Appendix A
Mathematica and Software Resources

Many universities and schools allow free access, for students and faculty, to Mathematica software. Contact the IT department at your institution for details. The Wolfram company offers reduced pricing for a personal student license, at https://store.wolfram.com/view/app/mathematica/student. Alternatively, a web-browser plug-in, Wolfram CDF Player, is available, free of charge, at https://www.wolfram.com/cdf-player/. Once installed, the CDF Player allows one to access the notebooks linked in the book. However, the plug-in does not let the user amend scripts and program Mathematica codes. For a limited period, we will also post selected notebooks in the Wolfram Cloud. For personal computer enthusiasts, Mathematica is bundled with the Raspberry Pi kit, available at https://www.raspberrypi.org.

A comprehensive guide and interactive tutorial on the Wolfram language can be found at https://www.wolfram.com/language/elementary-introduction/2nd-ed/

In addition to the numerical experiments included in the linked notebooks, the IBM Corporation has made a quantum simulator, as well as an actual quantum computer, available to the general public. Information on the IBM Q Experience is found at https://quantumexperience.ng.bluemix.net/qx/experience.

Mathematica Notebook Appendix: Using and programming the IBM Q experience quantum computer http://www.physics.unlv.edu/%7Ebernard/MATH_book/appendix/appendix_link.html

© Springer Nature Switzerland AG 2018
B. Zygelman, A First Introduction to Quantum Computing and Information, https://doi.org/10.1007/978-3-319-91629-3
Index

A
- Abelian group, 218
- Adiabatic Quantum Computing, 181
- adjoint, 12
- algorithm, 2
- ancillary qubit, 209
- anharmonicity, 199
- anti-correlated, 144
- anti-Jaynes-Cummings, 178
- Aspect, A., 147
- Atanasoff, John, 149

B
- balanced function, 66
- bandwidth limited, 79
- Bardeen, J., 197
- basis, 7, 112
- BB84 protocol, 141
- BCS theory, 197
- Bell’s theorem, 138
- Bell, John, 125, 128, 135
- Bell Laboratories, 149
- Bell pairs, 145
- Bell states, 128
- Bennet, Charles, 141
- Bernstein-Vazirani problem, 70
- Bertlmann, Reinhold, 135
- Bertlmann’s socks, 135
- bi-chromatic Raman beams, 179
- bit, 1
- bit-flip error, 205
- black-box quantization, 201
- blue-sideband transitions, 178
- Bohm, David, 125
- Bohr, Niels, 125
- Bohr magneton, 71
- Boltzmann, Ludwig, 121
- Boltzmann constant, 195
- Boole, George, 49
- Boolean logic, 149
- Boolean logic adder circuit, 149
- Boolean logic gates, 49
- Born, Max, 5
- Born rule, 5, 109
- boundary conditions, 184
- Brassard, Gilles, 141

C
- capacitor, 192
- carrier frequency, 177
- carrier transition, 177
- Cartesian product, 14
- CERN, 125
- channels, 205
- CHSH inequalities, 135, 146
- Church, Alonzo, 53
- cipher, 94
- Cirac-Zoller gate, 167
- Cirac-Zoller mechanism, 162, 174
- circuit impedance, 196
- circuit model, 49
- circuit model of quantum computing, 181
- classical bits, 145
- classical dynamical systems, 150
- Classical error correction, 205
- Clauser, J., 135
- closed system, 111
- closure, 112
CNOT gate, 57, 129
code, 206
codeword, 206
coherent, 107
coherent state, 110
collapse hypothesis, 111
commutators, 179
completeness, 20
computational basis, 19, 108, 142, 173
computational complexity, 53
concatenation, 224
conjugate momenta, 151
constant function, 66
control bit, 58
control phase gate, 172
control qubit, 129
Cooley, J., 80
Cooper, F., 197
Cooper pairs, 197
correlation expectation value, 133
coulomb force, 150
coulomb repulsion, 174
coupling constant, 161

data compression, 145
degenerate, 13
degenerate codes, 221
degenerate states, 13
density matrix, 111, 121, 134
density operator, 108, 110
detuning, 177
Deutsch, David, 60
Deutsch’s algorithm, 60
Deutsch-Josza algorithm, 67
Deutsch-Josza problem, 69
diffusion gate, 102
Dirac, Paul, 6
direct product, 113
Direct/tensor product, 14
Discrete Fourier transform (DFT), 80
DiVincenzo criteria, 149
dual space, 6
dyadic, 9

effective time-independent Hamiltonian, 180
eigenstates, 153
eigenvalue, 12, 109
eigenvalue equation, 153
eigenvector, 12

Einstein, Albert, 125
Einstein energy relation, 174
Ekert, Artur, 141
electric field, 157
electromagnetic spectrum, 174
electron, 71, 156
electronic digital computing machine, 149
encoding, 206
ingergy spectrum, 155
entangled states, 113, 124
entanglement, 38
EPR, 125
error correction codes, 144
error recovery, 206
error syndrome, 206
Euler formula, 78
expectation value, 133, 139

F
fan-out, 49
Farad, 192
Faraday, Michael, 192
Faraday induction law, 193
Fast Fourier transform (FFT), 80
fault-tolerant computing, 207
flying qubits, 143
foundational postulates, 110
Fourier, Jean-Baptiste, 77
Fourier series, 77
frequency interpretation of probability, 10

G
gedanken experiment, 10, 125
generalized coordinates, 150
generators, 31
GHZ, 146
Gibbs, Willard, 121
Greatest common divisor (GCD), 95
Greenberger, Daniel, 146
group, 23
group generators, 218
Grover, Lev, 96
Grover iteration, 99
Grover operator, 98, 100

H
Hadamard, 56
Hadamard gate, 145, 157, 160
Hamiltonian, R.W., 151
Hamiltonian, 71, 123, 150, 157, 166
Hamiltonian equations, 151
Hamiltonian functional, 151
Hamiltonian interaction, 181
harmonics, 185
Harroche, Serge, 191
Hawking, Stephen, 138
heat equation, 77
Heisenberg spin model, 180
Henry, Joseph, 193
Henry, unit of inductance, 193
Hermitian, 12
Hermitian operator, 109
hidden variables, 138
high-Q, 191
Hilbert space, 5, 107
Holt, M., 146
Holt, R., 135
Hopf map, 27
Horn, M., 135
hydrogen atom, 150
hyperfine interactions, 174
hyperfine qubits, 175

I
inductance, 193
inductor, 192
inner product, 5
interacting qubits, 161
interacting rotors, 166
interaction Hamiltonian, 169, 171
interaction picture, 158, 170, 172
interference, 68
ion-phonon coupling, 174
ion-phonon operator, 179
ion-qubits, 173
Ion-traps, 174
ion crystals, 174
irreversible, 54

J
Jaynes-Cummings Hamiltonian, 190
Jones vector, 34
Josephson, Brian, 197
Josephson junctions, 197

K
kinetic energy, 152, 174
Kirchoff loop law, 194
Kronecker delta, 7
Kronecker product, 16

L
Lagrangian, 150
Lagrangian formulation, 151
Lamb-Dicke limit, 179
Lamb-Dicke parameter, 176
laser, 169
laser-cooled ions, 174
laser beat frequency, 178
laser-cooled ions, 174
laser cooling, 174
laser field, 157
Levi-Civita symbol, 31
linearly independent, 5
linear vector space, 3
local realism, 138
logical bits, 205
lowering operator, 165

M
magnetic dipole radiation, 175
magnetic field, 174
magnetic interactions, 174
magnetic moment, 39
majority vote, 206
man-in-the-middle (MITM) attack, 144
matrix equation, 156
matrix representation, 168
Maxwell, James Clerk, 34
Maxwell’s equations, 168
Measurement operators, 13, 109
Meissner effect, 195
metastable states, 173
Method of separation of variables, 154
microprocessor chip, 149
microwave radiation, 175
Miller’s algorithm, 95
mixed ensemble, 112
modes, 185
Mølmer-Sørenson coupling, 177
multi-qubit gates, 174

N
negative correlation, 134
Niels Bohr, 125
no-cloning theorem, 126
non-commutative, 31
Nondegenerate eigenvalue, 110
non-demolition measurements, 192
normalized, 7
normalizer of a group, 220
nucleus, 174
number operator, 165
Nyquist-Shannon sampling theorem, 79
Nyquist frequency, 79

O
one-time pad, 140
Onnes, Heike Kamerlingh, 195
operator, 6
optical qubit, 173, 174
Oracle, 96
order of a group, 218
orthogonal, 7
orthonormal, 8, 112
outer product, 6

P
parity, 206
partial differential equation, 154
partial trace, 113
Pauli group, 217
Pauli matrices, 71
Pauli-X gate, 168
Pauli-X operator, 169
Pauli-Z gate, 175
Penrose, Roger, 147
phase gate, 55, 161
phase shift gate, 72
phonon, 166, 169
phonon bus state, 178
phonon Hilbert space, 166
photon, 38, 125, 129, 174
Planck’s constant, 40, 153, 174
plane polarized light, 35
Podolsky, Boris, 125
positive correlation, 134
power spectrum, 82
Poynting vector, 184
prime numbers, 93
private key, 94, 140
private key distribution problem, 141
private key encryption, 140
probability measure, 138
projection operator, 17
proton, 150
public key encryption, 94
pure ensemble, 112
pure state, 107
purification, 119

Q
Quantum dense coding, 145
Quantum electrodynamics (QED), 38, 185
quantum error correcting codes (QECC), 207
Quantum Fourier transform (QFT), 82
quantum interference, 60
Quantum key distribution (QKD), 141
quantum logic gates, 149
quantum parallelism, 60, 68
quantum statistical physics, 180
qubit, 1
9-Qubit code, 208

R
Rabi coupling, 176
Rabi flopping, 175
Rabi-frequency, 176
Rabi transitions, 177
raising operators, 165
Raman laser pair, 178
Raman laser beams, 177
random variable, 139
Rátz, László, 105
read-out, 174
red-detuned pulse, 178
red-sideband transitions, 178
register, 2
relativity, 125
representation, 24
resonance, 174
reversible, 54
ripple circuit, 50
Rosen, Nathan, 125
rotating wave approximation (RWA), 159
rotor qubits, 160
RSA encryption protocol, 94
RSA public key encryption protocol, 140
RWA approximation, 170, 171, 177
Rydberg atom, 191

S
sample space, 138
sampling rate, 79
Schmidt number, 117, 119
Schrieffer, J. R., 197
Schrodinger equation, 70, 157, 170
second order differential equation, 151
semi-prime numbers, 94
Shannon, Claude, 149
Shannon information entropy, 120
Shimony, A., 135
Shor, Peter, 70, 81
Shor algorithm, 140
Shor code, 213
Shor’s algorithm, 70
SI units, 192
Simon’s problem, 69
simple harmonic motion, 163
single-mode, 166
singular-value decomposition, 117
space-like interval, 146
special relativity, 39
2-Sphere, 29
3-Sphere, 27
spin, 38, 39, 174
spin measurements, 144
spontaneous emission, 173, 175
stabilizer group, 218
stabilizers, 217
standing wave, 185
state, 1
Stern-Gerlach device, 39
Stimulated Raman excitation (SRE), 175
superconductor, 195
superposition principle, 4
superposition state, 178
syndrome decoding, 207

T
target bit, 58
target qubit, 129
threshold theorem, 223
time dependent expectation value, 123
time development operator, 161, 173
translating rotor, 151
transpose, 29
trap loss, 174
trapping potential, 174
truth tables, 49
tunneling, 198
Tukey, J., 80

Turing, Alan, 53
Turing model, 53

U
uncertainty, 43
uncertainty principle, 44
unitary, 12
unitary evolution, 170
unitary time evolution operator, 161
universal gates, 173

V
vacuum energy, 165
vacuum state, 164
vibrational qubit, 169
Volterra-Dyson series, 70
von Neumann, 105, 110
von Neumann entropy, 120

W
wavenumber, 185
Wiesner, Stephen, 141
Wigner, Eugene, 105
Wineland, David, 192

Y
Yb⁺, 175

Z
Zeeman Hamiltonian, 156
Zeilinger, Anton, 146
Zuse, Konrad, 149