Appendix A
The Keller-Liverani Perturbation Theorem

In this appendix we formulate the Keller–Liverani Perturbation Theorem from [27] in its full generality and, formally speaking, in a slightly more general form than in [27]. We also formulate all its consequences derived in [27] that we need in our manuscript, particularly in Sect. 2.4 to prove Proposition 2.4.2 which is crucial for us. We follow pretty closely the notation, formulations, and enumeration of [27] for the reader to easily compare our text with the original article [27].

We first describe the setting.

Let \((B, \| \cdot \|)\) be a Banach space. The vector space \(B\) is also equipped with a second norm \(\| \cdot \| \leq \| \cdot \|\) with respect to which \(B\) need not be complete. For any bounded linear operator \(Q : B \rightarrow B\), \(B\) understood here with the norm \(\| \cdot \|\), let

\[
\|Q\| := \sup \{|Qf| : f \in B, \|f\| \leq 1\}. \tag{KL1}
\]

Let \(\Lambda\) be a directed set having a largest element which we denote by 0. In [27] \(\Lambda = [0, +\infty)\) with the reverse order. For our applications in Sect. 2.4 \(\Lambda = \mathbb{N} \cup \{+\infty\}\), although actually it suffices to consider \(\{n, n+1, \ldots\} \cup \{+\infty\}\) where \(n \geq 0\) is large enough, with the natural order. Assume that a family \((P_\varepsilon)_{\varepsilon \in \Lambda}\) of bounded linear operators on \((B, \| \cdot \|)\) is given which enjoys the following properties.

(KL2) There are constants \(C_1, M > 0\) such that for all \(\varepsilon \in \Lambda\)

\[
|P_\varepsilon^n| \leq C_1 M^n
\]

for all \(n \geq 0\).

(KL3) There are constants \(C_2, C_3 > 0\) and \(\alpha \in (0, \min\{1, M\})\) such that for all \(\varepsilon > 0\),

\[
\|P_\varepsilon^n f\| \leq C_2 \alpha^n \|f\| + C_3 M^n |f|
\]
for all \(n \geq 0 \) and all \(f \in B \).

(KL4) If \(z \in \sigma(P_\varepsilon) \cap B(0, \alpha) \), then \(z \) is not in the residual spectrum of \(P_\varepsilon \).

(KL5) There exists a net \(\tau : \Lambda \to [0, +\infty) \) such that \(\tau(0) = 0 \), \(\tau(\Lambda \setminus \{0\}) \subseteq (0, +\infty) \)

\[
\lim_{\varepsilon \in \Lambda} \tau(\varepsilon) = 0
\]

and

\[
||| P_\varepsilon - P_0 ||| \leq \tau(\varepsilon)
\]

for all \(\varepsilon \in \Lambda \).

These are all hypotheses for the Keller–Liverani Perturbation Theorem. In order to formulate this theorem we need one more piece of notation.

For all \(\delta > 0 \) and all \(r > \alpha \) let

\[
V_{\delta,r} := \{ z \in \mathbb{C} : |z| \leq r \text{ or } \text{dist}(z, \sigma(P_0)) \leq \delta \}.
\]

The actual Keller–Liverani Perturbation Theorem from [27] is about upper bounds on the norms of resolvents \((z - P_\varepsilon)^{-1} \) and continuity at 0 of the latter.

Theorem A.0.1 (Keller–Liverani Perturbation Theorem) Suppose that \((P_\varepsilon)_{\varepsilon \in \Lambda} \) is a family of bounded linear operators on \((B, \| \cdot \|) \) satisfying conditions (KL2)–(KL5). Fix \(\delta > 0 \) and \(r \in (\alpha, M) \) and let

\[
\eta := \frac{\log(r/\alpha)}{\log(M/\alpha)} > 0.
\]

Then there are constants \(\varepsilon_0 = \varepsilon_0(\delta, r) > 0 \), \(a = a(\varepsilon_0) > 0 \), \(b = b(\delta, r) > 0 \), \(c = c(\delta, r) > 0 \), and \(d = d(\delta, r) > 0 \) such that for every \(\varepsilon \geq \varepsilon_0 \) and all \(z \in \mathbb{C} \setminus V_{\delta,r} \), we have that

\[
\| (z - P_\varepsilon)^{-1} f \| \leq a\| f \| + b|f|
\]

(KL6)

and

\[
||| (z - P_\varepsilon)^{-1} - (z - P_0)^{-1} ||| \leq \tau^\eta(\varepsilon)(c\|(z - P_0)^{-1}\| + d\|(z - P_0)^{-1}\|^2).
\]

(KL7)

Remark A.0.2 This remark is essential for us and corresponds to Remark 3 (and partly Remark 1) in [27]. As Keller and Liverani write in Remark 1 “In nearly all cases the two norms involved have the additional property that

(KL8) the closed unit ball of \((B, \| \cdot \|) \) is \(| \cdot | \)-compact.”
and this yields condition (KL4) to hold. However in the case of the present paper, with \(B = \mathcal{B}_e \), \(\| \cdot \| = \| \cdot \|_e \) and \(| \cdot | = \| \cdot \|_* \), (KL8) does fail. The remedy comes from Remark 3 in [27] which we explain now.

Assume there exists a sequence of linear operators \(\pi_k : B \to B \), \(k \geq 1 \), such that

\[
\sup_k \{ \| \pi_k \| \} < +\infty, \tag{A.1}
\]

\[
\sup \{ |f - \pi_k f| : f \in B, \| f \| \leq 1 \} \leq (\alpha/M)^k. \tag{A.2}
\]

and

\[
P_\varepsilon \pi_k \text{ is a compact operator for all } k \geq 1. \tag{A.3}
\]

Then all the operators \(P_\varepsilon : B \to B \) are quasicompact with essential spectral radius \(\leq \alpha \) and in particular (KL4) holds.

We now list the selected corollaries from Theorem A.0.1 derived in [27], the ones needed to have the full proof of Proposition 2.4.2. The first one is a slightly simplified version of Remark 4 from [27].

Corollary A.0.3 If \(\lambda \) is a simple eigenvalue of \(P_0 \) with \(|\lambda| > \alpha \) (so isolated), then for every \(\varepsilon \in \Lambda \) sufficiently close to 0, there exists a unique simple eigenvalue \(\lambda_\varepsilon \) of \(P_\varepsilon \) such that

\[
\lim_{\varepsilon \to 0} \lambda_\varepsilon = \lambda. \tag{A.4}
\]

Let \(\lambda \) be as in this corollary. Take \(\eta > 0 \) so small that

\[
\overline{B}(\lambda, \eta) \cap \sigma(P_0) = \{\lambda\}. \tag{A.5}
\]

Define for every \(\varepsilon \in \Lambda \) sufficiently close to 0:

\[
Q_\varepsilon := \frac{1}{2\pi i} \int_{\partial B(\lambda, \eta)} (z - P_\varepsilon)^{-1} \, dz. \tag{A.6}
\]

Note that \(Q_\varepsilon \) does not depend on \(\eta \) as long as (A.5) is satisfied.

As an immediate consequence of the definition of \(Q_\varepsilon \) and of item 1) of Corollary 1 from [27], we get the following.

Corollary A.0.4 If \(\lambda \) is a simple eigenvalue of \(P_0 \) with \(|\lambda| > \alpha \) (so isolated), then

1. For every \(\varepsilon \in \Lambda \) sufficiently close to 0 the operator \(Q_\varepsilon : B \to B \) is a projector (meaning that \(Q_\varepsilon^2 = Q_\varepsilon \)) onto the one-dimensional eigenspace of the eigenvalue \(\lambda_\varepsilon \) of \(P_\varepsilon \).

2.

\[
\lim_{\varepsilon \to 0} \|Q_\varepsilon - Q_0\| = 0.
\]
Now, given \(r > \alpha \) define:
\[
\Delta_\varepsilon := \frac{1}{2\pi i} \int_{\partial B(0,r)} (z - P_\varepsilon)^{-1} \, dz. \tag{A.7}
\]

Before we deal with the next corollary we record the following, technical but crucial, consequence of formula (KL6) of Theorem A.0.1.

\[
S_{\delta,r} := \sup \left\{ \| (z - P_\varepsilon)^{-1} \| : 0 \leq \varepsilon \leq \varepsilon_0(\delta, r), z \in \mathbb{C} \setminus V_{\delta,r} \right\} < +\infty \tag{KL9}
\]

for all \(\delta > 0 \) and all \(r \in (\alpha, M) \). We shall prove the following.

Corollary A.0.5 Let \(\lambda \) be a simple eigenvalue of \(P_0 \) with \(|\lambda| > \alpha \) (so isolated). If \(\gamma \in (\alpha, \min\{M, |\lambda|\}) \) and
\[
\sigma(P_0) \setminus \{\lambda\} \subseteq B(0, \gamma) \tag{A.8}
\]
then for every \(\varepsilon \in \Lambda \) close enough to 0, we have that

1.
\[
P_\varepsilon = \lambda_\varepsilon Q_\varepsilon + \Delta_\varepsilon,
\]
2.
\[
Q_\varepsilon \Delta_\varepsilon = \Delta_\varepsilon Q_\varepsilon = 0,
\]
3. there exists a constant \(C \in (0, +\infty) \) such that
\[
\| Q_\varepsilon \| \leq C,
\]
and for every \(k \geq 0 \):
4.
\[
\| \Delta_\varepsilon^k \| \leq C \gamma^k.
\]

Proof Items (1) and (2) are immediate consequences of (A.6) and (A.7) and elementary basic properties of Riesz Functional Calculus.

For the convenience of the reader we shall now provide the standard proof of item (4). Since \(\gamma \in (\alpha, \min\{M, |\lambda|\}) \), it follows from (A.8) there exists \(\hat{\gamma} \in (\alpha, \min\{M, |\lambda|, \gamma\}) \) such that \(\sigma(P_0) \setminus \{\lambda\} \subseteq B(0, \hat{\gamma}) \). Therefore there exists \(\delta > 0 \) so small that \(\partial B(0, \hat{\gamma}) \cap B(\sigma(P_0), 2\delta) = \emptyset \). Hence, formula (KL9) applies to give
\[
S_{\delta,\hat{\gamma}} < +\infty. \tag{A.9}
\]
It follows from (A.7) and the already mentioned basic properties of Riesz Functional Calculus that

$$\Delta^k := \frac{1}{2\pi i} \int_{\partial B(0,\gamma)} \gamma^k (z - P_\gamma)^{-1} \, dz$$

for every integer $k \geq 0$. Therefore, invoking (A.9), we estimate as follows:

$$\|\Delta^k\| \leq \frac{1}{2\pi} \int_{\partial B(0,\gamma)} |z|^k \|(z - P_\gamma)^{-1}\| \, |dz| = \frac{\gamma^k}{2\pi} \int_{\partial B(0,\gamma)} \|(z - P_\gamma)^{-1}\| \, |dz| \leq \gamma S_{\delta,\gamma} \gamma^k,$$

and formula (4) is proved.

Now, we shall prove item (3). It follows from (A.8) that $\overline{B}(\lambda, |\lambda| - \gamma) \cap \sigma(P_0) = \{\lambda\}$. Hence, invoking also (A.6) and (KL9), we get

$$\|Q_\varepsilon\| \leq \frac{1}{2\pi} \int_{\partial B(\lambda, (|\lambda| - \gamma)/2)} \|(z - P_\gamma)^{-1}\| \, |dz| \leq (1 - \gamma) S_{(|\lambda| - \gamma)/2, \gamma} < +\infty.$$

The proof of item (3) and, simultaneously, of entire Corollary A.0.5 is complete.
References

47. B. Skorulski, M. Urbański, The law of iterated logarithm and equilibrium measures versus Hausdorff measures for dynamically semi-regular meromorphic functions, in Further Developments in Fractals and Related Fields. Trends in Mathematics (Birkhauser, Boston, 2013), pp. 213–234
Index

(U3), 41
(U4), 41
(U4A), 41
(U4B), 41
(U5), 42
(U5A), 42
(U5B), 42
11, 23
11_n, 11^u_n, 11^c_n, 31
A-admissible words, 20
$A^\theta_n(x, r)$, 97
$A_n^\theta(x, r)$, 103
$A_{N_k(C,A)}^\theta(z, r)$, 108
E_α, 142
E^α, 20
E^α_∞, 20
E^α_n, 19
$E_F(x)$, 151
F_∞, 147
$I_R(T)$, 170
$J_R(f)$, 180, 185
J_α, 88
J_α^τ, 142
$K(B)$, $K_F(B)$, $K_F(B)$, 148
$K(U_n(q))$, 66
$K(U_n)$, 53, 59
$K^\theta_n(r)$, 145
$N_k^\theta(x, r)$, 103
Q_n, 39
R_j, 54
T_F, 148
U_k^\pm, 111
U_n, 30
$U_n(q)$, 62
U_n^θ, 62
U_n^\pm, 111
$V \omega$, 142
$W^+(z, r)$, 108
$W^-(z, r)$, 108
Z_n, 60
Δ_n, 39
Γ_α^τ, 90
α-upper Ahlfors measure, 98
α_k, 60
β_α, 143
χ_{R^τ}, 93
\hat{Z}_θ, 23
λ_n, 39
$\lambda^\theta_n(t)$, 116
$\lambda^\theta_n(t)$, 116
\mathbb{B}_θ, 24
$\mathcal{M}(\alpha)$, 59
$\mathcal{M}_n(\alpha)$, 59
\mathcal{F}, 88
\mathcal{F}, 143
H_θ, 22
H_θ^τ, 22
$P(\varphi)$, 21
$h_{\mu_n}(\sigma)$, 21
oscμ_n, 23
$P(s)$, 90
$|| \cdot ||_*$, 31
$|| | | \cdot | | |_*$, 35
μ_n, 62
ν_n, 43

© Springer International Publishing AG 2017

M. Pollicott, M. Urbański, *Open Conformal Systems and Perturbations of Transfer Operators*, Lecture Notes in Mathematics 2206,
https://doi.org/10.1007/978-3-319-72179-8
Index

\[R_{\mu_p}, 54 \]
\[\tau_R, 148 \]
\[\text{Sing}(f^{-1}), 183 \]
\[\theta_{\mathcal{F}}, 90 \]
\[\varphi, 23 \]
\[R_{\mu_p}, 54 \]
\[\varphi_{\theta}, 88 \]
\[\varphi_{\omega}, 160 \]
\[\xi(\omega), 90, 116 \]
\[b_{\mathcal{F}}, 91 \]
\[r_{\mathcal{F}}, 92 \]
\[N_t, 62 \]
\[\mathcal{L}_n, 32 \]
\[\mathcal{L}_n^\alpha, 32 \]
\[\mathcal{L}_n^\mathcal{L}, 116 \]
\[\mathcal{L}_{n,q}, 63 \]
\[\text{PC}(T), 163 \]
\[\text{PC}(f), 173 \]
\[\text{PS}(f), 183 \]
\[(\text{DBT}), 103 \]
\[(\text{UO}), (\text{U1}), (\text{U2}), 30 \]
\[(\text{WBT}), 97, 98 \]

(TAP), 98

acceptable potential, 164
almost sure invariance principle, 78
alphabet, 19
amalgamated function, 92
aperiodic incidence matrix, 20
asymptotic escape rate, 3
avoidable sets, 1

Birkhoff sums, 10
Bowen’s parameter, 91
Bowen’s parameters, 131

Central Limit Theorem, 79
central limit theorem, 8
Collet-Eckmann condition, 177
conditionally invariant measure, 3, 56
Conjugate Condition, 89
Conformal Graph Directed Markov Systems, GDMS, 7
Conformal Iterated Function Systems, IFS, 7
conformal, CGDMS, 88
Countable Alphabet Symbol Spaces, 19
critical (branching) points, 173
cylinder, 20

dynamically boundary thin measure, 103
dynamically semi-regular meromorphic function, 184

equilibrium state, 174
escape rate, 2, 54
expanding meromorphic function, 183
expanding rational map, 16, 173
Exponential Decay of Correlations, 8, 79
Exponential Shrinking Property (ESP), 163, 176
exponential tail decay (ETD), 151

finitely primitive incidence matrix, 20
first entrance time, 151
first return map, 148
first return time, 148
Fundamental Perturbative Result, 39

geometrically irreducible (limit) set, 9
generically irreducible limit set, 99
Gibbs/equilibrium measure, 21
Graph Directed Markov System (GDMS), 87, 88

Hölder family of functions (of order \(\beta \)), 92
Hausdorff Dimension of measure, 99
hyperbolic indices, 141
hyperbolic meromorphic function, 184
hyperbolic of a graph directed Markov system, 142

incidence matrix, 19
incomparable words, 89
iterated function system, IFS, 88

Keller–Liverani Perturbation Theorem, 190

Large Deviation Property (LDP), 13, 150
law of the iterated logarithm, 8
Leading Eigenvalues of Perturbed Operators, 41

limit set of a GDMS, 88
limit set of a parabolic GDMS, 142
loosely tame potentials, 184
lower escape rate, 2, 54
<table>
<thead>
<tr>
<th>Term / Definition</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower Hausdorff dimension of a measure</td>
<td>99</td>
</tr>
<tr>
<td>Lyapunov exponent</td>
<td>93</td>
</tr>
<tr>
<td>nice set</td>
<td>165, 175</td>
</tr>
<tr>
<td>Open Holes</td>
<td>35</td>
</tr>
<tr>
<td>Open Set Condition</td>
<td>89</td>
</tr>
<tr>
<td>oscillation function</td>
<td>23</td>
</tr>
<tr>
<td>parabolic GDMS</td>
<td>142</td>
</tr>
<tr>
<td>parabolic graph directed Markov system</td>
<td>142</td>
</tr>
<tr>
<td>parabolic indices</td>
<td>141</td>
</tr>
<tr>
<td>parameter powering at a point</td>
<td>136</td>
</tr>
<tr>
<td>Perron–Frobenius operator</td>
<td>19, 21</td>
</tr>
<tr>
<td>Perron-Frobenius operator</td>
<td>5, 160, 164, 184</td>
</tr>
<tr>
<td>postcritical set</td>
<td>163, 173</td>
</tr>
<tr>
<td>potential</td>
<td>20</td>
</tr>
<tr>
<td>powering exponent</td>
<td>136</td>
</tr>
<tr>
<td>pressure gap</td>
<td>15, 174</td>
</tr>
<tr>
<td>pseudo-periodic</td>
<td>10</td>
</tr>
<tr>
<td>quasi-compact operator</td>
<td>22</td>
</tr>
<tr>
<td>recurrent points</td>
<td>180, 185</td>
</tr>
<tr>
<td>regular GDMS, IFS</td>
<td>91</td>
</tr>
<tr>
<td>semi-hyperbolic</td>
<td>163, 177</td>
</tr>
<tr>
<td>shift map</td>
<td>20</td>
</tr>
<tr>
<td>Singular Perturbations</td>
<td>19</td>
</tr>
<tr>
<td>singular points of f^{-1}</td>
<td>183</td>
</tr>
<tr>
<td>space of one-sided infinite sequences</td>
<td>20</td>
</tr>
<tr>
<td>Stability of Spectrum</td>
<td>35</td>
</tr>
<tr>
<td>Strong Open Set Condition</td>
<td>89</td>
</tr>
<tr>
<td>strongly regular GDMS, IFS</td>
<td>91</td>
</tr>
<tr>
<td>subexpanding multimodal map</td>
<td>171</td>
</tr>
<tr>
<td>subparabolic graph directed Markov system</td>
<td>142</td>
</tr>
<tr>
<td>summable functions (of order β)</td>
<td>92</td>
</tr>
<tr>
<td>surviving equilibrium state</td>
<td>60, 79</td>
</tr>
<tr>
<td>Surviving Equilibrium States</td>
<td>79</td>
</tr>
<tr>
<td>survivor set</td>
<td>59</td>
</tr>
<tr>
<td>survivor sets</td>
<td>1</td>
</tr>
<tr>
<td>symbol escape rate</td>
<td>7</td>
</tr>
<tr>
<td>symbol return type (SRT)</td>
<td>159</td>
</tr>
<tr>
<td>strongly regular GDMS, IFS</td>
<td>91</td>
</tr>
<tr>
<td>subexpanding multimodal map</td>
<td>171</td>
</tr>
<tr>
<td>subparabolic graph directed Markov system</td>
<td>142</td>
</tr>
<tr>
<td>summable functions (of order β)</td>
<td>92</td>
</tr>
<tr>
<td>surviving equilibrium state</td>
<td>60, 79</td>
</tr>
<tr>
<td>Surviving Equilibrium States</td>
<td>79</td>
</tr>
<tr>
<td>survivor set</td>
<td>59</td>
</tr>
<tr>
<td>survivor sets</td>
<td>1</td>
</tr>
<tr>
<td>symbol escape rate</td>
<td>7</td>
</tr>
<tr>
<td>symbol return type (SRT)</td>
<td>159</td>
</tr>
<tr>
<td>tame interval map</td>
<td>163</td>
</tr>
<tr>
<td>tame rational function</td>
<td>174</td>
</tr>
<tr>
<td>Thermodynamic Formalism</td>
<td>19</td>
</tr>
<tr>
<td>Thin Annuli Property</td>
<td>98</td>
</tr>
<tr>
<td>topological Collet-Eckmann map</td>
<td>163</td>
</tr>
<tr>
<td>topological exactness</td>
<td>14</td>
</tr>
<tr>
<td>topological pressure</td>
<td>21, 90, 184</td>
</tr>
<tr>
<td>topologically exact multimodal map</td>
<td>163</td>
</tr>
<tr>
<td>topologically exact topological Collet-Eckmann map</td>
<td>(teTCE), 163</td>
</tr>
<tr>
<td>topologically hyperbolic meromorphic function</td>
<td>183</td>
</tr>
<tr>
<td>uniquely periodic</td>
<td>10</td>
</tr>
<tr>
<td>upper escape rate</td>
<td>2, 54</td>
</tr>
<tr>
<td>upper Hausdorff Dimension of measure</td>
<td>99</td>
</tr>
<tr>
<td>Variational Principle</td>
<td>59, 79</td>
</tr>
<tr>
<td>Wasserstein metric</td>
<td>71</td>
</tr>
<tr>
<td>weakly boundary thin (WBT) measure</td>
<td>12</td>
</tr>
<tr>
<td>weakly boundary thin almost everywhere (WBTAE)</td>
<td>98</td>
</tr>
<tr>
<td>weakly boundary thin measure</td>
<td>97, 98</td>
</tr>
</tbody>
</table>
Editors in Chief: J.-M. Morel, B. Teissier;

Editorial Policy

1. Lecture Notes aim to report new developments in all areas of mathematics and their applications – quickly, informally and at a high level. Mathematical texts analysing new developments in modelling and numerical simulation are welcome.

Manuscripts should be reasonably self-contained and rounded off. Thus they may, and often will, present not only results of the author but also related work by other people. They may be based on specialised lecture courses. Furthermore, the manuscripts should provide sufficient motivation, examples and applications. This clearly distinguishes Lecture Notes from journal articles or technical reports which normally are very concise. Articles intended for a journal but too long to be accepted by most journals, usually do not have this “lecture notes” character. For similar reasons it is unusual for doctoral theses to be accepted for the Lecture Notes series, though habilitation theses may be appropriate.

2. Besides monographs, multi-author manuscripts resulting from SUMMER SCHOOLS or similar INTENSIVE COURSES are welcome, provided their objective was held to present an active mathematical topic to an audience at the beginning or intermediate graduate level (a list of participants should be provided).

The resulting manuscript should not be just a collection of course notes, but should require advance planning and coordination among the main lecturers. The subject matter should dictate the structure of the book. This structure should be motivated and explained in a scientific introduction, and the notation, references, index and formulation of results should be, if possible, unified by the editors. Each contribution should have an abstract and an introduction referring to the other contributions. In other words, more preparatory work must go into a multi-authored volume than simply assembling a disparate collection of papers, communicated at the event.

3. Manuscripts should be submitted either online at www.editorialmanager.com/lnm to Springer’s mathematics editorial in Heidelberg, or electronically to one of the series editors. Authors should be aware that incomplete or insufficiently close-to-final manuscripts almost always result in longer refereeing times and nevertheless unclear referees’ recommendations, making further refereeing of a final draft necessary. The strict minimum amount of material that will be considered should include a detailed outline describing the planned contents of each chapter, a bibliography and several sample chapters. Parallel submission of a manuscript to another publisher while under consideration for LNM is not acceptable and can lead to rejection.

4. In general, monographs will be sent out to at least 2 external referees for evaluation.

A final decision to publish can be made only on the basis of the complete manuscript, however a refereeing process leading to a preliminary decision can be based on a pre-final or incomplete manuscript.

Volume Editors of multi-author works are expected to arrange for the refereeing, to the usual scientific standards, of the individual contributions. If the resulting reports can be
forwarded to the LNM Editorial Board, this is very helpful. If no reports are forwarded or if other questions remain unclear in respect of homogeneity etc, the series editors may wish to consult external referees for an overall evaluation of the volume.

5. Manuscripts should in general be submitted in English. Final manuscripts should contain at least 100 pages of mathematical text and should always include

- a table of contents;
- an informative introduction, with adequate motivation and perhaps some historical remarks: it should be accessible to a reader not intimately familiar with the topic treated;
- a subject index: as a rule this is genuinely helpful for the reader.
- For evaluation purposes, manuscripts should be submitted as pdf files.

6. Careful preparation of the manuscripts will help keep production time short besides ensuring satisfactory appearance of the finished book in print and online. After acceptance of the manuscript authors will be asked to prepare the final LaTeX source files (see LaTeX templates online: https://www.springer.com/gb/authors-editors/book-authors-editors/manuscriptpreparation/5636) plus the corresponding pdf- or zipped ps-file. The LaTeX source files are essential for producing the full-text online version of the book, see http://link.springer.com/bookseries/304 for the existing online volumes of LNM). The technical production of a Lecture Notes volume takes approximately 12 weeks. Additional instructions, if necessary, are available on request from lnm@springer.com.

7. Authors receive a total of 30 free copies of their volume and free access to their book on SpringerLink, but no royalties. They are entitled to a discount of 33.3 % on the price of Springer books purchased for their personal use, if ordering directly from Springer.

8. Commitment to publish is made by a Publishing Agreement; contributing authors of multi-author books are requested to sign a Consent to Publish form. Springer-Verlag registers the copyright for each volume. Authors are free to reuse material contained in their LNM volumes in later publications: a brief written (or e-mail) request for formal permission is sufficient.

Addresses:
Professor Jean-Michel Morel, CMLA, École Normale Supérieure de Cachan, France
E-mail: moreljeanmichel@gmail.com

Professor Bernard Teissier, Equipe Géométrie et Dynamique,
Institut de Mathématiques de Jussieu – Paris Rive Gauche, Paris, France
E-mail: bernard.teissier@imj-prg.fr

Springer: Ute McCrory, Mathematics, Heidelberg, Germany,
E-mail: lnm@springer.com