Index

<table>
<thead>
<tr>
<th>A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetobacter xylinum, 360</td>
<td>Alumina-TiC composites</td>
</tr>
<tr>
<td>Achilles tendon, 256, 259</td>
<td>brushing tests, 152</td>
</tr>
<tr>
<td>Acute phase inflammation, 206</td>
<td>ceramics, 150</td>
</tr>
<tr>
<td>Additive manufacturing (AM), 316</td>
<td>degradation mechanism, 167</td>
</tr>
<tr>
<td>advantage, 49</td>
<td>electrical connection, 153</td>
</tr>
<tr>
<td>binder jetting, 23</td>
<td>electrochemical measurements, 154</td>
</tr>
<tr>
<td>biocompatible materials, 22</td>
<td>electrochemical response, 158</td>
</tr>
<tr>
<td>CAD file, 22</td>
<td>experimental methods, 152</td>
</tr>
<tr>
<td>ceramic materials, 34</td>
<td>metal alloys, 149</td>
</tr>
<tr>
<td>DED, 25</td>
<td>platinum mesh, 154</td>
</tr>
<tr>
<td>design processes, 22</td>
<td>ramp scheme, 153</td>
</tr>
<tr>
<td>EBM fracture, 45</td>
<td>reinforcement, 152</td>
</tr>
<tr>
<td>fracture fixation, 43–46</td>
<td>surface characterization, 160–163</td>
</tr>
<tr>
<td>functional classification, 22</td>
<td>surface damage, 160</td>
</tr>
<tr>
<td>glenoid bone, 41, 42</td>
<td>American Orthopedic Society, 279</td>
</tr>
<tr>
<td>joint arthroplasty, 40</td>
<td>The American Society of Testing Material (ASTM), 30</td>
</tr>
<tr>
<td>large bone defects, 46</td>
<td>Anatomic position simulators, 114</td>
</tr>
<tr>
<td>material extrusion, 28</td>
<td>Annealing treatment, 322</td>
</tr>
<tr>
<td>material-jetting and sheet lamination, 23</td>
<td>Anterior cruciate ligament (ACL), 79, 330</td>
</tr>
<tr>
<td>orthopedic surgical procedures, 39</td>
<td>Antibiotic bone cement, 226–227</td>
</tr>
<tr>
<td>patient variability, 39–40</td>
<td>Anti-infection technologies</td>
</tr>
<tr>
<td>patient-specific design procedures, 37–38</td>
<td>antibiotics, 222</td>
</tr>
<tr>
<td>PBF, 26</td>
<td>bacterial infection, 220</td>
</tr>
<tr>
<td>PEEK, 33–34</td>
<td>biofilm forming bacteria, 220</td>
</tr>
<tr>
<td>porous structures, 38</td>
<td>biofilm membrane, 221</td>
</tr>
<tr>
<td>post-processing operations, 22</td>
<td>biomaterial strategies, 222–234</td>
</tr>
<tr>
<td>scapular prosthesis, 46</td>
<td>coatings, 227</td>
</tr>
<tr>
<td>shoulder replacement, 42</td>
<td>immune system, 220</td>
</tr>
<tr>
<td>subtractive processes, 21</td>
<td>implant geometry, 221</td>
</tr>
<tr>
<td>surgical guides, 47–48</td>
<td>implants, 227</td>
</tr>
<tr>
<td>Adult stem cells (ASCs), 433</td>
<td>iodine coatings, 232</td>
</tr>
<tr>
<td>Alginate, 76, 353</td>
<td>nanotopography, 224</td>
</tr>
<tr>
<td>Alumina and zirconia, 192</td>
<td>non-eluting surface treatment, 226</td>
</tr>
</tbody>
</table>
Anti-infection technologies (cont.)
 passive surface modification, 223–226
 photocatalytic titanium oxide, 224–225
 PMMA, 226
 SCVs, 221
 silver coatings, 229–232
 vancomycin, 225
Antimicrobial iodine coatings, 232
Antimicrobial silver coatings
 coating technologies, 230
 commercial products, 229–230
 silver ion release rate, 231
 silver ions, 229
 toxicity, 231–232
APTES linking technology, 225
Archimedes’ screw after the Greek mathematician, 383
Articular cartilage, 68, 123, 127
Autografts bone graft, 345, 367
Autografts and allografts, 12

B
Bacterial adhesion and biofilm formation, 13
Bacterial colonization, 223
Biaxial tension, 133
Binder jetting, 23
 deposition, 23
 principle, 24
Bioabsorbable cellulose, 360
Bioactive ceramic based composites, 442–445
Bioactive glass additives, 306
Bioactive scaffolds, 431
Bioactive silica particles, 63
Bioceramic and bioglass bone scaffolds
 3D printing methods, 465, 467–469
 engineered tissue scaffold, 453
 freeze casting method, 469, 470, 472
 grain size and morphology, 460, 462
 in vitro and in vivo methods, 454
 macroporosity, 464
 macroporous structure with high porosity, 454
 massive load-bearing bone defects, 453
 non-load-bearing bone restoration, 454
 pore shape, 461–466
 pore size, 455–458
 pore size and pore connecting part width, 463
 porosity, 457–460
 second phase reinforcement, 460, 461
 slip casting method, 472, 473
 thermally bonding of particles, 473, 475
 tissue engineering, 453
 tissue scaffolds, 454
Biocompatibility, 307, 415–416
BioComposite screw, 331
Bioglass, 365
Bioinspiration design, 480–481
Bioreabsorbable degradation
 bioresorbable materials, 295
 factors, 297
 inherent polymer factors, 297–298
 lactide and glycolide, 295
 PLLA, 298
 secondary ingredients, 299
Bioreabsorbable implant materials, 300
Bioreabsorbable interference screws, 331
Bioreabsorbable materials, 288, 289, 302
 bioresorbable implant materials, 288
 definition, 289
 lactide and glycolide, 288
 mechanical performance, 300–301
 mechanical factors, 302
 pull-out resistance, 302
PDO, 294
PLA, 291
 polymers, 290
 tissue system, 299
Bioreabsorbable polymers
 homopolymers, 290
 PCL, 294
 PDO, 295
 PGA product, 290
 PLA, 291
 PLA and PGA, 290
 PLGA, 293
polydioxanone, 294
Biphasic calcium phosphate (BCP), 305
Bone
 calcium phosphate minerals, 431
 cancellous bone, 7
 collagen I, 431
 composition of, 431
 cortical and cancellous, 431
 cortical bone, 7
 highly vascularised mineralized tissue, 431
 intrinsic ability, 431
 mature bone structure, 432
 proteoglycans and non-collagenous proteins, 431
Bone graft, 228–229
Bone grafting procedures, 12
Bone healing, 346
Bone morphogenetic protein-2 (BMP-2), 77
Bone morphogenetic proteins (BMPs), 362
Bone regeneration, 455, 458, 459, 479, 480
Bone remodeling, 334
Bone sialoprotein (BSP), 390–391
Bone tissue engineering, 346, 351, 352, 354, 357–359, 365
Bore and cone tapers, 90
Bore-cone taper junction corrosion, 90
fretting corrosion and design, 104
geometries, 90
implant retrieval and archiving, 91–93
knee prosthesis, 91
limitations, 106
micromotion results, 90
modularity, 89
nondestructive characterization techniques, 98
surface corrosion area, 90, 93–97, 104
surface corrosion regions, 95
TKR, 90, 91
Bore taper surface, 99
Brushing abrasion testing, 154–155
acceleration and speed, 154–155
chemical analysis, 156–157
EIS, 155
environment, 155
surface characterization, 156
temperature, 155

C
Calcium phosphate (CaP), 35, 304, 454, 455
Calcium phosphate cement (CPC), 352–356, 360–361, 366–367
advantages, 347–348
allografts, 367
applications, 348–349
autografts, 345
bioactive glass, 365
biodegradable and injectable hydrogels, 367
biodegradable polymers, 346
bone repair, 367
bone tissue repair/replacement, 346
cell encapsulation, 363–365
cell growth and functionality, 361–363
cell-material interactions, 368
CNTs, 357
collagen, 352
CS, 350–351
dental and orthopedic complaints, 345
disadvantages, 348
fibrin glue, 351
functionalities, 348, 367
gelatin, 351
graphene, 359
HNTs, 357–358
laponite, 358–359
large-scale bone loss, 345
metallic nanoparticles
copper and zinc, 366
magnesium, 366–367
zirconia, 367
MT, 359
natural fibrous material
cellulose, 360
collagen, 360
injectability, 360–361
natural polymers
alginate, 353
CS, 353–354
osteointegration, 352
osteocoductive properties, 346
PEG, 352
resorbability, 349
self-healing capacities, 345
silica materials, 365–366
synthetic polymers
PAA, 354
PCL, 354–355
PLA, 355–356
PLGA, 356
Calcium sulfate, 305–306
Cancellous bone, 7
CaP composite scaffold, 441–442
Carbon nanotubes (CNTs), 357
Cartilage, 124–125
Cast iron, 384
Cell-based therapy, 211
Ceramic biomaterials, 150
Ceramic materials, 34
Chitosan (CS), 350–351, 353–354
Chronic inflammation, 200
Clavicular fractures, 45
Cobalt chromium, 187
CoCr alloys, 31
Collagen, 70, 73, 352
Collagen type VI, 141
Composite scaffold material
bioceramics and biopolymer, 441
biocomposites, 440
bioorganic and inorganic domains, 441
natural biopolymers, 442–445
properties and applications,
nanocomposites, 441
synthetic biopolymers, 441–442
Compression
confined compression, 130
indentation stimulation, 132
and shear, 140
single mode loading scenarios, 138–139
unconfined compression, 130
and vibration, 140–142
Compression molding, 315
advantage, 315
Cone taper, 96
Confinement compression, 130
Connective tissue growth factor (CTGF), 362
Contact osteogenesis, 388
Conventional processing methods, 310–316
Coordinate measurement machine (CMM), 116
Copper (Cu), 366
Corrosion
description, 416
fretting, 417
galvanic, 417
mechanisms, 417
passivation, 417
stress corrosion cracking, 417
Cortical bone, 7
Covalently bound antimicrobials, 225–226
CPC additives, see Calcium phosphate cement (CPC)
Craniomaxillofacial (CMF), 316, 326
Crevice corrosion, 97, 99
Cytotoxic effects, 231

D
DAC® gel, 233
DAC® gel product, 233
DAC® hydrogel coating, 233
Delta granules, 251, 252
DEXON®, 289, 290
Digital Imaging and Communications in Medicine (DICOM) data, 37
Directed energy deposition (DED), 25–26
L-DED process, 25
Distal radius fractures, 332
Donnan osmotic pressure, 125
Drug-device combination products, 235
Dynamic mechanical stimulation, 129
compression, 129
ECM production, 137
friction, 135–136
shear, 133–135
tension, 132–133
vibration, 136–137

E
E-beam, 323
Elastic modulus, 476
Electrochemical impedance spectroscopy (EIS)
experimental conditions, 156
potentiodynamic tests, 155
Fibroblast growth factor (FGF), 362
Fibroblasts, 11
Finite element analysis (FEA), 37, 395
Finite element method, 419, 423
Flexcell system, 133
Fluid flow-induced shear, 134
Force vector, 381, 396
Foreign body giant cells (FBGCs), 200
Fracture fixation, 43–46
anatomical constraints, 405–406
articular surfaces, joints, 401
biocompatibility, 415–416
cadaver bones, 418
computational experiments, 418
computational models, 419, 420
corrosion, 416–417
“damage control” mode, 402
displaced fractures, 401
human cadaveric specimens, 418
hypothesis-based medicine, 417
(see also Implant mechanics)
(see also Internal plating)
lab-based experimental research, 419
mechanical and biological environments, 418
mechanical testing, 418
modern orthopedic care, 401, 402
nondisplaced/minimally displaced fractures, 401
stainless steel vs. titanium alloys, 415
static loading patterns, 418
Fracture gap strain, 412–413
Fracture healing
bone formation, 408
chondrocytes, 407
description, 406
fracture hematoma, 407
granulation tissue, 407
impaired, 408
infection, 409
interfragmentary strain theory, 407
primary/intramembranous, 406
residual bone deformity, 408
secondary/enchondral ossification, 406
strain tolerances, 408
Freeze casting method, 469, 470, 472
Fretting, 90, 96, 97, 99, 100, 104, 417
Full-surface stimulation, 135
Functionally graded material (FGM), 26, 35
Fused deposition modeling (FDM), 316, 317
Gas foaming method, 435
Gelatin, 351
Gene therapy, 209
Glycosaminoglycan (GAG) core protein, 70
Gradient scaffolds design, 80
Graphene, 359
Halloysite nanotubes (HNTs), 357–358
High moisture contents, 309
High processing temperature, 309
Homopolymers, 290
Hospital for Special Surgery (HSS), 176
Hot Isostatic Pressing (HIP), 30
HYAFF®-11, 78
Hydrodynamic shear, 134
Hydroxyapatite (HA), 70, 304–305, 349, 455, 472, 480
HyProtect™, 230
Immuno-gold labeling, 252
Immunomodulating biomolecules, 208
Immunomodulating reagents, 208
bone loss, 210
classification, 208
gene delivery vectors, 210
gene therapy, 209
MSCs-based therapy, 211
peptides, 209
physical and biological characteristics, 208
proteins, 209
small molecule drugs, 210
surface coating and drug releasing materials, 208
Immunomodulatory agents, 205
Implant mechanics
 compression technique, 402, 403
3D CT-based models, 404
external fixator, 405
features, 405
femoral neck fractures, screws, 402
internal plating, 402, 403
intramedullary (IM) nail, 404
Implant retrieval, 91–93
Implantcast Mutars®, 232
In vitro and in vivo characterization, 446
In vitro characterization, load-bearing capacity, 474–479
In vitro degradation, 446
Galvanic corrosion, 417
Gas (ethylene oxide) sterilization, 323
Index

In vivo assessment, load bearing bone defect model, 479–480

Indentation stimulation, 132
Injection molding, 313, 314

Innate inflammatory reactions
bone-implant interface, 203
implant-mediated inflammation, 203
inflammation, 200
M1 and M2 polarization, 202
macrophages, 201, 203
orthopedic care, 200
orthopedic implant, 201
PRRs, 201
RANKL, 203
tissue injury, 203

Inorganic additives
BCP, 305
calcium phosphate based, 304–306
calcium sulfate, 305–306
CaP ceramics, 304
HA, 304
TCP, 305

Integrins, 6

Interfacial tissue engineering (ITE)
conventional tissue engineering approach, 71
HA, 70
neocartilage tissue, 71
osteochondral tissue, 68
polymeric biomaterials, 73–78
tissue engineering, 68

Interference Screw, 330–332

Interfragmentary strain theory, 407

Internal plating
description, 420
model outputs, 422
parametric models, 421
screw fixation, 420
slot-shaped screw holes, 421
stainless steel/titanium alloys, 421
unicortical and bicortical fixation, 420

Intramedullary (IM) nailing
Abaqus software, 423
adult shaft fractures, treatment, 422
bone and implant geometries, 423
implant modifications, 423
length, 422
proximal and distal to fracture, 422
solid nails, 422
surgical variables, 424
titanium nails, 422
type and comminution, 423

J
Joint simulators
anatomic position simulators, 114
OBM, 114
POD simulator, 113
POP, 114

K
Knee prostheses, 94
Knee prosthesis components, 91
Krebs cycle, 295

L
Lactide and glycolide, 303, 334
Lambda granules, 252
Laponite, 357–359
Large bone defects, 46–47
Leukocytes, 253
Ligament healing, 268
Liquid-liquid phase separation, 436
Load bearing bone defect model, 479–480
Load-bearing bone scaffolds, 474, 481
Lyophilization/freezing drying method
liquid-liquid phase separation, 436
microporous scaffold fabrication, 435
polymer rich phase, 435
solid-liquid phase separation, 435–436

M
M1 polarization, 202
M2 polarization, 202
Macrophage polarization, 202, 207
Macrophages
orthopedic biomaterials, 203
pro-inflammatory response, 203–206
Macrotopography, 394–396
Magnesium (Mg), 366
Mechanical disassembly data, 106
Mechanical shear, 134
Mechanical stimulation, 137
Mechanically assisted corrosion (MAC), 188
Mesenchymal stem cells (MSCs), 207, 433
Metallic materials, 29
Microtopography, 393–394
Millennium Research Group (MRG), 111
Mixed mode loading, 139–142
Modular stem extensions, 90, 91, 106
Monocryl®, 294
Monolithic alumina, 150
Montmorillonite (MT), 357, 359
Morse taper, 104
MSC-based therapy, 211
Multi tissue alteration, 79
Muscle injuries, 277
Muscle strains, 276
MUTARS®, 230

N
Nanofiber orientation, 80
Nanotopography, 224, 390–393
Natural biopolymers, 442–445
Natural polymers, 73
Nucleic acid, 209–210
Nyquist plot, 156, 165

O
Orbital bearing motion (OBM), 114
Orthopedic biomechanics
biomechanical variables, 414
description, 409
fracture gap strain, 412–413
implant loading, 409–410
implant stress and failure, 410–412
Osseointegration, 13, 389–392, 394, 396
Osteoarthritis (OA), 67
Osteochondral tissue interface, 68–70
Osteoconductivity, 304
Osteon, 389
Osteoprogenitor cells, 346
Osterix (OSX), 390

P
Packaging and sterilization processes, 181
Palliative treatment methods, 82
Particulate-leaching technique, 435
Passive surface modification, 222
Patellar tendon, 257–258
Patient reported outcome measurements (PROMs), 176
Patient specific instrumentation’ (PSI), 48
Pattern recognition receptors (PRRs), 201
Peptide hormones, 250
Peri-implant bone healing, 387–389
Phase separation
liquid-liquid, 436
solid-liquid, 435–436
Phosphate-buffered solution (PBS), 307
Photocatalytic effect, 224, 225
Photocatalytic titanium oxide, 224–225
Pin-on-disk (POD), 113
Pin-on-plate (POP) style, 113
Platelet derived growth factor (PDGF), 362, 387
Platelet-rich plasma (PRP), 256, 268, 271
biologics, 249–255
cellular and molecular components, 250
centrifugation step, 246
classification, 247–249
compositions, 247
definition, 244
delta granules, 251
differential centrifugation, 246
EVs, 254
isolation kits, 244
isolation process, 247
isolation techniques, 244
lymphocytes, 253
orthopedics surgery
articulat cartilage, 271
ligament healing, 268
tendons, 256
preparation, 244
product, 248
RBCs, 253
secretome studies, 252
α-granules, 251
Pleiotropin (PTN), 362
PLLA/PEO scaffolds, 322
Point-of-contact stimulation, 135
Poly (α-hydroxy) esters, 12
Poly(acrylic acid) (PAA), 354
Poly(glycolic acid) (PGA), 290–291
Poly(lactic acid) (PLA), 291–293
Poly(lactic-co-glycolic acid) (PLGA), 293, 356
Poly(methyl methacrylate) (PMMA), 222, 226
Poly(o-caprolactone) (PCL), 354–355
Polycactic acid (PLA), 355
Polycaprolactone (PCL), 293–294
Polydioxanone (PDO), 294–295
Polyethylene glycol (PEG), 352
Polyglycolic acid (PGA), 355
Polylactic acid (PLA), 355–356
Polymer bone materials, 63
Polyvinyl siloxane (PVS) molds, 97
PorAg® coating, 230
Porous ceramic materials, 60–62
Porous metal materials, 62–63
Porous polymer materials, 63–64
Porous scaffolds, 445
Potentiostatic tests, 155
Powder bed fusion (PBF), 26–28
EBM, 26
principle, 27
Precision particle fabrication technique, 81
Processed biomaterials
CoCr alloys, 31
definition, 29
metallic materials, 29
SS, 30
tantalum, 32, 33
Profilometric imaging protocol, 95
Proteomic studies, 250
Pulloff test, 385

R
Radiation sterilization, 323
RAPIDSORB®, 327
Regenerative engineering, 333
Reparative treatment methods, 82
Residual bone deformity, 408
RESOMER®, 293, 295
Restorative treatment methods, 82
Rheumatoid arthritis (RA), 67
Runx2 retrovirus, 81

S
Saturated calomel electrode (SCE), 154
Scaffolds
behavior of, 434
biomaterial research area, 434 (see also Composite scaffold material)
degradation kinetics, 430 (see also Fabrication techniques)
growth factor releasing cell supportive, 431
mechanical properties, 434, 439
pore size, 438
porosity, 438
surface topography, 434
Screw design, 389–396
axial loading, 382, 385
BCE, 383
biocompatibility, 384
biomaterials, 384
components, 386, 387
curves, 390
cutting lathes, 383
data replotted, 394
friction, 382
helical/spiral ridge, 382
implant anchorage
curve fitting method, 389
exponential recovery curve, 389
implant macrotopography and geometry, 394–396
implant surface microtopography, 393–394
implant surface nanotopography, 390–393
nano-topography, 389
osteoprogenitor cells, 389
parameters, 390
relative drift, 390
machine types, 381
maximal efficiency, 381
mechanical linkage, 384
medical equipment, 383
olecranon fracture, 384
orthopedic materials, 386–387
peri-implant bone healing, 387–389
pitch, 383
pullout test, 385
resistive forces, 382
reverse torque data, 392
self-locking property, 382
stripping torque tests, 385
tapping, 382
thread shapes, 395
wood, 384
wrought and cast iron, 384
Second phase reinforcement, 460, 461
Selective laser sintering (SLS), 318, 319
Servohydraulic test system, 91
Severe plastic deformation (SPD)
procedures, 14
Severe shot peening (SSP), 14
Shear
deformation, 135
hydrodynamic shear, 134
mechanical shear, 134
Shot peening apparatus, 14
Silicon (Si), 365
Silk fibroin scaffolds, 76
Simple machine, 381, 383
Skeletal muscle repair, 276
Slip casting method, 472, 473
Small colony variants (SCVs), 221
Small integrin-binding ligand, N-linked glycoprotein (SIBLING), 388
Small molecule drugs, 210
Sol-gel derived silica coatings, 227
Solid freeform fabrication technique (SFFT), 437–438
Solid-liquid phase separation, 435–436
SonicWeld Rx®, 302
Spinning polymer fibers, 320
Sports medicine, 248
Stainless, 386
Stainless steel (SS), 30, 187, 384
Staphylococcus aureus, 220, 223
Static tension, 128
Index

Stem cells
ASCs, 433
ESCs, 432
MSCs, 432, 433
tissue regeneration and orchestrate tissue remodelling, 432
Stereochemistry, 298
Stereoisomerism, 291
Sterilization, 178
Stochastic resonance, 140, 141
Stratified 3D scaffold design technique, 80
Stratified scaffold design, 78
Stress corrosion cracking, 417
Surface corrosion area, 93, 102
Surface sliding friction, 135
Survivability, 179
Sutures and suture anchors, 327–330
Synthetic biomaterials, 71
Synthetic biopolymers, 441–442
Synthetic materials, 303

T
Tantalum (Ta), 33
Taper design, 92, 100
Taper regions, 98
Tapping, 382
Tendinopathy, 256, 260
Tendons
Achilles tendon, 260
patellar tendon, 256
properties, 256
PRP, 256
tendon healing, 256
Tension
biaxial tension, 133
uniaxial tension, 132
Thermally bonding of particles, 473, 475
Thread of the screw, 382
3D printed dual-pore structure, 61
3D printing route, 59
3D printing techniques, 58, 59
Three dimensional printing, 21, 465, 467–469
ceramic materials, 60
hydroxyapatite and silica particles, 63
metal bone materials, 62
polymer materials, 63
porous materials, 60
raw materials, 58
techniques, 58
Ti-6Al-4V alloy, 48
Tidemark, 70

Tissue engineering (TE), 67
cell functions, 10–11
cell sensitivity, 11
features, 11
principle of, 430 (see also Stem cells)
scaffold construction, 11–12
skin grafts, 8
tissue regeneration, 430
trans-disciplinary approach, 430
2D nanopatterned geometries, 10
nanotechnology, 8–10
Titanium, 384, 387
Titanium alloys, 32
Titanium oxide (TiO₂) nanotubes, 224
TKR components, 93
Torx design, 302
Total hip arthroplasty (THA), 233
Total joint arthroplasty
acetabular liner bearing surface, 177
alumina, 192
bearing surface, 189
catastrophic failures, 193
ceramic implants, 193
ceramic zirconium femoral, 192
MAC, 188
material combinations, 177
metal/ non-metal, 193
polyethylene, 179, 181
sterilization, 178
UHMWPE, 180
zirconia, 192
Total joint arthroplasty factors, 177
PROMs, 176
stability, 177–178
sterilization, 178
surgical procedure, 176
survivability, 179
THA and TKA, 176
Total knee replacements (TKR), 90
Transcription factor NF-κB, 205
Transforming growth factor beta (TGF-β), 362, 387
Tricalcium phosphate (TCP), 305, 348
TWINFIX®, 329

U
Ultra-high molecular weight polyethylene (UHMWPE), 180
Unconfined compression, 130
functional ECM, 131
mechanisms, 131
Uniaxial tension, 132
V
Vancomycin, 225
Vibration
 mechanical vibrations, 136
 ultrasound, 136
Vibration stimulation, 136
Vitallium, 384
Vitamin E, 181, 182

W
Wear particles, 200, 204, 205, 211
Wear simulation testing
 achievement, 117–118
 and comparison, 119
 joint simulator, 111, 112
 limitation, 118–119
 standardization, 116
 total joint replacements, 111
Wilcoxon test, 100

Wolff’s law, 38
Working electrode (WE), 153
Woven bone, 388
Wrought iron, 384

X
X-ray photoelectron spectroscopy (XPS), 157

Y
Young’s modulus, 387, 476

Z
Zero resistance ammeter (ZRA), 154
Zinc (Zn), 366
Zirconia, 192, 367
Zirconium, 188, 189
Zone of inhibition (ZOI) studies, 234