Index

A
- ABC tool, 180–181
- Active nodes, 23–25, 32
- Amorphous data-parallelism, 22, 26
- AND gate, 189, 190
- And-inverter graph (AIG), 87, 88, 91, 181
- Automated conversion, 126
- Autonomous scheduling, 28, 38

B
- Back-end-of-line (BEOL), 92, 93, 97
- BDD-based algorithms, 170
- Bellman-Ford algorithm, 23, 25, 26, 28
- BINARY, 175
- Blazegraph, 9
- Boolean functions, 104, 105, 170, 190
- Boolean operators, 52
- Branch and Merge operators, 130, 142
- Breadth-first search (BFS), 33
- Bulk-Synchronous Parallel (BSP-style) semantics, 27

C
- Canonical representation, 173
- Coarray FORTRAN, 21
- Coloured Petri Nets (CPN), 126, 148
- Common sub-expressions (CSE), 53, 54
- Compressed-sparse-row (CSR) representation, 29
- Connected components (CC), 33, 34
- Coordinated scheduling, 28

D
- Data-driven algorithms, 25–26
- Data-mining algorithms, 22
- DeepQA software architecture, 15, 16, 18
- Delaunay mesh refinement, 31, 32
- Dependency quantified Boolean formulas (DQBFs)
 - And-Inverter graph (AIG), 163 benchmarks dealing, 166
 - CNF transformation, 162
 - Craig interpolants, 163
 - elimination sets, 161–162
 - iDQ, 163–164
 - prototypic solvers, 166
 - quantifier prefix, 160
 - SAT problem, 160
 - semantics of, 153
 - Skolem functions, 152, 163
 - solver-based approaches, 152
 - solvers, scalability of, 167
 - syntax of, 153
 - unit and pure literals, 161
- Design flow disadvantages, 75
 - logic synthesis frontend, 74–75
 - physical awareness (see Physical awareness, design flow)
 - physical design backend, 75
 - VLSI (see VLSI design)
- Digital microfluidic biochips (DMFBs)
 - basic unit cell, 44, 45
 - design methods
 - automated synthesis of, 45, 46

© Springer International Publishing AG 2018
A.I. Reis, R. Drechsler (eds.), Advanced Logic Synthesis, https://doi.org/10.1007/978-3-319-67295-3
Digital microfluidic biochips (DMFBs) (cont.)
 cyberphysical DMFBs, 47
 epigenetics, 46
 5-layer (C^5) architecture for, 46, 47
 quantitative analysis of gene expression, 48, 49
 shared-resource coordination framework, 48, 50
Dijkstra’s algorithm, 23–25
DMFBs. See Digital microfluidic biochips (DMFBs)

E
Eager Fork operator, 127
EDA tools, 125
Elastic coarse Grain Reconfigurable Arrays (CGRAs), 126
Elastic systems, 125
Electronic design automation (EDA), 69
 applications, 10–11
 10B+ transistor processor, 22 nm technology, 7
 DeepQA architecture, 15, 16, 18
 estimated storage capacity requirements, 7, 8
 Google maps, 8, 9
 hierarchical design process, 14
 IBM Power8 Linux server, 11
 lack of prediction, design flow, 13
 Neo4j, 11
 noise inspection tool, 11, 12
 reducing structural bias in technology mapping, 15, 17
 synthesis parameters, impact of, 13, 14
 wavefront technology mapping, 15, 16
big data and analytics, 2
challenges, 2, 10
EDA1.0, 1
EDA2.0, 2
EDA3.0, 2, 3, 18
IT, 3, 18
parallel programming, EDA tools
 Galois system (see Galois system)
 graph algorithms, abstractions for (see Graph algorithms)
warehouse-scale computing
 application-level software, 4, 6
 cluster-level infrastructure, 3–6
 core design data, 4
 derived data, 4
 GraphX stack, 5
 platform-level software, 3, 4
ESPRESSO-style algorithms, 170

F
FabScalar-2W OoO core, 142
Field programmable gate arrays (FPGAs), 37–38
Floating Point Unit (FPU), 126
Fluid Pipelines
 benchmarks, 142–143
 channel groups, 134, 136–137
 Coloured Petri Nets, 148
communication and flow control
 Branch and Merge operator, 130
 control operators, 129
 data-dependent selection signal, 130
 disjoint or-causality, 130
 elastic buffers (EBs) implementation, 129
 Fork and Join operators, 130
 multiple input/output channels., 129
 or-firing rule, 130
deadlock avoidance
 Fork operator, 134, 135
 no-extraneous dependencies (NED), 132, 133
 pseudo-verilog implementation, 133, 134
 self-cleaning (SC), 132, 133
design space and energy-delay trade-offs, 149
digital design, 137, 139
elastic FPU, 145–146
elastic OoO core, 146–148
elastic system approaches, 128
energy-delay curve, 145
evaluation methodology
 Coloured Petri Nets (CPN), 140
 firing semantics, 140
 timing, 140–141
 FabScalar-2W OoO core, 142, 143
 FPU block diagram, 142
 logic-oriented design methodology, 149
 Pareto frontier, 144
 recycling, 143–144
 Register Files (RF), 137–138
 repipelining, 131–132
 SELF and and LI-BDNs, 142
 2-way Out-of-Order FabScalar core, 142
 Fork and Join operators, 126, 130
 FPU block diagram, 142
 Functional isomorphism, 104, 105
Index

G
Galois system, 28–30
 compressed-sparse-row representation, 29
 graph analytics
 Ligra, 32–34
 PowerGraph, 32–34
 iterations, 29–30
 large-scale shared-memory machines, 31–32
 maze routing in FPGAs, 37–38
 push-style BFS, 29
 subgraph isomorphism
 data graphs for, 36
 definition, 34
 generic graph query algorithm, 34, 35
 query graph for, 36
 Ullmann algorithm, 35–37
 VF2 algorithm, 36, 37
 unordered algorithms, 30
Gate-level circuits, transparent logic. See Transparent logic
Google maps, 8–10
Graph algorithms
 operator formulation
 global view of algorithms, 25
 local view of algorithms, 23–25
 parallelism in, 26–27
 BSP-style semantics, 27
 Galois system (see Galois system)
 transactional semantics, 27–28
 TAO analysis, 23, 24, 26
 topology-driven and data-driven algorithms, 25–26
GraphX stack, 5
Grover's search algorithm, 57

H
Hardware Model Checking Competition 2014, 118, 120, 122
High Level Synthesis (HLS), 126
High Performance FORTRAN (HPF), 21

I
IBM Power8 Linux server, 11
Incomplete circuits
 combinational circuits, 155–156
 sequential circuits
 bit stream bit2 and bit1, 158
 black boxes, interface of, 159
 realizability problem for incomplete sequential circuits (RISC), 156–157
 Skolem functions, 160
 Index generation functions, Monte Carlo method
column multiplicity
 balls into bins model, 218
 binary array, 218
 and exact enumeration, 219–220
 stirling number of the second kind, 219
 64-variable functions, 222–223
 20-variable functions, 220–222
decomposition
 bound variables, 211
 column function, 211
 subitem column multiplicity, 211
 decomposition chart, 212–213, 215
 free variables, 211
 functional decompositions, balls into bins model, 215–218
 parallel decomposition, 210
 rails, 212
 serial decomposition, 210
 field programmable gate arrays (FPGAs) and memories, 210
 heuristic and exact algorithm, 224
 programmable architecture, 223–224
 registered vectors, 212
 registered vector table, 212
 truth table, 214
Integer set model, 217
Integrated photonic circuits, 48
 photonic logic circuit model
 cross-bar switch model, 51
 Mach-Zehnder interferometer, 50–52
 ring resonator modulator, 51
 virtual gates, 52, 53
 XOR-based CSE, 53, 54
 Si-photonic integration
 active tuning, 55
 DC-bias based tuning, 55
 microheater-based tuning, 55
 OEICs, 54
 ONoC, 54, 55
 International Symposium on Physical Design (ISPD), 69
 International Workshop on Logic Synthesis (IWLS), 69, 75
Irredundant Sum-of-Product (ISOP) algorithm, 171
Just-in-time parallelization, 28
KL-cuts

I/O pins, 91

KL-cut PAIGs, 88, 92

logic computation KL-cuts

logic synthesis of, 95

partial SDCs for, 93, 94

physical design of, 95, 96

placement of, 92

physical synthesis of, 98

Label computation operators, 24

Lexicographic satisfiability (LEXSAT), 175–176

LT-DEC benchmarks, 181

Machine-learning algorithms, 22

Mach-Zehnder interferometers (MZIs), 48, 50–52, 54

Merge operation, 126

Middle-end-of-line (MEOL), 92, 93, 97, 98

MiniSAT, 180

Miniterms

expansion in cubes

canonical expansion, 176–177

fast non-canonical expansion, 178

greedy canonical cube expansion, 177–178

generation of

canonical SOP, 175–176

non-canonical SOP, 175

Monte Carlo method. See Index generation

functions, Monte Carlo method

Moore’s law, 1, 43–44

Morph operators, 24

Multiplexers (MUX), 103, 106, 108, 113

Negation-Permutation-Negation (NPN) isomorphism

composition of, 106, 117

definition, 105

transparent word, 107, 110

Neo4j, 11

No-extraneous dependencies (NED), 132, 133

Non-linear delay model (NLDM), 72

OpenAcces(OA), 5

OpenCores, 139

Open Source, 6

OpenStack software, 4

Operator formulation of algorithms

global view of algorithms, 25

local view of algorithms

active node, 23, 24

label computation operators, 24

memory model, 25

morph operators, 24

pull-style operator, 24–25

push-style operator, 25

relaxation operator, 24

Optical networks-on-chip (ONoC), 54, 55

Optimal energy-delay (ED) point, 126

Opto-electronic integrated circuits (OEICs), 54

Ordering, 25

Out-of-order (OoO) execution, 126

Pagerank (PR), 33

Pareto frontier, 126, 144

Partial equivalence checking problem (PEC), 155–156

PathFinder, 37

Photonic logic circuit model

cross-bar switch model, 51

Mach-Zehnder interferometer, 50–52

ring resonator modulator, 51

virtual gates, 52, 53

XOR-based CSE, 53, 54

Physical awareness, design flow

cuts for signal distribution and logic computation, 88–89

global signal distribution 1L-cuts, 92–94

input data for, 90

KL-cuts (see KL-cuts)

local SDCs, 89

PAIGs, 87

placement of interface pins, 90

timing closure, signal distribution and logic computation, 96–98

Placed and-inverter graphs (PAIGs), 87, 88

PowerGraph, 32–34

Power-law graphs, 26

Quantified Boolean formulas (QBFs), 151, 160

Quantum computation, 57

Quine-McCluskey algorithm, 170
R
Random graphs, 26
Register Files (RF), 137–138
Register-transfer level (RTL), 74, 90
Reverse engineering, 105, 115–117
Reversible circuits
 circuit model, 56
 design of, 59–61
 encoder design, 57–58
 power consumption, CMOS generations, 59, 59
 quantum computation, 57
Ring resonators (RRs), 48, 50, 51, 54, 55
Routing resource graph (RRG), 37
Runtime parallelization, 28

S
Self-cleaning (SC), 132, 133
SGI Ultraviolet, 31, 32
Single-source shortest-paths (SSSP), 22, 24, 33
Si-photonic
 active tuning, 55
 advancements in, 49
 DC-bias based tuning, 55
 microheater-based tuning, 55
 OEICs, 54
 ONoC, 54, 55
Software Dataflow Networks, 126
Solver-based techniques, 151
Speed-up techniques
 optimal partial solution, 203
 removal of branches, cube vectors, 202–203
 update count and explored nodes, limitation of, 203–204
Static parallelization, 28
Static timing analysis, 5
Stochastic computing (SC)
 advantages, 189
 applications, 189
 Bernstein polynomial expansion, 190
 Boolean functions, 190
 branch-and-bound algorithm, 200–202
 circuit synthesis problem
 Boolean relation minimization problem, 195
 sum-of-product (SOP), 194
digital circuits, 189
experiment results, 204–205
AND gate, 189, 190
general form and computation, 191–192
general function, synthesis of, 192–194
 proposed algorithm
 capacity constraint, 198
cube vector, 198–200
disjointness constraint, 198
multivariate polynomials, 196
preliminaries, 196–198
univariate polynomials, 196
speed-up techniques
 optimal partial solution, 203
 removal of branches, cube vectors, 202–203
 update count and explored nodes, limitation of, 203–204
stochastic bit streams, 189
stochastic circuits, 190
Structural isomorphism, 105
Sum of products (SOP), 194
 BDD-based algorithms, 170
 Boolean functions, 171–173
 Boolean satisfiability, 173–174
 canonical SOPs, 171
 ESPRESSO-style algorithms, 170
 experimental setup, 180–181
global circuit restructuring, 170
logic optimization, 169
multi-level logic synthesis, 169
 practical applications, 171
 Quine-McCluskey algorithm, 170
 SAT-based algorithm vs. BDD-based SOP generation, 181–184
 miniterms generation, 174–176
 minterms expansion, in cubes, 176–178
 multi-level implementation, 184–186
 multi-output circuits, 174
 on-set and off-set, 174
 redundant cubes, removal of, 179–180
 runtime improvement, 179–180
 single-output function, 174

T
Toffoli circuit, 56
Toffoli gates, 56
Topology-driven algorithms, 25–26
Transactional semantics, 27–28
Transparent logic, 103
 challenges
 ambiguity of transparency, 116, 117
generalized transparent words, 115–116
 limitations of proposed algorithms, 117
 composition of transparency, 108–109
 experimental results, 117–118
 functional and structural approaches, 119–121
 on unrolled circuits, 121–123
Transparent logic (cont.)
propagation of transparency, 109–110
transparency identification
compound word, four depth-one words, 113, 114
disjoint transparent blocks, 115
find transparency with given controls, 111–112
overall algorithm flow, 112–113
proceeding words, 114
transparent words, 106–108
Twitter graph, 33

U
Ullmann algorithm, 35–37
Uniform-degree graphs, 26
Unordered algorithms, 25
Unstructured graphs, 21

V
VF2 algorithm, 36, 37
Virtual gate (VG)
 Boolean operators in, 52
 in common subexpression sharing, 53, 54
 complex functions, 53
 implementation, 52
VLSI design
 design constraints, 71
 design convergence and delay information stability, 73
 sources of delay
 cell delay estimation, 72
 delay from late arrival, 71–72
 wire delay estimation, 72
 synthesis tasks, 75
 AND/OR/XOR trees, balancing and unbalancing of, 83, 84
 buffer deletion, 81
 buffering long nets, 80
 buffering nets to reduce fanout, 81, 82
 cell movement, 78–79
 cloning, 83
 composition/decomposition, 84–85
 gate sizing/repowering, 76–77
 inverter absorption, 85–87
 layer assignment, 79–80
 MUX decomposition, 85, 86
 pin swapping, 81, 82
 potential for improvement, 87
 Vt swapping, 77–78
 timing budget, 73
 timing closure, 72–73
 typical VLSI design flow, 74
 Voltages (Vt) swapping, 77–78

W
Warehouse-scale computing, EDA
 application-level software, 4, 6
 cluster-level infrastructure, 3–6
 platform-level software, 3, 4

Y
YouTube, 9

Z
Zero-slack algorithm (ZSA), 73