Index

{137} facets 125
(2 × 4) reconstruction of InP (001) 73
2D (monolayer-high) islands 25
2D platelets 17
2D–3D transition 43, 56
2D-island growth 74
3D islands 25
3D strained islands 27
3D-island mode 88
ab initio 3
ab-initio DFT-GW calculation 72
ab initio molecular dynamics 3
acoustic phonons 165
acoustoluminescence 201
activation energy 227
adatom diffusion 5
adatom sea 25, 28, 54
adatoms 14, 24
analytical techniques 98
annealing 159, 287
anomalous coarsening 15
anti-correlation 34
antibunching 332
anticorrelated growth 29, 32
antimony surfactants 133
area-selected growth 258
Arrhenius 229
aspect ratio 126, 155, 157
atomic structure 123
atomic-force microscopy 238
attachment 3, 4
attachment process 25
attachment-limited kinetics 28
Auger effect 213
barrier 9, 33
bath 195, 196
BB84 protocol 343
biexciton 139, 241, 282, 285
biexciton binding energy 157, 285
biexcitonic shift 193, 203, 204
bimodal island size distributions 15
bimodal size distribution 44, 58
binding energies of excitonic complexes 285
binding energy 286, 287
bistability 212
Bloch equations 310
Bohr radius 262
bond-counting ansatz 90
bright exciton state 282
bunching 215
buried islands 29
capacitance spectroscopy 226
capacitance-voltage characteristics 211
capping 127, 130
carrier concentration 81
carrier relaxation 222
cascaded emission 338
(CdMn)Se 251
CdSe 238
charge-selective DLTS 226
charged excitonic complexes 282
chemical composition 107
chemical potential 10, 14, 25, 28, 29
chemical reactions 3
chemically sensitive reflection 107, 118
cleavage 124
cleavage surfaces 128
coalescence 28
coalescence on impact 34
coherent control 245, 308
composition 70, 73, 74, 116
composition profiles 49, 157
configuration interaction (CI) method 139
confined excitonic states 270
confined states 286
confinement potential 190
constrained equilibrium 14
constraint equilibrium 4
constraint surface equilibrium 22
constraint thermodynamic equilibrium 34
constraint thermodynamics 29, 32
continuum description 3
continuum elasticity theory 3, 34, 166
continuum theory 3
correlation 128
correlation expansion 194, 195, 197, 198, 206
correlation of structural and excitonic properties 278
Coulomb charging 230
Coulomb interaction 139, 193, 202–204, 211, 286
coupled quantum dots 182
crater 133
critical layer thickness 44
critical nucleus 33
critical thickness 134
cross-sectional scanning tunneling microscopy 123
cumulant expansion 174, 180, 196, 200, 205
cumulant-generating function 216
current-voltage characteristics 211
cyclotron resonance 264
dark-field image 107, 114, 115, 118
decoherence 216
decoherence-free subspaces 346
deep level transient spectroscopy (DLTS) 226
deep levels 226
defect-reduction technique 2, 35
deformation potential coupling 165, 191, 192, 197
dense array 27, 28, 34
dense metastable arrays 17
density functional theory 3, 11, 34, 169
density matrix 194, 196
density matrix approach 217
density matrix formalism 194
density-functional theory 4, 5, 9, 13
dephasing 165
deposition 3, 23, 24, 26
desorption 6, 9
detachment 3, 4, 23
detachment process 25
Deutsch–Jozsa algorithm 344
DFT 14, 18
differential transmission spectra,
see DTS spectra
diffraction contrast 98, 100, 107, 116
diffusion 3, 4, 6, 9, 23, 25
diffusion length 74, 76
dilute array of islands 19
diluted magnetic quantum dots 251
dimer vacancies 88
dimer vacancy line 88
dipole approximation 192
dipole–dipole interaction 319
doping 79
DRAM 222
drift 25
DTS spectra 200, 204
DWELL structure 61
effective elastic constants 169
effective mass 190
effective mass approximation 190
eh exchange 242, 244
eight-band $k \cdot p$ theory 139, 140
eight-band $k \cdot p$ theory 190
elastic anisotropy 30, 112
elastic constants 167
elastic energy relief 12
elastic relaxation energy 19
elastically soft directions 30
elasticity theory 11
electric field 79, 80
electrical pumping 340
electron beam lithography 258
electron diffraction 98
electron microscopy 98
electron p-state splitting 139
electron–electron exchange 244
electron–phonon coupling 191, 194–197, 199–202
electron–acoustic phonon interaction 172
electronic coupling 29
ellipsometry 68, 71, 77
emission spectrum 201
energy barrier for diffusion 18
energy barriers 6
energy-dispersive X-ray spectroscopy 98, 102
ensemble evolution kinetics 25, 42, 53
entangled photons 287
entry
subentry 1
envelope function 190
epioptics 68
epitaxial growth 238
equilibrium 3
equilibrium island shape 4
equilibrium shape 11, 13
equilibrium volume 19
evaporation 3
evolution of an island ensemble 3
exchange interaction 282
excitation-density dependence 270
excitation-induced dephasing 311
excited states 270, 271, 279
exciton 139, 165, 241, 282
exciton quantum coherence 247
exciton–biexciton cross-correlation 334
exciton–biexciton transition 246
excitonic states 202, 205
Fabry–Perot 81
facets 125, 128, 130
Fano factor 215
few-particle effects 281
filled-pit quantum dots 259
fine-structure splitting 282, 288, 340
finite element method 98, 102
Flash 222
floating-gate 224
fluctuations of the magnetic environment 252
Fock states 332
Förster coupling 193, 202, 204, 205
Förster energy transfer 321
FRAM 222
Frank–van-der-Merwe 19
free-standing islands 11
free-standing QD 33
full counting statistics 216
GaAs 11
GaAs homoepitaxy 6
GaSb 134
Ga(Sb,As) 113, 114, 116–119
GaSb quantum dots 134
GaSb/GaAs quantum dots 56
Ge distribution 99, 100, 102
Ge/Si 29
global surface equilibrium 4
growth 19
growth interruption 130, 133
growth parameters 46
growth rate 70, 74, 82
Hanbury Brown–Twiss 332
harmonic bath 196
harmonic disc model 190
harmonic oscillator model 190
Hartree–Fock factorization 194
heavy-light hole mixing 244
Heisenberg picture 194
heterodyne detection 307
high index substrates 109
high resolution TEM 100, 117
high-angle annular dark-field STEM 118, 119
high-index facets 14, 34
high-index surfaces 13
high-resolution microscopy 98
high-resolution transmission electron microscopy 24
hole spin 248
homoepitaxy of GaAs on a GaAs(001) 5
hot trion 283
hot-electron injection 224
hydrostatic strain 276
hyperfine interaction 249
IBM, see independent boson model
III/V quantum dot 98
image charge 142
(In,Ga)As 103, 104, 107, 109, 116, 117, 119
In distribution 104–106
In migration 105, 106
In segregation 106
in-situ analysis 67
in-situ strain monitoring 69
InAs 11, 125
InAs quantum dots 16, 124, 127
InAs/GaAs 5, 29
InAs/GaAs quantum dots 50
inclined inheritance 112, 113
independent boson model 172, 174, 196–198
indium content 129, 132
infrared magneto-resonance spectroscopy 263
InGaAs 103, 131
InGaAs quantum dots 131
InGaAs/GaAs quantum dots 42
In(Ga)As/GaAs quantum dots 270
InGaN/GaN quantum dots 270
inhomogeneous broadening 212
interaction picture 195, 196
interface quantum dots 303
inverse ripening 26
IR-MRS 263
irrelevant density matrix 195
kinetic Monte Carlo 3, 6, 8, 9, 17, 23, 24
kinetically controlled islands 24
LA phonons 191, 197–199
linear electro-optic effect 79
linear optics quantum computation 330
Liouvilian 196
liquid phase epitaxy 99
LO phonon 192, 197, 275
local field 205
local phonon modes 274
local surface equilibrium 4
localization 279
localization energy 224
localized exciton 304
longitudinal acoustic phonons,
 see LA phonons
longitudinal optical phonons,
 see LO phonons
low-index facets 14
macroscopic polarization 194
many-particle 139
Markovian approximation 199, 202
mass transfer 57
master equation model 214
MBE 125
megagauss regime 264
memories 221
metal-organic vapor phase epitaxy 42, 46, 333
metastable state 22, 26, 29
micro-photoluminescence 332
microscopic polarization 193
minimum energy per atom 22
mobile phones 222
MOCVD 104, 131, 134
modeling 139
molecular beam epitaxy 109, 237
molecular dynamics 3
Mollow splitting 199
monolayer 51, 68
monolayer height-variation 278
monolayer oscillations 74, 76
Monte Carlo 3
Monte Carlo simulations 90
Moore’s Law 221
MP3 players 222
MRAM 222
multi-phonon absorption 201
multibody potentials 34
multilayer 109
multimodal size distribution 51, 278, 281
multiplexing 343
multiscale modeling 3, 34
multisheet array 29
Nakajima–Zwanzig formalism 195
nanoengineering 2
nanopatterning 87
nanospectroscopy 305
nanovoid 132
near-field fiber probe 305
negative differential conductivity 212
negatively charged exciton 285
non-exponential decay 291
non-Markovian 195, 197–199
nonresonant excitation 290
nonvolatile memories 223
nuclear spin polarization 250
nucleation 3, 6, 8, 16, 17, 24, 33
nucleation kinetics 34
nucleation problem 103
occupation effects 270
occupation number 271
optical properties 269
optical Stark effect 199, 200, 204, 315
orientation-dependent growth 258
oscillations 68
OSE, see optical Stark effect
Ostwald ripening 22, 28, 34, 84
p–n diode 224
PE, see photon echo
personal computer 222
phonon amplitude 171
phonon interaction 274
phonon replica 214
phonon sidebands 197–200
phonons 165, 275
photolithography 258
photoluminescence 114
photon echo 205
photons 329
piezoelectric field 290
piezoelectricity 139, 284
plastic relaxation 114
pn-diode 211
Poissonian process 214
polar coupling 192, 197
polarization 282
polarization degree 284
polarized emission 282, 294
positive chemical potential gradient 26
positively charged exciton 285
potential-energy surfaces 5
principle of STM 82
pure dephasing 197–199
pyramidal shape 125
QD lateral ordering 103, 104, 109, 110
QD morphology 105
quadratic coupling model 177
quantitative HRTEM 98, 117
quantum coherence 217
quantum computing 344
quantum dot growth 41
quantum dots 2, 4, 9, 12, 87, 103, 107, 113, 123, 139, 221, 237
quantum information processing (QIP) 301
quantum structures 262
quantum wire 2
quantum-dot laser 60
quantum-dot overgrowth 47, 276
quantum-dot shape 52
quantum-dot size 280
quantum-dot stack 48
Rabi oscillations 199, 203, 312
radiative coupling 203
radiative decay 203
radiative recombination 309
Raman scattering 274
RAS spectra 72
rate window 227
recombination dynamics 295
reconstruction 7–10, 13, 68, 72
red shift 271, 272, 276
reflectance 68, 69
reflectance anisotropy spectroscopy 68, 71
refractive index 69, 81
relevant density matrix 195
renormalization 270
resident carriers 249
resonance fluorescence 196
resonant excitation 290
resonant tunneling structures 211
reversed truncated cone 132
RF, see resonance fluorescence
ring-like structures 133
ripening 3, 22, 25
scanning tunneling microscopy 69, 82, 92, 123
schematic and principle of the MOVPE-STM 82
Schottky model 80
Schrödinger picture 194
second Born approximation 194
second-order coherence function 331
secret key-distribution protocol 329
secular approximation 202
segregation 129
self-assembled quantum dots 259
self-assembled single quantum dots 330
self-limitation of growth 98
self-limiting growth 258
self-organization 2
sequential tunneling 217
setup of a typical RAS-system 72
shape 52, 123
shape transition 14
shear strain 284
shift of quantum-dot emission 276
shot noise 214
(Si,Ge)/Si 98, 99
side facets 20, 125
single quantum dots 281, 292
single-dot spectroscopy 281
single-particle orbitals 140
single-particle states 139
single-photon source 330
single-turn coil technique 264
size 123
size distribution 278
skewness 217
Slater determinants 140
sp-d coupling 251
spectral diffusion 281, 293
spectral power density 214
spin relaxation 247
spin-lattice-relaxation 252
state filling 230
step-edge 74, 76, 79
step-flow growth 74, 77
steps 10
stimulated emission 246
STM 123, 124
stoichiometry 123, 129, 130, 134
Stokes shift 290
storage of holes and electrons 287
strain 125, 128, 130, 139
strain energy distribution 102, 112
strain field 23, 99, 116
strain reduction 277
strain relaxation 11, 14, 45
strain relaxation simulations 129
strain sensitive 116
strain tensor 167
strain-induced renormalization of the surface energy 21
strain-renormalized surface energy 25, 27
Stranski–Krastanow 87, 99, 103, 109
Stranski–Krastanow growth 4, 19, 41
stress 88, 167
stretched exponent 291
strong coupling 195
structural anisotropy 284
structural changes 127
structural characterisation 98
subensemble 51, 53, 278
substrate orientation 109, 111
substrate-mediated elastic interaction 20
suppression of nucleation 98
surface energies 13
surface equilibrium 19
surface free energies 4
surface reconstructions 5
surface stress 4, 19
symmetry 145
symmetry lowering 284
synchrotron radiation 98
system–bath interaction 195, 196
TCL theory 195, 196, 202, 205
TEM 240
thermal emission 226
thermodynamic driving force 10
thermodynamically controlled islands 24
thermodynamically stable ensembles of the islands 22
three-dimensional arrays of QDs 98, 109, 110
three-dimensional strain field 100
time convolutionless theory, see TCL theory
time-resolved PL 290
time-resolved spectroscopy 289
TO phonon 275
transmission electron microscopy 97, 98, 100, 107, 113–116
tree-dimensional arrays of QDs 109
trion 243, 286
triplet state 244, 245
truncated pyramid 53, 131
truncated pyramidal shape 128
truncation 130
tunneling 228
two-dimensional electron gas (2DEG) 225
two-dimensional islands 19
two-dimensional nucleation 102
two-level system 306
two-quantum-bit system 245
type II band lineup 56
type-II band alignment 134
ultimate memory 224
VCSEL 61
vertical alignment 48
vertical correlation 34
vertical ordering 110, 113
vertically anticorrelated arrangement 30
vertically correlated arrangement 30
vertically correlated array 29
virtual and real phonon-assisted transition 176
Volmer–Weber 19
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>wetting layer</td>
<td>4, 10, 15, 20, 22, 28, 42, 56, 104</td>
<td>XSTM</td>
<td>123, 127, 131, 134</td>
</tr>
<tr>
<td>wetting layer depletion</td>
<td>102</td>
<td>Z-contrast</td>
<td>98, 118</td>
</tr>
<tr>
<td>wetting layer thickness</td>
<td>105</td>
<td>zero-dimensional</td>
<td>103</td>
</tr>
<tr>
<td>Wiener–Khinchin theorem</td>
<td>215</td>
<td>zero-phonon line</td>
<td>197, 200</td>
</tr>
<tr>
<td>X-ray diffraction</td>
<td>97, 98, 100</td>
<td>ZnSe</td>
<td>238</td>
</tr>
<tr>
<td>X-ray diffuse scattering</td>
<td>98, 104–106, 110</td>
<td>ZPL, see zero-phonon line</td>
<td></td>
</tr>
</tbody>
</table>