Appendix A: Parameters that Used to Model PEM Fuel Cells

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>0.06[m]</td>
<td>Cell length</td>
</tr>
<tr>
<td>H_ch</td>
<td>1e-3[m]</td>
<td>Channel height</td>
</tr>
<tr>
<td>W_ch</td>
<td>9.474e-3[m]</td>
<td>Channel width</td>
</tr>
<tr>
<td>W_rib</td>
<td>9.0932e-3[m]</td>
<td>Rib width</td>
</tr>
<tr>
<td>H_gdl</td>
<td>640e-6[m]</td>
<td>GDL width</td>
</tr>
<tr>
<td>H_electrode</td>
<td>50e-6[m]</td>
<td>Porous electrode thickness</td>
</tr>
<tr>
<td>H_membrane</td>
<td>100e-6[m]</td>
<td>Membrane thickness</td>
</tr>
<tr>
<td>eps_gdl</td>
<td>0.4</td>
<td>GDL porosity</td>
</tr>
<tr>
<td>kappa_gdl</td>
<td>1.18e-11[m²]</td>
<td>GDL permeability</td>
</tr>
<tr>
<td>sigma_gdl</td>
<td>222[S/m]</td>
<td>GDL electric conductivity</td>
</tr>
<tr>
<td>wH2_in</td>
<td>0.743</td>
<td>Inlet H2 mass fraction (anode)</td>
</tr>
<tr>
<td>wH2O_in</td>
<td>0.023</td>
<td>Inlet H2O mass fraction (cathode)</td>
</tr>
<tr>
<td>wO2_in</td>
<td>0.228</td>
<td>Inlet oxygen mass fraction (cathode)</td>
</tr>
<tr>
<td>U_in_anode</td>
<td>0.2[m/s]</td>
<td>Anode inlet flow velocity</td>
</tr>
<tr>
<td>U_in_cathode</td>
<td>0.5[m/s]</td>
<td></td>
</tr>
<tr>
<td>mu_anode</td>
<td>1.19e-5[Pa*s]</td>
<td>Anode viscosity</td>
</tr>
<tr>
<td>mu_cathode</td>
<td>2.46e-5[Pa*s]</td>
<td>Cathode viscosity</td>
</tr>
<tr>
<td>MH2</td>
<td>0.002[kg/mol]</td>
<td>Hydrogen molar mass</td>
</tr>
<tr>
<td>MN2</td>
<td>0.028[kg/mol]</td>
<td>Nitrogen molar mass</td>
</tr>
<tr>
<td>MH2O</td>
<td>0.018[kg/mol]</td>
<td>Water molar mass</td>
</tr>
<tr>
<td>MO2</td>
<td>0.032[kg/mol]</td>
<td>Oxygen molar mass</td>
</tr>
<tr>
<td>D_H2_H2O</td>
<td>9.15e-5*(T/307.1[K])¹.⁷⁵ [m²/s]</td>
<td>H2-H2O</td>
</tr>
<tr>
<td>D_N2_H2O</td>
<td>2.56e-5*(T/307.15[K])¹.⁷⁵ [m²/s]</td>
<td>N2-H2</td>
</tr>
<tr>
<td>D_O2_N2</td>
<td>2.2e-5*(T/293.2[K])¹.⁷⁵ [m²/s]</td>
<td>O2-N2</td>
</tr>
<tr>
<td>D_O2_H2O</td>
<td>2.82e-5*(T/308.1[K])¹.⁷⁵ [m²/s]</td>
<td>O2-H2O</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>20+273.15[K]</td>
<td>Cell temperature</td>
</tr>
<tr>
<td>p_ref</td>
<td>101e3[Pa]</td>
<td>Reference pressure</td>
</tr>
<tr>
<td>V_cell</td>
<td>0.9</td>
<td>Cell voltage</td>
</tr>
<tr>
<td>cO2_ref</td>
<td>40.88[mol/m^3]</td>
<td>Oxygen reference concentration</td>
</tr>
<tr>
<td>cH2_ref</td>
<td>40.88[mol/m^3]</td>
<td>Hydrogen reference concentration</td>
</tr>
<tr>
<td>eps_l</td>
<td>0.3</td>
<td>Open volume fraction for fusion in porous electrodes</td>
</tr>
<tr>
<td>kappa_cl</td>
<td>kappa_gdl/5</td>
<td>Permeability (porous electrodes)</td>
</tr>
<tr>
<td>sigma_m</td>
<td>9.825[s/m]</td>
<td>Membrane conductivity</td>
</tr>
</tbody>
</table>
Appendix B: Current Distribution and Water Concentration in GDL

Current density in GDL at operating conditions (298.15 K and 1.5 atm)
Current density in GDL at operating conditions (323.15 K and 1.5 atm)
Current density in GDL at operating conditions (348.15 K and 1.5 atm)
Water concentration in GDL (298.15 K and 1.5 atm)
Water concentration in GDL (323.15 K and 1.5 atm)
Appendix C: Current Density in Membrane
Current density distribution in membrane (298.15 K and 1.5 atm)
Current density distribution in membrane (223.15 K and 1.5 atm)
Current density distribution in membrane (248.15 K and 1.5 atm)
Index

A
Accelerated durability testing, 24
Accelerated stress tests (ASTs), 10
Acoustic emission (AE), 84
 average power spectrum, 105
 flow and friction, 104
 frequency domain after zoom, 112
 frequency domain with no load, 109, 111
 intensity, 105, 106
 load effects, power parameters, 109, 110
 load variation, experimental set-up, 106, 107
 measurements and data analysis, 107, 108
 Minnaert resonance equation, 104
 RMS and variance, 114
 statistical parameters, 113, 114
 time-domain histories, 111
 time domain with no load, 109, 110
 water flooding, 108, 109
Activation polarization, 38–43, 93–95
Active pressure modelling, 97–99
Ageing
 cell performance, 70
 empirical model, extraction, 70
 failure modes, PEM fuel cells, 71, 73, 74
 modelled analysis, 70
 operating time estimation, 70
 polarization and internal resistance, 71
 protocols, 70
Air starvation, 68–69
Alkaline fuel cells (AFCs), 3
Alternating current (AC) impedance testing, 22
Anode flooding, 63, 64
Anode gas channels, 134, 138, 139

B
Ballard power systems, 10
Bipolar plate (Bp)
 coating methods, 19
 compressive forces, 19
 CTE, 19
 CVD and PVD process, 19
 CVI process, 20
 description, 18
 heavy atoms, 20
 metals, 18
 polymer-based composites, 18
 stainless steel, 19

C
Carbon monoxide effects, 60, 61
Catalyst layer degradation
 carbon corrosion modes, 14, 15
 Gibbs free energy, 14
 high-volume applications, 13
 ‘keep-warm’ technique, 16
 nitrogen-based carbon functionality, 16
 Pt catalysts, 15
 Pt/C/PtRu/C electro-catalysts, 15
 random cluster–cluster collisions, 14
 small Pt particles, 14
 ternary, Pt and binary, quaternary
 Pt-transition metal alloys, 13
Cathode components, definition, 134
Cathode flooding, 62–64
Cathode side geometry
 electrode, 133
 gas channel at cathode side, 134
 GDL, 133
Charge transfer, 90, 91
Chemical vapour deposition (CVD), 19
Chemical vapour impregnation (CVI), 20
Concentration polarization, 48–51, 96, 97
Current density in membrane, 155–158
Current distribution and water concentration, 149–153
Current efficiency, 52
Cyclic voltammetry testing, 23

D
Darcy’s law selection, 128
Direct methanol FC (DMFC), 42
Duty cycle testing, 21
Dynamic models, 81, 82

E
Efficiency of PEM fuel cells
- current, 52
- fuel utilization efficiency, 56
- thermal efficiency, 52–56
Electric and dynamic modelling
- COMSOL software, 125 (see also Porous media)
 - 3D model selection, 126
 - secondary current distribution, 125
Electrical power, 6
Electrochemical device, 2
Electrochemical impedance spectroscopy (EIS), 82
Electrochemical processes, 2
Electrode (catalyst) geometry, 131
Energy-storage system, 1

F
Fault severity indicators, 114
FC faults
- advantages, 66
- ageing and degradation (see Ageing)
 - chemical instability, 67
- description, 59
- electrical and chemical, 59
- permanent (irreversible) (see Permanent (irreversible) faults)
- resistive loss, 67 (see also Starvation)
- sub-zero temperatures, 67, 68
- transient (reversible) (see Transient (reversible) faults)
- zero and elevated temperatures, 66
FC technologies
- advantages, 2, 5, 6
- applications, 3
- disadvantages, 5–7
- durability and reliability, 3
- electrical energy, 2
- electrochemical device, 2
- emission environmental benefits, 6
- types, 3
- UPS, 2
Finite element method (FEM), 79
Flooding, FCs
- anode, 63, 64
- cathode, 62–64
- cell’s performance, 62
- flow channel, 65
- functions, 62
- location and consequences, 62
- membrane dehydration, 65, 66
Flow channel flooding, 65
Fuel cells (FCs)
- analytical three-dimensional models, 81
- costs, 1
- current density exchange, 78, 79
- description, 31, 77
- electrochemical reactions and speed of transmission, 78
- energy-storage system, 1
- flow field configurations, 78
- functionality, PEMs, 31, 32
- HFCs, 1
- HRES, 1
- humidified hydrogen/hydrocarbon fuel, 31
- and hydrogen economy, 2
- membrane (Nafion), 32
- membrane separator, 31
- methane gas, 33 (see also Modelling techniques)
- numerical errors/profound problems, 78
- oxidation of fuel, 31
- parameters, 38, 39, 51, 57, 61, 77
- PEMs, 33–36 (see also Polarization phenomenon)
- polymer separation membrane, 32
- realistic modelling and empirical verification methods, 77
- renewable energy, 2
- technologies (see FC technologies)
- thermodynamic analysis, 33
- V-I polarization curve, 77
Fuel starvation, 68
Fuel utilization efficiency, 56
G
Gas channel geometry, 130, 135
Gas diffusion layers (GDLs)
carbon composite and PTFE, 17
design, 131
electrochemical surface oxidation, 17
ex situ ageing methodologies, 17
graphitised fibres, 18
start/stop degradation rate, 18
Geometrical and operational parameter, 127, 129
Greenhouse gas emissions, 1
Green renewable power generation systems, 1

H
Heat transfer, 91, 92
Hybrid renewable energy system (HRES), 1
Hydration and dehydration
diffusion and electro-osmotic drag, 62
FC flooding (see Flooding, FCs)
relative humidity and water droplets, 61
water behaviour and management, 61
Hydrogen economy, 2
Hydrogen fuel cells (HFCs), 1, 101
Hydropower (HP), 1

K
Keep-warm’ technique, 16

M
Maxwell–Stefan multicomponent type
diffusion and convection module, 83
Melton fluid carbonate fuel cells (MCFCs), 3
Membrane, definition, 134, 139
Membrane degradation
acid-based PEMs, 13
air and hydrogen flow rates, 11
antioxidants/hindered amines, 13
catalyst layers, electrodes, 11
description, 11
functions, 11
gore FC Technologies, 13
hydroperoxide and peroxide radicals, 11
modified PFSA membranes, 13
multivalent ion contaminants, 11
performance, reliability, efficiency
and durability, 11
permanent (irreversible) faults, 59
peroxide-decomposition catalysts, 13
radical attack, 12
trace metal ions, 12
unzipping reaction, 12
water flux, 12
water molecules and H+ transferred
ions, 12
Membrane dehydration and flooding, 65, 66
Membrane electrode assembly (MEA), 15, 16
Membrane (electrolyte) geometry, 131, 132
Meshing process, 132, 138, 144, 146
Modelling techniques
acoustic emission phenomenon, 83
activation polarization, 93–95
active pressure, 97–99
AE, 84
analytical
3D modelling, 79
FEM, 79
one-dimensional models, 79–80
three-dimensional models, 80–81
two-dimensional models, 80
assumptions, 85
charge transfer, 90, 91
COMSOL 4.4, 83
concentration polarization, 96, 97
3D diagram, PEMs, 84
general heat transfer application
mode, 83
heat transfer, 91, 92
mass transfer, 85–90
Maxwell–Stefan multicomponent
type diffusion and convection
module, 83
Navier–Stokes application mode, 83
nonlinear-type problem, 84
ohmic polarization, 93–95
PEM fuel cell computational domain, 83
performance polarization curves, 83
semi-empirical (see Semi-empirical
modelling)
small flow channels, 84
UMFPACK, 83

N
Navier–Stokes application mode, 83
Nernst equation modelling, 98

O
Ohmic polarization, 43–48, 93–95
One-dimensional models, 79–80
Oxygen reduction reaction (ORR), 115
Oxygen testing, 22
P
Permanent (irreversible) faults
- absence of catalyst, 60
- carbon monoxide effects, 60, 61
- membrane degradation, 59

Perouse electrode (anode), 134, 141–143

Phosphoric acid fuel cells (PAFCs), 3

Photovoltaic (PV) system, 1

Physical vapour deposition (PVD), 19

Polarization curve, 21

Polarization curve and power density, 103, 104

Polarization phenomenon
- activation, 36, 38–43
- assumptions, 38
- concentration, 48–51
- constant parameters, 39
- geometric dependant parameters, 38
- mass transport/concentration losses, 37
- ohmic, 43–48
- overall voltage, 51
- polarization curve, 51, 52
- production cycle, 37
- reactants concentration change, 37
- resistive losses, 37

Polymer electrolyte membrane fuel cell, 3

Porous media
- density and concentration gradients, 126
- mass transport, 125
- reactants, 125
- reactions and flow
 - anode, 127
 - cathode, 127, 128

Pressure effect, 103

Proton-exchange membrane fuel cells
- (PEMFCs), 3, 11–18
 - AC impedance testing, 22
 - accelerated durability testing, 24
 - Bp (see Bipolar plate (Bp))
 - catalyst layer degradation (see Catalyst layer degradation)
 - cyclic voltammetry testing, 23
 - designers and companies, 10
 - deterioration mechanisms, 10
 - duty cycle testing, 21
 - membrane degradation (see Membrane degradation)
 - operation and ex situ measurements, 20
 (see also Gas diffusion layers (GDLs))
 - oxygen testing, 22
 - polarization curve, 21

power source, stationary and automotive applications, 9
reliability, durability and stability, 9
single cell vs. stack testing, 23
start-up and shutdown operations, 9
static and transport applications, 9
steady-state testing, 21
voltage decay, 22

R
Reactant leakage, 69, 70
Renewable energy, 2
Root mean square (RMS), 114

S
Secondary current distribution, 125, 134, 141

Semi-empirical modelling
- cell operation, 81
- dynamic models, 81, 82
- FC performance improvement, 81
- researchers, 81
- stack modelling, 81
- two-phase models, 82, 83

Solar and wind energy systems, 1

Solid oxide fuel cells (SOFCs), 3

Starvation
 - air, 68–69
 - fuel, 68
 - reactant leakage, 69, 70

Steady-state testing, 21

T
Temperature effect, 101, 102

Thermal efficiency, 52–56

Three-dimensional models, 80, 81

Transient (reversible) faults, see Hydration and dehydration

Two-dimensional models, 80

Two-phase models, 82, 83

U
Uninterrupted power supply (UPS), 2
US FC Council (USFCC), 20

V
V-I curve, 21

Voltage decay technique, 22
Index

W
Water electrolysis, 1
Water flooding
AE, 108, 109
 at anode and cathode, 119
 cell flooding due to load, 122
 concentration at anode side, 117
 concentration at cathode side, 116
 content through membrane, 118

Contour plot, 118
FC output voltage, 121
 at membrane, 120
ORR, 115
 pressures during, 120
 validation, experiment results, 122
 water droplet in channel, 116
Wind turbine (WT), 1