277

wave generation, star mergers, 268–277

HD/sound, non-relativistic

characteristics and sonic causality, 362–363

epicyclic modes, 371

in subsonic (elliptic) flow, 361–362

in supersonic (hyperbolic) flow, 361–363

Mach cone, 361–362

velocity of, adiabatic, 359

velocity of, isothermal, 361

HD/sound, relativistic

velocity of, adiabatic, 369, 693

MHD, non-relativistic

Alfvén mode, 363–364

magneto-acoustic modes (fast/slow), 364–366

velocity, Alfvén, 364

velocity, cusp, 366

velocity, fast magneto-acoustic, 365

velocity, magnetosound, 365

velocity, slow magneto-acoustic, 365

MHD, relativistic

velocity, Alfvén, 368, 692

velocity, cusp, 369

velocity, fast magneto-acoustic, 368, 370

velocity, magnetosound, 369, 693

velocity, slow magneto-acoustic, 368, 370

Waves and radiation (short wavelength), see Radiative processes (short wavelength)

Wind and jet acceleration theory, 655–700

general prescription

critical surfaces, 680–682
energy equations, 486, 536, 570, 574, 659, 674
momentum equations, 486, 536, 570, 661
separatrix surfaces, 680–682
singular surfaces, 680–682
stagnation surface, 609, 621, 630, 636, 637, 680, 698, 699
resulting wind/accretion equations, 486, 490, 537, 565, 574, 661, 673, 685
wind, ingoing, 609, 620–621, 630, 634–637, 680, 698, 699
wind, outgoing, 595–596, 609, 621, 630, 634–637, 680, 699
magnetically-driven, cold, non-relativistic (BP) bipolar winds/jets, 656–672
r-self-similar models, 663–664
Alfvén radius, 662
black hole spin-dependence, 671–672
Bernoulli energy equation, 659, 660
Mach number, Alfvén M_{NR}, 660, 663
Mach number, magnetosonic t_{NR}, 661
BP momentum (cross-field) equation, 661
singular points/surfaces, 661–663
terminal velocity, 666
BP MHD wind equation, 659–661
solutions, 663–665
simulations, 664–665
wind loss rates (energy, mass, angular momentum), 665–672
magnetically-driven, cold, relativistic (LCB) bipolar winds/jets, 672–678
r-self-similar models, 675–676
Mach number, relativistic Alfvén M_{R}, 673
Mach number, relativistic magnetosonic t_{R}, 674
magnetization parameter σ_{M}, 675, 694, 696, 697
models with large initial toroidal field, 677–678
relativistic Alfvén radius x_{Alf}, 674, 675, 694, 696
singular points/surfaces, 674–675
terminal Lorentz factor, 676
LCB MHD wind equation, 673–675
solutions, 675–677
wind loss rates (energy, mass, angular momentum), 676–677
magnetically-driven, warm, non-relativistic (VTST) bipolar winds/jets, 678–692
observational insight into jet acceleration, 678–679
theoretical insight and causality, 679–685
plasma parameter β_{p}, 685
VTST MHD wind equation, 685–686
solutions, 686–690
simulations, 690–692
magnetically-driven, warm, relativistic (VK) bipolar winds/jets, 692–700
proper Alfvén speed, 692
proper gas sound speed, 693
proper magnetosound speed, 693
singular points/surfaces (SMSS, AS, FMSS), 694
warmth parameter Q, 694, 696, 697
VK MHD wind equation, 692–694
solutions, 694–696
simulations, 696–700
radiation continuum-driven, super-
Eddington winds, 567–582, 780, 781
“slim” disk connection, 580–
582
adiabatic radius, 575
injection radius, 568–569, 573, 580
photosphere radius, 569, 579, 580
scattersphere radius, 569, 573, 578, 580
singular/critical radius, 568–
569, 578, 580
structure, physical, 568–578
structure, thermal, 578–580
terminal velocity, 580
trapping radius, 574–575
wind equation, adiabatic, 574
wind equation, radiative, 574
wind equations, general, 569–
570
radiation line-driven, sub-Eddington
winds, 564–567
force multiplier, 564–566, 574, 575, 744
hitchhiking gas, 49, 566–567, 793
line opacity, 564, 565
terminal velocity, 566
wind equation, isothermal, 565
thermally-driven (ADIOS) out-
flow, 582–586
equations, 583–585
models, 585–586
terminal velocity, 586
thermally-driven (Parker) winds, 485–492
adiabatic, 488
general solutions, 486–487
isothermal, 488
regular solutions, 486–488
singular/critical (sonic) point/
surface, 486–488
wind equation, non-relativistic, 486–489
wind equation, relativistic, 489–
490
thermally-driven bipolar winds/jets, 586–589
broad-band jet spectrum, 587, 589
bulk acceleration equation, 587–
588
Compton reflection, 587, 588
particle acceleration, 588
strong shock in jet, 587, 588
synchrotron, 587, 589
Wind and jet launching, from accre-
tion disks, 641–654, 750–
757
gas pressure launching (slow mode), 645–646
magnetocentrifugal (BP) launch-
ing (Alfvén mode) [fling], 642–644
black hole spin-dependence, 632, 671–672
Roche potential, 643, 644
magnetic pressure launching (fast
mode) [spring], 643–654
closed field lines (magnetic tower), 646–654
external pressure role, 646–648
magnetic switch, 649, 651–653
open field lines, 643–646, 649
Wind and jet launching, from rotating
black holes, 609–641, 755–
757
binary, 621–641, see also Black
holes: magnetospheres, accreting
black hole spin-dependence, 633–
634, 815–817
isolated, 609–621, see also Black
holes: magnetospheres, iso-
lated
Wind and jet launching, from rotating neutron stars, 592–609, 732–733, 739–743
binary, 603–609, 739–743, see also Pulsars: magnetospheres, accreting
isolated, 592–603, 732–733, see also Pulsars: magnetospheres, isolated

X-ray binaries, see also Binary stars:
 X-ray
 black hole, see also Black holes,
 stellar-mass (SBHs): binary
 high mass (HMXB), 74–76, 399, 400, 402
 Roche-lobe-overflow mass transfer, 76, 399, 472–474, 762, 782
 wind mass transfer, 76, 399, 474–475, 735
 low mass (LMXB), 74–77, 740
 Roche-lobe-overflow mass transfer, 75, 77, 472–474, 735
 neutron star, see also Neutron stars (NSs): binary
 persistent, 76–78
 sources, see Sources in the Milky Way; Sources in other galaxies
 transient, 76–78