References

References

Wold H (1938) A study in the analysis of stationary time series (2nd edn. 1954) Almqvist & Wiksells, Uppsala

Notational Conventions, Symbols and Acronyms

The following notational conventions will be used throughout the text:

- Bold lower case letters indicate vectors.
- Bold upper case letters indicate matrices.
- Both notations \([A \ B]\) and \([A, B]\) will be used, depending on convenience, for column-wise partitioned matrices.
- Both notations \(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\) and \(\begin{bmatrix} A \vdash B \\ \cdots \cdots \\ C \vdash D \end{bmatrix}\) will be used, depending on convenience, for block matrices.

Symbols and Acronyms

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A^\dagger)</td>
<td>generalized inverse of (A)</td>
<td>1.1 (Definition 1)</td>
</tr>
<tr>
<td>(r(A))</td>
<td>rank of (A)</td>
<td>1.1</td>
</tr>
<tr>
<td>(A_{p}^\perp)</td>
<td>reflexive generalized inverse</td>
<td>1.1 (Definition 2)</td>
</tr>
<tr>
<td>(A')</td>
<td>transpose of (A)</td>
<td>1.1</td>
</tr>
<tr>
<td>(A^g)</td>
<td>Moore-Penrose inverse of (A)</td>
<td>1.1 (Definition 3)</td>
</tr>
<tr>
<td>(ind(A))</td>
<td>index of (A)</td>
<td>1.1 (Definition 5)</td>
</tr>
<tr>
<td>(A^D, A^e)</td>
<td>Drazin inverse of (A)</td>
<td>1.1 (Definition 6)</td>
</tr>
<tr>
<td>(A_{r}^\perp)</td>
<td>right inverse of (A)</td>
<td>1.1 (Definition 7)</td>
</tr>
<tr>
<td>(A_{l}^\perp)</td>
<td>left inverse of (A)</td>
<td>1.1 (Definition 8)</td>
</tr>
<tr>
<td>(det(A))</td>
<td>determinant of (A)</td>
<td>1.1</td>
</tr>
<tr>
<td>(A_{\perp})</td>
<td>orthogonal complement of (A)</td>
<td>1.2 (Definition 2)</td>
</tr>
<tr>
<td>(A_{s}, (A_{\perp})_{s}^\dagger)</td>
<td>specular directional inverses</td>
<td>1.2 (Remark 4)</td>
</tr>
<tr>
<td>(A^\dagger_{l})</td>
<td>left orthogonal complement of (A)</td>
<td>1.2 (Definition 3)</td>
</tr>
<tr>
<td>(A^\dagger_{r})</td>
<td>right orthogonal complement of (A)</td>
<td>1.2 (ibid)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>$A(z)$</td>
<td>matrix polynomial of z</td>
<td>1.6</td>
</tr>
<tr>
<td>$A(z)$, $\bar{A}(z)$, $\breve{A}(z)$</td>
<td>dot notation for derivatives</td>
<td>1.6</td>
</tr>
<tr>
<td>A, \dot{A}, \ddot{A}, \breve{A}</td>
<td>short notation for $A(1)$, $\dot{A}(1)$, $\ddot{A}(1)$</td>
<td>1.6</td>
</tr>
<tr>
<td>A^+</td>
<td>adjoint of A</td>
<td>1.6</td>
</tr>
<tr>
<td>$\text{tr } A$</td>
<td>trace of A</td>
<td>1.6</td>
</tr>
<tr>
<td>$\text{vec } A$</td>
<td>staked form of A</td>
<td>1.6</td>
</tr>
<tr>
<td>L</td>
<td>lag operator</td>
<td>1.8</td>
</tr>
<tr>
<td>∇</td>
<td>backward difference operator</td>
<td>1.8 (Definition 1)</td>
</tr>
<tr>
<td>∇^{-1}</td>
<td>antidifference operator</td>
<td>1.8 (Definition 2)</td>
</tr>
<tr>
<td>Σ</td>
<td>indefinite sum operator</td>
<td>1.8 (ibidem)</td>
</tr>
<tr>
<td>$A \otimes B$</td>
<td>Kronecker product of A and B</td>
<td>1.10</td>
</tr>
<tr>
<td>u</td>
<td>vector of 1’s</td>
<td>1.10</td>
</tr>
<tr>
<td>E</td>
<td>expectation operator</td>
<td>2.1</td>
</tr>
<tr>
<td>$\Gamma(h)$</td>
<td>autocovariance matrix of order h</td>
<td>2.1</td>
</tr>
<tr>
<td>$I(d)$</td>
<td>integrated process of order d</td>
<td>2.1 (Definition 5)</td>
</tr>
<tr>
<td>$I(0)$</td>
<td>stationary process</td>
<td>2.1</td>
</tr>
<tr>
<td>$WN(n)$</td>
<td>n-dimensional white noise</td>
<td>2.2 (Definition 1)</td>
</tr>
<tr>
<td>δ_v</td>
<td>discrete unitary function</td>
<td>2.2</td>
</tr>
<tr>
<td>VMA (q)</td>
<td>vector moving average process of order q</td>
<td>2.2 (Definition 2)</td>
</tr>
<tr>
<td>VAR (p)</td>
<td>vector autoregressive process of order p</td>
<td>2.2 (Definition 5)</td>
</tr>
<tr>
<td>VARMA (p, q)</td>
<td>vector autoregressive moving average process of order (p, q)</td>
<td>2.2 (Definition 7)</td>
</tr>
<tr>
<td>CI (d, b)</td>
<td>cointegrated system of order (d, b)</td>
<td>2.4 (Definition 6)</td>
</tr>
<tr>
<td>PCI (d, b)</td>
<td>polynomially cointegrated system of order (d, b)</td>
<td>2.4 (Definition 7)</td>
</tr>
<tr>
<td>$A \ast B$</td>
<td>Hadamard product of A and B</td>
<td>3.1</td>
</tr>
</tbody>
</table>
List of Definitions

Section 1.1
- Definition 1: Generalized Inverse .. 1
- Definition 2: Reflexive Generalized Inverse 2
- Definition 3: Moore-Penrose Inverse ... 2
- Definition 4: Nilpotent Matrix .. 3
- Definition 5: Index of a Matrix .. 3
- Definition 6: Drazin Inverse ... 3
- Definition 7: Right Inverse .. 4
- Definition 8: Left Inverse .. 4

Section 1.2
- Definition 1: Row Kernel ... 7
- Definition 2: Orthogonal Complement .. 7
- Definition 3: Left and Right Orthogonal Complements 17

Section 1.6
- Definition 1: Matrix Polynomial .. 38
- Definition 2: Zero of a Matrix Polynomial 38
- Definition 3: Nullity ... 38
- Definition 4: Pole ... 39
- Definition 5: Order of Poles and Zeros ... 39
- Definition 6: Characteristic Polynomial 43

Section 1.7
- Definition 1: Order of a Pole in a Laurent Expansion 52

Section 1.8
- Definition 1: Backward Difference Operator 65
- Definition 2: Antidifference Operator .. 66
Section 2.1

Definition 1 Stationary Processes ..128
Definition 2 Stationarity in Mean ..128
Definition 3 Covariance Stationarity ...129
Definition 4 Stationarity in the Wide Sense129
Definition 5 Integrated Processes ..129

Section 2.2

Definition 1 White Noise ..130
Definition 2 Vector Moving-Average Processes131
Definition 3 First Difference of a White Noise133
Definition 4 Second Difference of a White Noise133
Definition 5 Vector Autoregressive Processes134
Definition 6 Invertible Processes ...137
Definition 7 Vector Autoregressive Moving-Average Processes139

Section 2.4

Definition 1 Random Walk ..145
Definition 2 Random Walk With Drift ...146
Definition 3 Cumulated Random Walk ...147
Definition 4 Deterministic Trends ...147
Definition 5 Stochastic Trends ..148
Definition 6 Cointegrated Systems ...149
Definition 7 Polynomially Cointegrated Systems150

Section 3.2

Definition 1 Basic VAR Model ...167
Definition 2 Error Correction Model ..168