Supplement 1: MATLAB® Data Import

There are several ways to import data into the MATLAB workspace. See topic ‘Using Import Functions with Text Data’ in the online help for an overview concerning text data. There are special commands for importing spreadsheet data (\texttt{csvread}); there is even a special command for importing from Microsoft EXCEL: \texttt{xlsread}.

It is not the intention here to go into details. We demonstrate a user-friendly tool, which provides a data preview and several data manipulation tools during importing. The ‘Open Import Wizard’ interface is called by \texttt{uiimport}

from the MATLAB® command window. The functionality is exemplified on one of the most cited data sets, showing the increase of atmospheric CO\textsubscript{2} concentrations within almost 50 years. The data-set, which is measured at the Mauna Loa Observatory in Hawai’i at a height of 3400 meters above sea-level, can be obtained from the internet. For monthly recorded data see: http://www.seattlecentral.org/qelp/set78/078.html. All data are given in a single ASCII text file. Typical content is depicted after calling \texttt{uiimport} from the command window and opening the file (see Fig. S.1).

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig_s1.png}
\caption{Data import, 1st screen}
\end{figure}
After pressing the ‘Next’ button another similar window appears, which allows some manipulations on the data file. Here it is important to increase the number of text header lines to 15. After that in the right data window the data matrix appears, as depicted in the Fig. S.2.

The year is given in the first column; 14 following columns show month related concentrations, the annual mean and a fitted annual mean. As we liked to take the monthly measurements only, we highlight the corresponding 12 columns by mouse-click in the right data window. Use the right mouse button to obtain a pop-up window, including a copy button. After copying the highlighted columns, use the ‘Back’ button to return to the first window; and select ‘Clipboard’ using the corresponding radio button. Now the carbon-dioxide values appear in the data blocks; years are omitted.

Click two times ‘Next’ to move to the final window. Here, choose only to re-name the data variable (use again right mouse button) to ‘CO2’. The final ‘Finish’ (button!) creates a new variable with the chosen name in the workspace (see Fig. S.3). With that operation the command is finished and the wizard disappears.
In the next step we manually change ‘-99.99’ entries in the data set that is used in the data set for missing values, to ‘NaN’, which fits with the MATLAB® convention (using copy and paste operations in the array editor. There are only few missing values, which allow the manual operation. For more complex data sets one has to utilize some MATLAB® commands as demonstrated in the following.

In order to plot the data, the matrix is transformed into a row vector. This can be done using the following command sequence:

```matlab
for i=1:47
    for j = 1:12
        co2(12*(i-1)+j)=CO2(i,j);
        t(12*(i-1)+j)=datenum(1957+i,j,15)
    end
end
```

The 2D data set in the variable ‘CO2’ is converted to a row in the variable ‘co2’. In addition another row vector with corresponding times is created. We use the serial date number, which is one of several MATLAB® alternatives to represent date and time (for more information see the online help index ‘dates and times’). The `datenum` command converts a date into the serial date number. Called with three numbers, these correspond to year, month and day. There are several more alternative calls of the command, which the user may look up in the help. The aimed plot is finally created by the commands:

```matlab
plot (t,co2)
datetick ('x',11)
xlabel (year); ylabel('Atmospheric CO\textsubscript{2} [ppm]');
```

The following figure results. Corresponding to the time format the datetick command offers several options to display time. There is a list of 28 alternatives which can be applied by the `datetick` command. Here we choose to show the year only. The result is shown in Fig. S.4.
Supplement 2: Data Export

Data are exported by using the `save` command. Let us take the calculated `co2` data from Supplement 1 as an example. The command

```
save ('co2.mat', 'co2')
```

stores the values in the file `co2.mat` in the working directory. Make sure that the user has write-permissions on that file. Otherwise change the directory by using the `cd` (change directory) command. Note that MATLAB® has its own data storage format that is the default here. Usually the extension `.mat` is used for files with that data format.

Other data formats can also be stored. Most important is the ASCII format, which is obtained by using:

```
save ('co2.mat', 'co2','-ascii')
```

Also important is the `-append` option for the data to be appended at the end of an existing file.
Supplement 3: Data Presentation in a Histogram

There are various ways to represent environmental data using MATLAB®. The reader may have a look in MATLAB® online command index for the `hist`, `bar` and `bar3` commands.

As an example we show a histogram of concentration measurements of different chemical species at various observation points. Six species were measured at 13 positions. The entire data-set is stored in a matrix \(C \).

The histogram is then produced by the `bar` command:

```matlab
bar(C);
```

The code can be found on the CD under the name ‘`bardemo.m`’

![Histogram of concentration measurements](image)

Fig. S.5. Example data representation in a histogram
The result of the M-file is depicted in Fig. S.5. Further commands concern the labels of the axes and the legend. Note how greek characters are introduced in the text, by using the \ operator.

```m
xlabel ('observation points');
ylabel ('C [\ mug/l]');
title ('measured concentrations');
legend ('Na','Cl','B','HCO3','F','TOC');
```
In twenty chapters, the book shows various applications of MATLAB® in the field of environmental modeling. Numerous MATLAB® commands are introduced and their use demonstrated. Various fields of environmental modeling have been touched.

After twenty chapters, the book remains incomplete. Neither the entire field of environmental modeling is covered, nor is the entire capability of MATLAB® exploited. Of course, either of the mentioned tasks would be too ambitious to be worked out, even within several book volumes.

Is something missing that is important? Probably everyone working in the field of environmental modeling, who does not find her/his special problem set-up, will say, yes. It was already mentioned that the entire field is too vast. Concerning MATLAB®, the important application field of numerical methods for 2D and 3D applications is missing. MATLAB® can be used to implement important numerical approaches, like finite differences, or finite elements. These methods were omitted as a consequence of the decision to focus on core MATLAB®. The easiest way to apply such numerical techniques is to use the partial differential toolbox of MATLAB®. Core MATLAB® could also be used to implement higher-dimensional numerical models, but manual programming skills are required. Only the advanced user would be addressed by this topic, to whom the recently published book of Danaila et al. (2007) can be recommended. Among other numerical topics Quarteroni (2003) outlines methods for the advection diffusion equation using advanced Finite Element modeling techniques and presents MATLAB® source code for the solution of the 1D steady state.

Concerning the environment, the hydrosphere is surely over-represented in the book, while the atmosphere and the pedosphere appear only sporadically. Among the hydrosphere topics, groundwater has the biggest share. The choice of the topics is surely due to the background of the author, who in the past mainly worked in the favored fields. However, the mathematical concepts that were introduced are mostly independent from the environmental compartment
and thus applicable in several environmental areas. The given applications should be viewed as examples for the mathematical techniques.

It was the purpose of the book to give a first introduction. I hope that goal is reached. Aside from that, some novel approaches have been introduced and examined which are beyond state-of-the-art. Some of these approaches turn out to be simple and useful and will hopefully find their way into the practice of environmental modeling. If that really happens, is due to the reader and her/his conception of the book. In that sense, I wish the book to find understanding readers who make these concepts work.

References

Quarteroni A., Modellistica Numerica per Problemi Differenziali, Springer Publ., Milan, 332p, 2003 (in Italian)
The following list gathers the MATLAB® commands, which are mentioned in the book. For each command find the corresponding chapter and sub-chapter numbers within the book. For frequently appearing commands the most important occurrences are listed, only.

<table>
<thead>
<tr>
<th>Command</th>
<th>Chapter 1</th>
<th>Chapter 2</th>
<th>Chapter 3</th>
<th>Chapter 4</th>
<th>Chapter 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>addpath</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>14.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>any</td>
<td>14.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atan</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atan2</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>axes</td>
<td>20.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>axis</td>
<td>6.6, 18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td>Supplement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bar3</td>
<td>Supplement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>besselk</td>
<td>12.3, 18.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bessely</td>
<td>16.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>break</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bvp4c</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bvpinit</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>case</td>
<td>6.4, 20.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cd</td>
<td>Supplement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ceil</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>circshift</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clear</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>colorbar</td>
<td>14.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>colormap</td>
<td>14.4, 15.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conj</td>
<td>15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>continue</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>contour</td>
<td>15.1, 16.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>contourf</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cos</td>
<td>8.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cplxgrid</td>
<td></td>
<td>15.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cplxmap</td>
<td></td>
<td>15.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>csvread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Supplement</td>
</tr>
<tr>
<td>datenum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Supplement</td>
</tr>
<tr>
<td>datetick</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Supplement</td>
</tr>
<tr>
<td>delete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.3</td>
</tr>
<tr>
<td>diag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.2</td>
</tr>
<tr>
<td>diff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>display</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>eig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.3</td>
</tr>
<tr>
<td>else</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td>end</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td>erf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.1</td>
</tr>
<tr>
<td>erfc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.1</td>
</tr>
<tr>
<td>exp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>expint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.4</td>
</tr>
<tr>
<td>expm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.2</td>
</tr>
<tr>
<td>eye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2, 18.2</td>
</tr>
<tr>
<td>figure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>funm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.2</td>
</tr>
<tr>
<td>function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.5</td>
</tr>
<tr>
<td>fzero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.5, 10.4, 12.5</td>
</tr>
<tr>
<td>get</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.1</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
<td>Alternative Command(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>getframe</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ginput</td>
<td>17.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>global</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gplot</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gradient</td>
<td>14.4, 15.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grid</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>griddata</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>guide</td>
<td>20.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hdftool</td>
<td>17.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hist</td>
<td>Supplement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hold</td>
<td>2.5</td>
<td>sin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>15.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if</td>
<td>2.6</td>
<td>slice 14.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imread</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imag</td>
<td>15.3</td>
<td>sqrt 4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imagesc</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inputdlg</td>
<td>17.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interpstreamspeed</td>
<td>14.4</td>
<td>str2double 17.3, 20.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inv</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>legend</td>
<td>2.5, 4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>line</td>
<td>17.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>linspace</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log</td>
<td>1.3, 10.3, 12.1</td>
<td>switch 6.4, 20.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log10</td>
<td>8.2, 8.3</td>
<td>text 18.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>6.6, 8.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>14.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mesh</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>meshgrid</td>
<td>13.3, 14.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>movie</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mpgwrite</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>msgbox</td>
<td>20.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>msgbox</td>
<td>20.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nargin</td>
<td>17.5, 20.1</td>
<td>whitebg 15.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nargout</td>
<td>17.5, 20.1</td>
<td>while 2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>num2str</td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ode15s</td>
<td>9.1, 19.3</td>
<td>who 1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ode45</td>
<td>19.4</td>
<td>xlabel 4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>odeset</td>
<td>4.5, 9.3, 11.4</td>
<td>ylabel 4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ones</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>path</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pdepe</td>
<td>4.4, 6.4</td>
<td>+ 1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plot</td>
<td>1.3</td>
<td>− 1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plotyy</td>
<td>9.3</td>
<td>* 1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>polyfit</td>
<td>10.1</td>
<td>/ 1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>polyval</td>
<td>10.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quiver</td>
<td>14.4, 15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rand</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>randn</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rank</td>
<td>8.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>real</td>
<td>real</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rectangle</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>round</td>
<td>15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>save</td>
<td>Supplement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set</td>
<td>20.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sin</td>
<td>8.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slice</td>
<td>14.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sqrt</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sqrtm</td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>streamline</td>
<td>14.4, 15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>streamline</td>
<td>14.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strcat</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subplot</td>
<td>19.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>surf</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sum</td>
<td>10.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>switch</td>
<td>6.4, 20.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>text</td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>title</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uiimport</td>
<td>Supplement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uisave</td>
<td>20.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uigetfile</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uiputfile</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>waterfall</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>web</td>
<td>20.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>which</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whitebg</td>
<td>15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>while</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>who</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whos</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xlabel</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ylabel</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xlsread</td>
<td>Supplement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zeros</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Character</td>
<td>1.2</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\</td>
<td>^</td>
<td>\</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>^</td>
<td>1.2</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.*</td>
<td>1.2</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>./</td>
<td>1.2, Supplement</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>^</td>
<td>1.2</td>
<td>13.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Companion Software List

The accompanying CD contains the M-files which are described in the book, sometimes extended versions. The files can also be downloaded from the MATLAB® central file exchange (www.mathworks.com/matlabcentral/fileexchange).

advection.m MichaelisMenten.m
analtrans.m newtondemo.m
analtrans_s1.m nuclides.m
analtrans_s2.m OpenChannel.m
analtrans_s3.m par_est.m
analtrans_s4.m par_esta.m
analtransnodim.m par_estb.m
AnElements.m par_estc.m
animation.mpg par_est2.m
bardemo.m par_est2a.m
boudreau_westrich.m pdepetrans.m
comparts.m phasediag.m
compspec.m predprey.m
cplxPot.m re toxsteady.m
diffusion.m retention.m
dipole.m richards.m
DischargePotential.m simpletrans.m
GaussianPlume.m slowsorp.m
GaussianPuff.m Speciation.m
GdDTPA.m StreeterPhelps.m
georef.m strtransanal.m
gw_flow.m thiem_test.m
histogram.m ThreeD_flow.m
ierfc.m transport.m
kinetics.m viscosity_dyn.m
logistic.m welldrawdown.m
lorenza.m wellvortex.m
Index

Archie’s Law’s Law, 52
Darcy’s Law velocity, 220
Darcy’s Law’s, 219
Euler
equations, 213
Euler equations, 213
Fick’s Law’s Law, 74
Gaussian
models, 293
Gaussian puffs, 293
Gaussian
plumes, 293
Lorenz attractor, 354
Marmara Sea, 197
Michaelis-Menten, 126, 163
Monod kinetics, 126, 176
NTA, 142
Poisson equation, 201, 202
Streeter-Phelps, 160
adjacency matrix, 317
advection, 70, 71, 73, 77, 197
advection-diffusion, 60
advection.m, 72
advection.m’, 70, 71
animatio, 120
bank filtrate, 278
boundary conditions
Neumann, 73, 76, 111
boundary conditions, 201, 202
Dirichlet, 61
Neumann, 62
Robin, 62
Cauchy, 62
Neumann, 72, 73, 76, 78
Neumann-number, 75
boundary condition, 201, 202
Dirichlet, 61
Cauchy, 62
Robin, 62
chloride, 198
closed form solutions, 214
concentrations
total, 144, 145
conductivity
hydraulic, 260
conductivity, 58, 260
decay, 87, 88, 98, 303
degradation, 87, 176
degradation or decay, 88
density, 106, 349
di-pole, 284
diffusion, 73, 77, 98, 197, 201, 202
diffusion-equation, 60
diffusion.m’, 73, 75, 78
diffusivity, 52, 58, 59, 66, 83, 176, 294
molecular, 52
thermal, 59
dispersion, 53
dispersivity, 66, 76
donor controlled, 322
doublette, 276
equation
Poisson, 201, 202
potential, 255
equilibrium
 unstable, 330
finite differences, 74
free fluids, 208
function
 harmonic, 256
grid, 65, 89, 161, 164, 172, 176, 284, 340, 365–367, 382
harmonic function, 256
head
 piezometric, 231, 260, 264
 suction, 223
heat capacity, 58
ideal fluids, 213
initial conditions, 61, 62
isotherm
 linear, 102, 103, 113
kinetics
 Monod, Michaelis, 126
 Michaelis-Menten, 163
 Monod, 163, 176
logistic growth, 340
mesh, 250, 256, 260, 261, 284–286, 382
normal distribution, 293
norm, 184, 185, 187, 188, 198
nuclides, 328
numerical solutions, 69
parameter estimation, 190, 197, 201
phase diagram, 334
phase diagrams, 333
phase space, 333
piezometric head, 231, 260, 264
potential, 256, 261, 275
potential equation, 255
predator-prey, 349
reactions
 redox, 176
 kinetic, 98
 redox, 176
recipient controlled, 322
redox reactions, 176
residence time, 321
residual vector, 183
retardation factor, 107
retention curve, 223
scaling, 347
script, 316
sink, 256, 269, 283
sorption, 101, 114, 316
streamfunction, 271, 273
streamlines, 273, 288
subfunctions, 316
suction head, 223
timestep, 76
tortuosity, 52
trajectory, 333, 343, 349
turbulence, 210
variables
 global, 315
 independent, 29
 local, 315
velocity
 Darcy, 220
viscosity \(\mu \), 209
vortex, 284, 286
wells, 286
Fourier’s Law, 57
conductivity \([L/T] \), 225
decay eq. for \(c \) with \(c(0)=c_0 \), 191, 194
decay eq. for \(c \) with \(c_0 \), 194
decay, 116, 193
density, 113, 116
diffusivity, 116
grid; \(B \), 22
head
 suction \([L] \), 224
isotherm
 linear, 113
mesh points); \(B \), 225
norm of residuals: ‘ \(\text{num2str(normc)} \); \(B \), 191, 193
 norm(\(c_{\text{fit}} - c_0*\exp(-\lambda*t_{\text{fit}}) \)); \(B \), 193
 norm(\(c_{\text{fit}} - c_0*\exp(-\lambda*t_{\text{fit}}) \)), 194
 norm(\(c_{\text{fit}}-c_0*\exp(-\lambda*t_{\text{fit}}) \)); \(B \), 191
 norm, 194
parameter estimation with derivatives, 191–193
porosity, 113, 116, 225
residual water content, 224
retardation factor, 110
sedimentation, 198
soil hydraulic properties, 226
sorption = 1; \(B \), 113
sorption, 113, 114
suction head, 224
water content , 224
activity, 87, 141, 142, 146–149
adjacency matrix, 318–322, 342
Adriatic Sea, 348
air quality, 322, 323
analytical solutions, 4, 30, 32, 33, 69, 159, 200, 210, 213, 214, 222, 229, 271, 286, 293, 297, 304
animation, 71, 119–121
aquifer
confined, 222, 230–233, 235, 237, 238, 241, 244, 245, 259, 261, 263, 331
half-confined, 235, 241
unconfined, 222, 231, 232, 235, 241, 244, 245, 248, 259, 261
Archie’s Law, 52, 53, 63
bank filtrate, 182, 278, 279
Barents Sea, 321, 337
Bernoulli theorem, 213–215, 258
Bessel function, 235, 299, 331
biosphere, 3, 207
Cauchy, 62, 81
Dirichlet, 61, 62, 81, 83, 91, 166, 200 Neumann, 78 Robin, 62, 81
Cauchy, 62, 81
Dirichlet, 61, 62, 81, 83, 91, 166, 200 Neumann, 62, 73, 75, 77, 78, 81, 83, 111, 118, 166 Robin, 62, 81
buoyancy, 223
calcite, 59, 151–155
calibration, 33, 181
carrying capacity, 22, 340, 341
chaos, 355
chloride, 35, 197, 198
cobalt, 142
compartment, x, 29, 47, 69, 104, 123, 137, 160, 218, 222, 302, 317, 320–325, 328, 341, 379
complex potential, 276, 283–286, 288, 289
concentrations
total, 144–146, 150, 151, 154
conductivity, 59, 220–224, 227, 230, 232, 238, 241, 244, 252, 259, 260, 330, 331
hydraulic, 220, 222, 227, 230, 232, 241, 244, 252, 259, 260, 330
thermal, 59
energy, 48, 57, 59
mass, 34–36, 38–40, 47, 48, 50, 55–57, 74, 169, 209, 321, 323
continuity equation, 34, 35, 39, 48, 49, 169, 209, 210, 221, 255
convection, 60
correlation
of numerical algorithms, 94, 335
curve fitting
exponential, 189
polynomial, 19, 182, 192
cyano bacteria, 182
Dalton’s Law, 35
Damköhler number, 92, 95, 96, 99
Darcy’s Law, 152, 153, 213, 217, 219–222, 230, 233, 234, 243, 244, 259
Davies equation, 148
degradation, ix, 3, 23, 42, 47, 87, 88, 90, 93, 95, 106, 107, 109, 111, 115, 124, 128–130, 132, 135, 159, 160, 162, 163, 168, 170, 173, 174, 177,
178, 182, 195, 196, 296, 302, 305, 367
density, 4, 22, 34, 40, 46, 106, 107, 113, 168, 169, 171, 208, 210, 211, 217, 220, 221, 267, 274
fluid, 40, 169, 208
deposition
wet, 302
di-pole, 284
heat-, 59
diffusivity, 50–53, 55, 56, 59, 60, 74, 83, 130, 196–200, 359, 364
molecular, 50, 51, 130, 198
thermal, 60
turbulent, 56
digitizing, 313
length, 53
dispersivity, 53–55, 74, 80, 130
donor controlled, 323
doublette, 277, 278
DTPA, 131, 132, 135
ecosystem, 7, 28, 135, 341
eigenvalue, 8, 330–332, 335, 346, 351
eigenvector, 8, 331, 335
endosufan, 305
energy, 34, 35, 48, 57–60, 215, 216
equation
Laplace, 256
Poisson, 203, 222
state, 134
equations
continuity, 34, 35, 39, 48, 49, 169, 209, 210, 221, 255
potential, 256, 260, 271
equilibrium
stable, 334, 341, 351, 353
unstable, 335, 341
Euler
equation, 217, 258
Euler equation, 217, 258
eutrophication, 348
Fick’s Law, 47, 49–53, 56, 59, 62, 74
finite differences, 75, 78, 214, 379
finite elements, 214, 379
finite volumes, 214
food chain, 321
food web, 341, 342, 348
Fourier’s Law, 48, 59, 62
free fluids, 281
function
Bessel, 235, 299, 331
error, 65, 67, 69, 196
Gaussian
models, 302
plumes, 305
Geo Information Systems (GIS), 3, 5, 27, 308, 316
geo-referencing, x, 308, 310, 315
gravity, 181, 209, 215, 217, 220
grid, 24, 38, 77, 247, 248, 252, 254, 289
groundwater level, 245, 369
head
hydraulic, 213, 221, 223, 248, 281, 308
piezometric, 217, 221, 229–232, 234, 235, 238, 244, 245, 248, 259–261, 330
pressure, 62, 223, 227
heat capacity, 35, 57–59
Henry’s Law, 160, 219
histogram, 186, 377
hydraulic head, 62, 213, 221, 223, 248, 281, 308
hydrological cycle, 317, 318
image processing, x, 5, 29, 287, 288, 301, 307–312
initial conditions, 32, 79, 83, 118, 165, 325
insecticide, 124, 305
interception, 317, 318
ionic strength, 142, 147, 148
isotherm
linear, 108, 113, 115
isotherms, 104, 113, 115, 126
Jacobi matrix, 146, 345, 353
karst, 151
kinetics
 Michaelis-Menten, 90, 126, 135, 163–165, 171
 Monod, 90, 126, 128, 129, 135, 171, 173, 177, 178
lake, 182, 198, 278, 286, 321, 322, 341, 348
Lake Michigan, 341
Lake Victoria, 348
Laplace equation, 256
linear system, x, 17, 18, 161, 321, 322, 324, 333, 339, 353
logistic growth, 340, 342, 351
Lorenz attractor, 353–355
Lotka-Volterra, 348, 351, 355
Marmara Sea, 197
mass action
 Law of, 126, 138, 139, 142, 163
mesh, 247–250, 252, 256, 261, 262, 264, 265, 267, 273, 287, 289, 347
Michaelis-Menten, 90, 126, 135, 163–165, 171
microcystin, 182, 196
model region, 32, 61, 151, 253, 255, 260, 261, 267, 272, 275, 287, 310
Monod kinetics, 90, 126, 128, 129, 135, 163, 171, 173, 177, 178
Neumann number, 73
Newton method, 139, 140, 145, 146, 155, 209
Nile perch, 348
nonlinear system, 145, 151, 333, 339, 341, 342, 353, 355
norm, 185, 186, 189, 191–193, 195
normal distribution, 293–297, 305
nuclides, 109, 207, 328
numerical solutions, vii, 4, 74, 77, 222, 273

Péclet criterion, 61, 92, 96, 99, 166, 296
Péclet number, 61, 92–96, 99, 166, 296
parameter estimation, ix, 7, 34, 134, 181, 203, 238, 241
PCB, 305
pedosphere, 47, 141, 379
permeability, 220
phase diagram, 343
phase space, x, 333, 336, 344–346, 350–353, 355
phosphorus, 7, 163
phytoplankton, 341
piezometric head, 217, 221, 229–232, 234, 235, 238, 244, 245, 248, 259–261, 330
Poisson equation, 222
pollution, vii, 30, 63, 85, 100, 179, 227, 293, 295, 299, 302, 306
 complex, 276, 283–286, 288, 289
potential flow, x, 214, 217, 258
precipitation, 105, 218, 302
precision mode
 double precision, 311
predator-prey, 348, 350, 352
 dynamic, 217, 220
 head, 62, 223, 227
Rayleigh number, 353
reactions
 equilibrium, 138, 143, 150, 153, 154
 kinetic, 90, 124, 126, 128, 135, 151, 154, 155, 163, 164, 171, 175, 178
 redox, 173–175, 177–179
 redox reactions, 173–175, 177–179
residence time, 218, 321
residual, 173, 185, 186, 189, 193, 222, 239
retardation, 107–111, 113, 115, 121, 129, 182, 196, 297
retention curve, 223, 224
Reynolds number, 210, 213, 217, 220
Richard equation, 224
Richards equation, 224
scaling, 120, 277
script, 190
sedimentation, 55, 118, 167, 168, 197
aqueous, 182
seepage, x, 29, 35, 54, 101, 208, 218, 219
settling velocity, 305
sink, 38, 48, 56, 57, 88, 168, 173, 199, 256, 257, 268, 269, 282, 325, 335
line, 284
sinks, 34, 38, 48, 49, 57, 60, 79, 106–108, 166, 209, 210, 256, 284, 324
stack release, 304
streamfunction, 62, 255, 266, 271–275, 278, 280–283, 289
streamlines, 258, 266, 267, 273, 276, 277, 285–289
Streeter-Phelps, 160–163, 179
subfunctions, 316, 362
superposition, 256, 272, 275, 281, 284, 286, 300, 302
system
linear, x, 17, 18, 161, 321, 322, 324, 333, 339
nonlinear, 145, 151, 333, 339, 341, 342, 353, 355
timestep, 111
toluol, 324
tortuosity, 52, 55, 63
trajectory, 352, 355
transition zone, 71, 73, 253
turbulence, 56, 208, 217, 302
unsaturated zone, 35, 37, 51, 207, 208, 218, 222, 223, 227, 232, 317
vadose zone, 37, 207, 208, 218, 222, 223, 231
validation, 33, 34
variables
dependent, 79, 208
dimensionless, 61, 88, 89
independent, 29, 32, 48, 79, 145, 159, 171
velocity
Darcy, 152, 153, 220, 243, 259
flow, 53, 215, 220, 267
verification, 33
viscosity, 209, 210, 213, 217, 220
dynamic, 209, 220
kinematic, 210
volatile organic compound, 324
vortex, 280, 286, 288, 289
water content, 51, 222, 223, 227
wells, 219, 229, 260, 275–277, 284, 286, 287, 331, 337
wet deposition, 302
zooplankton, 341, 342, 348