Acronyms and Glossary

Acronyms

A, A-Index Attained subdivision index
AIS Automatic Identification System
ALARP As Low As Reasonably Practicable
ANN Artificial Neural Network
ARPA Automatic Radar Plotting Aids
ASET Available Safe Egress Time
BDDs Binary Decision Diagrams
CAF Cost of Averting a Fatality
CATS Cost to Avert one Tonne of Spilt Oil
CEN Comité Européen de Normalisation/European Committee for Standardization
CFD Computational Fluid Dynamics
COMSAR Communication and Search and Rescue (IMO sub-committee)
DALY Disability Adjusted Life Year
DE Design and Equipment (IMO sub-committee)
DNV Det Norske Veritas
DOF Degrees of freedom
ECDIS Electronic Chart Display and Information System
EU European Union
FEC Fractional Effective Concentration
FED Fractional Effective Dose
FEM Finite Element Method
FMEA Failure Mode and Effects Analysis
FORM First-Order Reliability Method
FRP Fibre Reinforced Plastics
FSA Formal Safety Assessment
FTA Fault Tree Analysis
FTS Fault Tree Synthesis
GA Genetic Algorithms
GBS Goal Based Standards
GCAF Gross Cost of Averting A Fatality
GL Germanischer Lloyd
GRP Glass fibre Reinforced Plastics
GUI Graphical User Interface
HazId Hazard Identification
HAZOP Hazard and Operability Studies
HiP-HOPS Hierarchically Performed Hazard Origin and Propagation Studies
HLA Helicopter Landing Area
HSC High-Speed Craft
HSE Health & Safety Executive (UK), http://www.hse.gov.uk/
IACS International Association of Classification Societies, http://www.iacs.org.uk/
ICAF Implied Costs of Averting a statistical Fatality
 (term now replaced by NCAF)
ICCL International Council of Cruise Lines (now CLIA)
IMF International Monetary Fund
IMO International Maritime Organization (IMO), http://www.imo.org/
INTERCARGO International Association of Dry Cargo Shipowners, http://www.intercargo.org
ISM International Safety Management (ISM) Code
ISO International Organization for Standardization
ISPSC International Ship and Port Security Code
ITTC International Towing Tank Conference
LMIS Lloyds Maritime Information Systems
MCA Maritime and Coastguard Agency (UK)
MCDM Multi-Criteria Decision Making
MEPC Marine Environment Protection Committee (IMO committee)
MES Marine Evacuation System
MFZ Main Fire Zone
MSC Maritime Safety Committee (IMO committee)
MVZ Main Vertical Zone
NCAF Net Costs of Averting a Fatality
NRC Nuclear Regulatory Commission (US)
OECD Organization for Economic Co-operation and Development
OFM Operator Function Model
OPA Oil Pollution Act (US)
PCL Potential Loss of Life
PSA Probabilistic Safety Assessment
PSC Port State Control
PVC Polyvinylchloride
QRA Quantitative Risk Analysis
Acronyms and Glossary

QRD Qualitative Design Review
R, R-Index Required subdivision index
RBD Risk-Based Design
RCO Risk Control Option
RFR Required Freight Rate
RID Regulatory Impact Diagrams
RINA Registro Italiano NAvale
RO Recognized Organizations
RPN Risk Priority Number
RSET Required Safe Egress Time
SAVANT Systems AVailability ANalysis Tool
SCF Ship Construction File
SLA Safety Level Approach
SLF Sub-committee on Stability and Load lines and on Fishing vessels (IMO sub-committee)
SMS Safety Management System
SRA Structural Reliability Analysis
UN United Nations
VOF Volume of Fluid (CFD numerical method)
WB World Bank
WIG Wing-In-Ground effect craft

Glossary*

Accident An unintended event involving fatality, injury, ship loss or damage, other property loss or damage, or environmental damage.

Accident category A designation of accidents reported in statistical tables according to their nature, e.g. fire, collision, grounding, etc.

Accident scenario A sequence of events from the initiating event to one of the final stages.

Consequence The outcome of an accident.

Frequency The number of occurrences per unit time (e.g. per year).

Generic model A set of functions common to all ships or areas under consideration.

Hazard A potential to threaten human life, health, property or the environment.

Initiating event The first of a sequence of events leading to a hazardous situation or accident.

Risk The combination of the frequency and the severity of the consequence.

(Reference: International Maritime Organization, MSC 83/INF.2)
Risk contribution tree (RCT) The combination of all fault trees and event trees that constitute the (RCT)

Risk control measure A means of controlling a single element of risk

Risk control option (RCO) A combination of risk control measures

Risk evaluation criteria Criteria used to evaluate the acceptability/tolerability of risk.

Main Maritime International Conventions – IMO

MARPOL Convention

The MARPOL Convention (International Convention for the Prevention of Pollution from Ships) is the main international convention covering the prevention of pollution of the marine environment by ships from operational or accidental causes. It is a combination of two treaties adopted at IMO in 1973 and 1978 respectively. MARPOL was continuously updated by amendments through the years (http://www.imo.org/Conventions/).

SOLAS Convention

The SOLAS Convention (International Convention for the Safety of Life at Sea) in its successive forms is generally regarded as the most important of all international treaties concerning the safety of merchant ships. The first version was internationally adopted in 1914, in response to the Titanic disaster, the second in 1929, the third in 1948, and the fourth in 1960. The 1960 Convention was the first major task for IMO after the Organization’s creation. SOLAS was continually updated by amendments through the years (http://www.imo.org/Conventions/).

ICLL Convention

The first ICLL Convention (International Convention on Load Lines), adopted in 1930, was based on the principle of reserve buoyancy, although it was recognized then that the freeboard should also ensure adequate stability and avoid excessive stress on the ship’s hull as a result of overloading. Thus, limitations on the draught to which a ship may be loaded make a significant contribution to her safety. These limits are given in the form of freeboards, which constitute, besides external watertight and watertight integrity, the main objective of this Convention. As other conventions, it was continually updated at IMO by amendments through the years (http://www.imo.org/Conventions/).
STCW Convention

Authors Biography

Carlos Guedes Soares is Professor and Head of the Naval Architecture and Marine Engineering Department and the Centre for Marine Technology and Engineering of Instituto Superior Técnico, Lisbon. He has post-graduate degrees from the MIT, the NTNU and the TU Lisbon and about 30 years experience in teaching and research work in the fields of structural analysis and design, of dynamics and hydrodynamics and on probabilistic modelling for application in risk and reliability analysis. He has been involved in about 50 European projects, co-ordinating 9 of them, and also co-ordinated about 10 national projects. He has published about 650 papers in international journals, books and conferences, is co-editor of scientific journals and member of several international organisations.

Andrzej Jasionowski graduated from the Technical University of Gdansk (MEng, 1997), and University of Strathclyde (PhD, 2002). He is engaged as Technical Manager of the Ship Stability Research Centre, Universities of Glasgow and Strathclyde, and Director of Safety At Sea Ltd, Glasgow, Scotland. His main interests comprise ship hydrodynamics, damaged ship dynamics, stability, risk assessment, inductive inference, plausible reasoning, modelling uncertainty, numerical algorithms development, philosophy of safety. He is author/co-author of 35 journal and conference papers, 50 other contract reports.

Jørgen Juncher Jensen is Professor of Marine Engineering at the Department of Mechanical Engineering, Section of Coastal Maritime and Structural Engineering, DTU, where he is leading a research group dealing with wave induced stochastic load and response processes for marine structures. He has been at DTU since 1973 and has received various awards (e.g. Bronze Medal from Royal Society of Naval Architects, London, Gold Medal from the
Alexander Foss Foundation and the Statoil Prize). He has been involved in several EU sponsored project as well as national projects and has authorized about 150 papers.

Jeppe Skovbakke Juhl, Special advisor, holds a position of naval architect at the Danish Maritime Authority with responsibility for implementation of international rules and regulations into Danish maritime legislation. For the last couples of years, he has represented the Danish Maritime Authority in several national and international forums, such as IMO and EU, and has furthermore been appointed as technical representative to projects under the auspices of the Nordic Council of Ministers. His key competencies are ship stability and maritime risk assessments. Moreover he has participated in several EU-projects and other international work.

Mr. Dag McGeorge qualified as a naval architect from NTNU in Norway in 1989 and now holds the position of Principal Engineer at Det Norske Veritas. He has 15 years of working experience in project management, research and development, innovation and consultancy mainly related to maritime, naval and offshore activities with focus on the use of advanced and lightweight materials in load-bearing structural applications. He was project manager and technical coordinator of a large collaborative European R&D project on composites in superstructures of naval ships (EUCLID RTP3.21) and is now leading SAFE-DOR’s subproject on risk based design of composite superstructures.

Apostolos D. Papanikolaou studied Naval Architecture & Marine Engineering at the Technical University of Berlin, where he also received his Dr.-Ing. and Habilitation degrees. He is Professor of Ship Design in the School of Naval Architecture and Marine Engineering of the National Technical University of Athens and Director of the Ship Design Laboratory. His educational, research and professional activities cover a broad area of Naval Architecture and Ocean Engineering and are documented in about 400 technical publications. He was and is Principal Investigator of a long series of EU or nationally funded research projects regarding the design and optimization of conventional and unconventional ships, the hydrodynamic analysis and assessment of the calm water performance and the seakeeping behavior of ships, the stability and safety of ships and regulatory developments.
Esa Pöyliö is Project Engineer in the Concept Design department of Deltamarin Contracting Ltd. He graduated as Naval Architect (B.Sc) from the Technical Institute of Turku in 1980. During the period 1980–1984 he worked in the steel design department and 1984–1990 in the Project Design Department of Elomatic Oy. From 1990 he has been working in the Concept Design department of Deltamarin as Project Engineer and Project Manager of design of various ship types. In his 28 years in engineering, Mr Pöyliö has gained a vast experience in ship design and design project management and has become familiar with safety related international rules and regulations.

Pierre C Sames holds the current position of Senior Vice President Strategic Research and Development at Germanischer Lloyd. He is responsible for coordinating all technical research and development projects of GL. He is chairman of the SAFEDOR Steering Committee. His previous experience includes research into hydrodynamic extreme loads and risk analysis. He joined GL in 1995 after studying naval architecture in Hamburg.

Rolf Skjong (PhD) is currently chief scientist in Det Norske Veritas Research and Innovation. He is Chairman of the International Association of Classification Societies (IACS) Expert Group on Formal Safety Assessment and Chairman of the European Safety and Reliability Association (ESRA) group on Safety in Marine Transportation. He has 25+ years of experience in risk assessment and reliability analysis, project planning, optimisation, rules and regulations, design and approval. He is a Specialist in Structural Reliability Analysis and Formal Safety Assessment, and is representing Norway in the International Maritime Organisation on risk issues. He has been member of various national and international scientific/steering committees. As project manager he is/has been responsible of a large number of Strategic Research Projects and international joint industry projects e.g. EU projects for maritime, off-shore, process and aerospace industries. He has published 100+ journal and conference papers.

Dracos Vassalos is Professor of Maritime Safety in the Department of Naval Architecture and Marine Engineering, a joint Department of the Universities of Glasgow and Strathclyde, and the Director of the Ship Stability Research Centre (SSRC), a world-leading centre of excellence on ship stability and safety. His motto is “safety enhancement through innovation”, an idea he has pursued single-mindedly in a career that spans over 30 years in industry and academia, promoting the use of scientific approaches in dealing with maritime safety. He has been instrumental in helping to create a critical mass in
the research community on safety, through a series of initiatives that made SSRC the focus of active international collaboration. He travels the world over promoting maritime safety, lectures and publishes widely, with some 400 technical publications to his credit and a string of prizes and awards, including some 100+ major research contracts. He served as Chair of the STAB Conferences and Workshops (1996–2006), Chair of the ITTC Stability Committee in Waves (1996–2002), Chair of WEGEMT (the European Association of Universities in Marine Technology 1999–2001). Currently, Professor Vassalos is Chairman of the International Standing Committee of the “Design for Safety” Conference, a theme instigated and promulgated by SSRC. He is also a long-standing member of the UK delegation to IMO for ship stability.
Index

Abandonment studies, Evi, 55
Acceptable risk, 11, 354
Acceptance criteria, 189
Acceptance criterion philosophies
 cost-effectiveness, 169
 risk acceptance criteria for ship functions, 168
 risk balance, 169–170
 risk evaluation criteria at IMO, 168
AENEAS, 299
Alternative approval methods, 155
Alternative design, 68
 approach, 71, 72
 and arrangements, 164
 process, 180
ANSYS CFX, 264
Approval in principle statement, 172
Approval matrix
 categorization of technology, 182
 explanatory notes, 183
 quantified risk assessment, 183
 semi-quantitative risk assessment, 183
Artificial neural networks (ANN), 227, 230
ASET (Available Safe Egress Time), 57
As Low As Reasonably Practicable (ALARP),
 criterion, 115
Assessment and approval of risk-based ship design, 170
 approval of design, 172
Bayesian Network, 196, 215, 216
 drawback, 217
Bayesian Network analysis, 217, 219
Bernoulli theorem, 253
Binary Decision Diagrams (BDDs), 206
Bulk carrier safety, 8, 106, 108, 114, 131
Bulkhead deck submergence and progressive flooding, 82
Capsize band, 37
CAPSIM, 260
Casualty threshold, 84–85
Certificates documentation, 172
Cognitive task analysis, 222
Collisions and groundings
 damage after collision, 226–231
 collision network, 230–231
 data used for training ANN, 227–229
 validation of neural network, 229
 factors influencing causation probability
 Bayesian network of collision model, 224
 collision scenario, 223
 detailed collision approach, 223–224
 grounding model approach, 224–226
 human and organizational errors, 220–221
 human error evaluation, 221–223
 reported causes, 219–220
 risk model for obtaining causation probability, 213–219
 Bayesian networks, 215–219
 causation probabilities, 219
 fault tree, 214
 traditional approach, 214–215
 weighing factors for headings, 219
Compensation effect, 84
Concept design description, drawings and documents, 171
Cost of Averting a Fatality (CAF), 168
Cost of Averting a Ton of oil Spilt (CATS), 168
Critical wave episodes, 276, 279, 285
Damage after collision, 226–231
 accuracy of penetration prediction, 229
 data for ships, 230
 grounding network results, 227
 illustration, 228
inputs to artificial neural network, 228
predicted penetration, 230
Damage stability regulations, 146
probabilistic standards of, 166
Design alternatives
alternatives, 141, 331–332
principle characteristics, 332
alternative zero spill tanker, 334–336
Design for Safety, 9
Designing damage tolerant ship systems, 50
Diffraction forces, 251
Disability Adjusted Life Years (DALYs), 122, 137
3D panel method, 249
Electronic Chart Display and Information System (ECDIS), 112
Environmental impacts from shipping activities, 139
Environmental risk assessment, 139
Equivalence principle, 68
See also Alternative design
Equivalent Fatalities, 122
Equivalent Passenger Ship Regulations, 102
Equivalent provisions, 163, 164
EU-funded projects
CRASHCOASTER, EU-funded project, 15
DEXTREMEL, EU-funded project, 15
FIRE EXIT, EU-funded project, 15
HARDER, EU-funded project, 4, 15
MEPDESIGN, EU-funded project, 15
NEREUS, EU-funded project, 15
POP&C, EU-funded project, 15
ROROPROB, EU-funded project, 15
SAFECRAFTS, EU-funded project, 15
SAFEDOR, EU-funded project, 15 and others
SAFER EURORO I, EU-funded project, 15
SAFER EURORO II, EU-funded project, 15
SAFETY FIRST, EU-funded project, 15
VRSHIPS-ROPAX2000, EU-funded project, 15
Evacuability, 59, 60, 61
Evacuability Index, 55
in fire scenarios, 56–58
human injury analyses, 58
speed reduction factor, 57
temperature at 1.5m height from floor level, 57
in flooding scenarios, 55–56
and rescue analysis, 54–55
Evacuation completion curve, 347
Evacuation dynamics (ED), 290–291
Evacuation process, 54
of passenger ships, 289
Event tree analysis, 215
EVI, 296
EXODUS, 298
Failure mode and effects analysis (FMEA), 7, 167
Failure probability, 189
Fatality count, 274–275
Fault Tree Analysis (FTA), 198, 215
Fault tree synthesis process, 200
Fibre reinforced plastic (FRP), 304
Fire containers and cargo space
Bayesian network representing fire in container, 267
Bayesian risk model for cargo fire, 267–270
fire simulations, 265–267
incident frequencies of occurrence, 270
temperature on cargo, 265
in containers and cargo space, 264–270
probability distribution, 91
risk analysis, 270–275
main probabilities for fire QRA, 271
passenger cabin and public space fire scenario, 272
principle, 270
soot, 274
velocities and temperatures, 273
Fire design scenario
alternative design, 72, 73
and arrangements iteration, 70
alternative design approach, 71, 72
non-fire scenario, 73
restaurant design parameters, 70
Fire hazards, effect of, 69
Fire risk model
fire ignition model
frequency of occurrence, 47
overview, 45
post-ignition models
failure of first aid, 47, 48
failure of insulation, 49–50
fire dynamics modelling, 47
fire spread into adjacent spaces, 49–50
impact of first-aid on fire energy time line, 48
injury/fatalities, 50
standard fire time line, 49
relative frequency of occurrence, 46
for space, 44
Fire risk screening, 43
Fire safety analysis, 87–88
 escalation, 89
 incidence, 88
 risk, 89
First Order Reliability Methods (FORM), 232,
 279, 280
First Order Second Moment
 approaches, 235
Flooding
 benchmark studies
 numerical and experimental levels of water, 259
 survival boundaries, 258, 259
 and fire, risk from, 92
 intermediate stages of, 256
modeling ship flooding
 floodwater dynamics, 254–256
 inflow/outflow, 253–254
 progressive flooding, 256–257
modelling damaged ship dynamics, 248
 equations of motion, 248–250
 external forces, 252
 potential forces, 250–251
 viscous forces, 251–252
modelling sea environment, 245–247
 parameters and characteristics of numerical models, 246
 probability distribution, 90
 structure of damaged ship dynamics
 numerical models, 246
Flooding design scenario
 consequence analysis, 64
 cumulative dA(risk), 66
 design iteration for collision damage, 63
 identification of critical, 66, 67
 time evolution of collision damage scenario, 67
Flooding/fire evacuation models, 55
Flooding survivability analysis, 74–75
 statutory assessment
 platform optimisation process, 76, 77
 “unguided” subdivision, 76
 vulnerability assessment
 distribution of relative contribution, 80
 example cruise vessel subdivision, 78, 79
 particulars of example cruise vessel, 77
 typical model, 80
Fluid dynamics methods, 255
F-N curves, diagram, 34, 93, 345
 FN risk evaluation criteria, 128
 for passenger Ro/Ro ships, 132
Formal Safety Assessment (FSA), 8, 10,
 99, 101
 guidelines, 100
 decision parameters, 121–122
 methods, 114
 process, 115
FORM procedure, 280
Fractional Effective Dose (FED), 57
FREDYN, 277
Froude-Krylov forces, 251
FSA for bulk carriers
 decision making, 108
 decision-making related to double side skin, 111–112
 individual (annual) risk per ship-type, 107
 initial studies, 106
 risk control options and decisions, 108–111
 double side skin for new bulk carriers, 108
 forecastle for new bulk carriers, 110
 societal risk of bulk carrier and container vessel accidents, 107
 studies at IMO, 106–108
Functional requirements, 118
Genetic Algorithms (GA), 316
GL-SIMBEL, 277
Goal based approach, 146
Goal-based Standards (GBS), 10, 97,
 98, 116
 working group, 191
Goal-setting approach, 19
Grid based techniques, 296
Grim’s effective wave, 277
Gross Cost of Averting a Fatality (GCAF), 133
Grounding model approach, 224–226
 Bayesian network, 226
 collision network results, 225
 model for calculating, 225
Group risk, 127
HARDER EU-funded project, 4, 15
Hazid investigation, 172
Helicopter landing area (HLA), 104
High level FSA, 113
 studies, 8
HiP-HOPS, 199, 210
 components’ failure modes, classes of, 202–203
HUGIN, 264
Human errors, 220
 factors, 221
Hybrid approaches, 296–297
macroscopic modeling, 296
mesoscopic modeling, 294–295
microscopic modeling, 296–297
modeling human behaviour, 291
modeling ship environment, 290
multi-agent modeling, 292–294
passenger mustering/evacuation process modeling, 292
path-planning algorithm, 294
simulation of evacuation, 291, 294
tools for simulation and analysis of passenger
AENEAS, 299
EVI, 297–298
EXODUS, 298–299
Net Cost of Averting a Fatality (NCAF), 106, 134
Nuclear Regulatory Commission (NRC), 97
Numerical methods, 257
Observed Evidence, 269
Occupational risk, 124
Operator function model (OFM), task analysis, 221
Organisational errors, 221
Pareto-Optimal Design Alternatives (PODAs), 319
Pareto optimality, 144
Pareto-optimal set, 319
Performance-based approach, 43
Performance-based methods for fire safety, 68
Platform optimisation process, 76, 77
Port State Control-file/design details, 172
Post-accident systems availability analysis, 50–52
Potential damping, 251
Potential Loss of Life (PLL), 35, 109
Probabilistic models, 235
Probabilistic Safety Assessment (PSA), 98
Probability of fire spread, 50
PROBAN, 279, 281
Process map, 171
Progressive flooding, 256
PROTEUS3, 40, 55, 61–62, 77, 80
Qualitative Design Review (QRD), 270
Quantitative Risk Analysis (QRA), 26, 270
Radiation forces, 251
Random choice method, 251
Risk-based Design (RBD) application
concept of design study challenges, 322–323
safety goals, 322
design optimisation procedure, 319–320
implemented tanker design optimisation procedure, 320
design optimization case study
implementation of optimization procedure, 329
implemented optimization constraints and assumptions, 327
implemented optimization objectives, 327
optimisation variables, 328
parameters defining cargo tanks, 326
pareto-optimal design alternatives, 330–331
resulting design alternatives, 331–336
risk-based tanker design optimization, 330
search domain, 330
search of design resultant domains, 329–330
tank configuration layouts, 324
economic impact study, 337, 341
environmental impact study, 337–338
holistic ship design optimization, 317–318
innovative tanker designs and increased challenges, 338–339
overview of design problem, 323–324
pareto optimal design alternatives, 340
performance comparison, 341
reference vessel, 320–322
Regulatory framework
decision parameters, 121–122
discussion on FSA methods, 114
open issues, 114
process, 115
risk acceptance criteria, 115
work, 113
environmental risk evaluation criteria, 138–141
emissions and discharges from ships, 140
global economic mitigation potential, 142
Formal Safety Assessment application-general, 100
historical background, 98–99
purpose, 99–100
FSA, illustration of, 101
future, 170
general procedure for establishing risk criteria at lower level, 147
Goal Based Standards
definition, 117
framework, 117
functional requirements, 118–120
goals, 117–118
risk acceptance
methods to justify criteria, 120–121
risk-based approaches, 145–147
emissions relationship, 146
risk criteria for use, 143–145
risk evaluation criteria, 122–123
Regulatory Impact Diagram (RID), 104
Regulatory system, 98
Reliability models, 188, 208, 211
Required Freight Rate (RFR), 317
Resolution A.265 (VIII), 4
Risk acceptance criteria, 3, 5, 11, 12, 84, 101, 106, 110, 114, 115–120, 122, 143–145, 147, 168, 175, 188, 190, 270, 307
for ship functions, 168
Risk analysis
guidelines for, 188
of ship systems, 188
techniques, 98
Risk assessment
analysis and detailed documentation, 172
and FSA, development of
bulk carriers, 106–112
decision parameters, 121–122
helicopter landing area on cruise ships as safety measure, 104–105
high speed craft, 104
ongoing FSA on electronic chart display and information system, 112–113
‘Solo Watch-keeping During Period of Darkness,’ 103
Risk-based approaches, 2, 145
alternative design
and arrangement for fire safety, 6
for oil tankers, 6–7
formal safety assessment, 8
offshore industry, 4–5
probabilistic damage stability, 3–4
regulatory developments, 9–10
research activities, 9
special craft, 7–8
structural reliability analysis, 5–6
Risk-based approval, 159, 175, 177
acceptance of alternative design
acceptance criterion philosophies, 167
future regulations for alternative designs, 165
high-speed-craft code requirements, 167
safety equivalent provisions, 163–164
SOLAS II-1 related to damage stability, 165–166
SOLAS II-2/17 related to fire safety, 164–165
SOLAS 2009 replacing SOLAS 90, 166–167
approval flow diagram, 158, 160
approval of ship systems, 185–190
acceptance, 186–190
risk-based ship system approval flow diagram, 187
approval procedure, need for, 155–157
design envelope, 157
flow chart, 181–182
motivation and enabling technologies, 156
novel approval process, 161
operating risk-based approved ship documentation, 190–191
inspection, 192
International Safety Management Code, 191
owner’s inspection, 193
present approval process, 158–159
process, 159–163
requirements to documentation, 179–185
approval matrix, 182–185
risk-based design and associated approval, 175–178
key steps for normal projects, 177
key steps in risk-based design and, 178
rules and regulations, 179–180
stakeholders in approval process
design and construction phase, 171–172
operational phase, 172–175
Risk Based Design (RBD), 59, 97
and approval
design framework and tools, 12–13
elements, need for, 12
linking, 10–11
qualified engineers, 13
regulatory framework, 12
working together, 11–12
enhanced design process, 3
framework, 27
inspection of, 192
methodological approach
ship design process, 20–25
operation of, 190
optimisation, 156
owner’s inspection, 193
philosophy, 156
positive and negative sides to rule-compliance, 22
principles, 26–28
process, 306–307
safety performance parameters, 21
societal expectations and economic attractions, 1–2
toolbox of engineer, 13
variants of, 156
Risk Based Regulation, 98
Risk based regulatory regimes, 143, 144
Risk-based ship system approval process, 185, 186
Risk Control Option (RCO), 98, 264, 305
cost effective, 305
implementation of, 73
Risk conversion factors, 127
Risk evaluation criteria, 98, 121–122
background, 123–124, 127–128
CAFs in use, 134
comparison with historical data, 126–127
cost benefit and cost effectiveness assessment, 132–136
cost of averting fatalities, 133, 136
disability adjusted life years gained, 138
elements of criteria and comparison with data, 130–132
FN curves, 130–131
individual fatality risk, 126
individual risk criteria, 124–126
method, 128–130
net cost of averting fatality criteria, 135
purpose, 123, 127
risk of injuries and ill health, 136–138
third parties, 132
Risk evaluation of ships, 9
Risk integration
annual frequency of occurrence, 93, 94
probability distribution, 91, 92, 94
Risk model, 186
components of, 45
Risk of design, 11
Risk Priority Number (RPN), 198
ROLLS, 277
RSET (Required Safe Egress Time), 57
Rule-challenge, 156
Runge-Kutta method, 250
Safe return to port, 10
decision making in flooding-related casualties, 87
flooding-related casualty classification, 86
functional requirements classification, 86
Safety assessment process, 27, 28
previous, 101
Safety Case Regime for ships, 143
Safety equivalence, 3, 156
See also Rule-challenge
Safety goals, 28
definition, 28
specific technical, 29
top-level, 28
Safety Level Approach (SLA), 10
Safety levels and acceptance criteria, 169
Safety Management System (SMS), 172
Safety-related functional requirements, 30
Safety study, 162
SAVANT (Systems Availability Analysis Tool), 51
Self-regulatory approach, 5
Ship Construction File (SCF), 161, 172, 191
Ship design process
contemporary developments, 32–34
casualty threshold concept, 33
IMO framework, 32
risk-based design implementation (safety level), 34
safe return to port, 32–33
scope of work, 33
risk-based design, 26–31
design decision-making, 30–31
functional requirements, 30
high level framework, 27
identification of critical design scenarios, 29
identification of hazards, 29
and innovation, 26
making, 31
safety assessment procedure, 28
structural links of design scenarios, 30
rules-based design, 20–25
collision risk containment, 23
“common sense” approach to ship design, 24
design decision-making shift, 25
design input, 21
design solution envelopes, 25
high-level conventional design process, 20
rules vs. experience, 23
safety considerations, 21
total risk (safety level), 34–36
concept of “capsize band,” 37
evacuation and rescue analysis, 54–57
fire safety analysis, 43–50
flooding survivability analysis, 36–42
post-accident systems availability analysis, 50–54
principal hazards, 36
time to capsize and evacuation time, 38

Ship functions
risk and, 186
systems and, 188

Ship Stability Research Centre (SSRC), 60
Simulating fluid dynamics method, 256
Social force methods, 296
Societal risk evaluation criteria, 122, 127
acceptable level of risk, 127

See also Individual risk evaluation criteria
SOLAS, 144–145
SOLAS Chapter II-2, regulation 18
methods for fire safety, 160
SOLAS 90 damage stability requirements, 166
SOLAS regulations, 3
Specific risk control option, 122
Speed reduction factor, 56
Stakeholders, in design and operation, 171
State-of-the-art design methodology, 18
Statutory requirements, 179
Strip theory/3D panel method, 251
Structural failure
Ferry-Borges model, 240

load combination, 238–241
probabilistic modelling
of still water induced loads, 235–236
of strength of ship structures, 233–235
wave induced load effects, 236–238
reliability of accidentally damaged structures, 241–242
values of load combination factors, 241

Structural reliability methods, 5–6, 106, 232, 233
Subdivision of Ships, 102
Systems dependency tree, 52, 53

Time-invariant methods, 232
Time to capsize, 38
cumulative probability distribution, 84
time-domain simulation, 83
Top down process, 98
Transient and intermediate flooding, 256
numerical simulation, 81, 82
Trial Applications, 77
Univariate geometric distribution – collision
cumulative marginal probability distribution, 40
cumulative probability function, 39
estimating time to capsize, 38–40
Utility functions, 331

World Bank (WB), 136
Zone methods, 264