Artificial microstructures, numerical testing, 172, 191
Atomistic modelling, 311
Automatic generation of FE models, 89
Aluminium matrix (Al/SiC) composites, 2, 82, 92, 138
 crack growth, modelling, 138
 damage micromechanisms, 2
 damage modelling, 82
 graded Al/SiC composite, 248
 virtual testing of microstructures, 92
AlSi cast alloys, 14, 76, 84
Bilayer model, gradient material, 258, 292
Brittle fracture, in tungsten single crystals, simulation, 382
Coated hard metal, mesomechanical model 240
Cohesive surface model, 204
Crack deflection, 199
Crack/gradient interaction, 242
Critical resolved shear stresses, 414
Crystal orientation, influence of the of void growth, 349
Edge dislocation, movement in the -Fe-Cu system, 363
 hitting a Cu precipitate, 366
 pinning of edge dislocations, atomistic simulation, 412
Embedded atom potential, for Fe-Cu interactions, 313
Embedded unit cells 42, 157
Finite element removal (elimination) technique, 138, 188
Finite element softening, 188
Functionally graded finite elements, 240
Gradation degree, effect 252
Graded materials, 213, 227
 for milling applications, 299
Graded multiparticle unit cells, 248
Damage parameter (indicator), 76, 130
Dispersion strengthening, modelling, 371
Ductile damage, fracture, 138
Failure curve, 77
Fractal fracture surface, 179
Inclusion shape effect, 159
Interaction of dislocations and precipitates, MD simulations, 413
Interface fracture, 203
Interpenetrating phase composites, 213, 284
Matricity model, 215
Metal-ceramic joints, 203
Micromechanisms of damage initiation and fracture, 1
 Al/SiC composites, 1
 AlSi cast alloys, 14
tool steels, 29
Microstructure-based FE mesh generation, 186
Microvoid growth, 144
Molecular dynamics, 375, 377, 412
 molecular dynamics/micromechanics, combined model, 377
Multiparticle unit cells with spherical inclusions, 89
Multiphase finite elements (MPE), 65
 3D multiphase finite elements, 65
Open form porosity, 294
Percolating microstructure, composite, 285
Precipitates, formation and growth at different temperatures, 395, 401
Primary carbides in tool steels, failure condition 33-36
Real microstructures, fracture modelling, 133, 170
Rice and Tracey damage parameter, 76, 130
Self-consistent embedded cell models, 42, 54
SEM in-situ experiments 1-29
Step-by-step packing (SSP) approach, 110
Thermal expansion coefficients, micromechanical analysis, 229
Tool steels, 29, 33, 164, 184
damage mechanisms, 29
fracture modelling, 164
primary carbides, failure 33
testing of microstructures, 184
User Defined Field, ABAQUS subroutine, 93, 252, 281
Void growth, in single crystalline copper, 342
Voxel-based FE mesh generation, 275
WC/Co hard metals, 81, 133, 144, 157, 240, 299
Weighting factors, in the matricity model, 218
ZrO$_2$/NiCr composites, 228