References

References

References

References

Parts of the book have appeared in the archived literature and the authors gratefully acknowledge permissions to re-use material from the following papers in the archived literature.

Chapter 7 contains excerpts from Thornhill, N.F., 2005, Finding the source of non-linearity in a process with plant-wide oscillation, *IEEE Transactions on Control System Technology*, 13, 434–443, © 2005, Institute of Electrical and Electronics Engineers (IEEE), with permission from IEEE.

Index

Apparent Stiction, 187

Bicoherence
 definition, 34
 estimation, 35
 spurious peaks, 37
 estimation issue, 37
 properties, 35
Bispectrum, 27
 data length, 38
 definition, 29
 estimation, 30
 estimator properties, 32
 properties, 35
 window function, 38

Compression, 45
 Backward slope, 47
 Box Car, 47
 detection, 59
 factor, 49
 implementation, 61
 methods, 46
 overview, 47
 swinging door, 49
Control performance, 123
 causes of poor performance, 125
 diagnosis, 126
 industrial case studies, 129
 stiction, 129
Control Valve
 components, 137
 definition, 137
 physics, 153
 simulation, 157
Control Valve Models
 friction model, 154

Physic based model, 153
 data-driven models, 161
 one parameter model, 161
 two parameter model, 163
 limit cycles, 179
Cumulants, 18, 20

Data driven concepts, 2
Data Driven Valve Models
 One parameter model, 161
 Two parameter model, 163
Data Quality, 50
 compression, 49
 data quality measures, 50
 quantization, 63

Frequency, 6
Friction Model, 154
 parameters, 155

Gaussianity Test, 81

Higher Order Statistics, 10
 Cumulants, 18, 20
 bispectrum, 27
 bicoherence, 34
 trispectrum, 27

Moments, 18

Non-Gaussianity Index
 NGI, 84

Nonlinear, 3
 disturbance, 121
 process, 111
 CSTR, 115
 spherical tank, 111
 time series, 69
valve, 8
valve characteristic, 117

Nonlinearity
 bicoherence, 77, 78
 bispectrum, 78
 control loop, 111
 definition, 69
 degree, 90
 measures, 70
 harmonic, 73
 model based, 71
 surrogate, 72
 time series based, 71
 noise effect, 90
Nonlinearity Index, NLI, 84

Oscillations, 230
detection, 231
 auto-correlation function, 232
 frequency, 230
 power spectral envelope, 240

Performance Index, 51
Plantwide Oscillation
classification, 237
definition, 237
detection, 229, 238
 spectral decomposition, 241
diagnosis, 253
 Eastman Chemical Plant case, 257
 harmonics, 255
 limit cycles, 255
 Mitshubishi Chemical Company case, 266
 PSCMAP, 239
 root-cause, 253
 SEA Refinery Case, 263
Power Spectral Envelope, 240
Power Spectrum, 26
 estimation, 26
 PSCMAP, 239

Quantization, 63
 factor, 64

Randomness, 3

Spectral, 6, 25
Statistics, 3

Stiction, 12, 143
 apparent, 187
 compensation, 213
 confirmation
 gain change method, 218
 industrial example, 225
 definition, 143, 146
detection, 182
 cascade loop, 209
 flow loop, 208
 industrial case studies, 205
 level loop, 205, 210
 nonlinearity, 183
 practical issues, 201
 pressure loop, 210
 temperature loop, 212
discussions, 145
gain change
 describing function, 222
model
 data driven, 161
 physics based, 153
 practical examples, 148
quantification, 187
 automation, 193
 clustering, 187
 ellipse fitting, 190
 industrial case studies, 205
 practical issues, 201
Stiction Model
 comparison, 171
data driven, 161
describing function, 173
 one parameter, 161
 two parameter, 163
Surrogate
 algorithm, 95
 application, 106
 calculation, 96
 estimation
 end-matching, 102
 preprocessing, 102
 estimation parameters, 99
 oscillation, 104
 root cause identification, 106
 time series, 93

Time Series
 linear, 3
 nonlinear, 3, 69
Total Nonlinearity Index, TNLI, 85

Valve
 characteristic, 117
 equal percentage, 118
 faults, 138
 faulty diaphragm, 139
 hysteresis, 140
 linear, 118
 oversized, 139
 saturation, 131, 141
 square root, 119
 undersized, 139
Other titles published in this Series (continued):

Soft Sensors for Monitoring and Control of Industrial Processes
Luigi Fortuna, Salvatore Graziani, Alessandro Rizzo and Maria Gabriella Xibilia
Publication due December 2006

Advanced Control of Industrial Processes
Piotr Tatjewski
Publication due December 2006

Process Control Performance Assessment
Andrzej Ordys, Damien Uduehi and Michael A. Johnson (Eds.)
Publication due December 2006

Modelling and Analysis of Hybrid Supervisory Systems
Emilia Villani, Paulo E. Miyagi and Robert Valette
Publication due January 2007

Model-based Process Supervision
Belkacem Ould Bouamama and Arun K. Samantaray
Publication due February 2007

Magnetic Control of Tokamak Plasmas
Marco Ariola and Alfredo Pironti
Publication due May 2007

Continuous-time Model Identification from Sampled Data
Hugues Garnier and Liuping Wang (Eds.)
Publication due May 2007

Process Control
Jie Bao, and Peter L. Lee
Publication due June 2007

Distributed Embedded Control Systems
Matjaž Colnaric, Domen Verber and Wolfgang A. Halang
Publication due October 2007

Optimal Control of Wind Energy Systems
Iulian Munteanu, Antoneta Iuliana Bratcu, Nicolas-Antonio Cutululis and Emil Ceanga
Publication due November 2007

Model Predictive Control Design and Implementation Using MATLAB®
Liuping Wang
Publication due November 2007