Index

A
Anti-agglomerating hydrate inhibitors (AAHIs), 3
Aqueous denser phase, 4
Atmospheric distillation column (ADC), 26, 35, 71

B
Binary distillation column, 44

C
Capital expenditure (CAPEX), 28, 102
ChW auxiliary loop, 34
Constant molar overflow (CMO), 45
Cooling water (CW), 55
CW regeneration, 35

D
DECHEMA Chemistry Data Series, 24
Deep-water environments, 107
Denser aqueous phase, 25
MRU processes, 102
oil and gas offshore platform, 104
old and new exhaust gas flow rates, 104
PHW, 102
Sankey diagrams, 103, 104
Exergy analysis (ExA), 5, 77–85, 108, 109
ADC, 94
aqueous liquid phase equilibrium, 76
chemical equilibrium, 76
chemical potentials, RER, 88
consistency, 94, 95
cross-check, 95
efficiencies, 88, 89
energy consumption, 90
energy quality, 75
first and second Laws of Thermodynamics, 76
flow rates, 89
graphical construction, 86
inefficient components or blocks, 90
inlet and outlet streams, 87–89
magnification, 87
MRU processing, 76
positive values, 87
RER, 76, 77
RER Approach #1
arbitrary idle stream, 84
chemical equilibrium, 85
dry basis composition, atmospheric air, 84
enthalpy and entropy, 84
gas and liquid portions, 83
molar Gibbs energy, 85
thermodynamic consistency, 84
Exergy analysis (ExA) (cont.)
VLE, 84
RER Approach #2, 85, 86
resource stream, 94
Sankey diagrams, 91
sinks, 90
steady-state chemical processes
constant entropy, 80
exergy flow, 77
first Law of Thermodynamics, 79
inlet and outlet exergy flows, 81
internal reversibility and adiabatic operation, 78
isolated macro-system, 77
mechanical energy (power) streams, 81
mutual chemical equilibrium, 79, 80
ratios/densities, 80
RER, 81
reservoirs, 77, 78
second Law of Thermodynamics, 77
system interacting, 77, 78
unit operation, 82
Universe, 81
work consumption, 80
thermodynamically/materially inefficient components, 75
types, 83
vacuum-distilling, 94
wasted exergy streams, 94
without chemical equilibrium with RER species, 87
Exergy efficiencies, 109
ADCs, 99
design parameters, 97
heat exchangers, 98
RR, 98, 99
sensitivity analysis, 98
TAPP, 97
temperature approach, 98
thermal approach, 98
thermodynamic efficiency, 100
Exergy flow (kW), 77
Exergy performance, 108

G
Gibbs free energy (kW), 19, 22, 48
Gilliland-Molokanov correlation, 59
Glycol systems, 5
Glycol thermodynamics
acentric factor, 20
algebraic simplicity, 23
density dependent function, 22
generalized alpha function, 20, 21
liquid activity model, 23
NRTL equation, 23
Twu–Sim–Tassone EOS, 19
van der Waals mixing rules, 21, 22
virial coefficient boundary condition, 21
volume dependency, 21
Glycol–water modeling, 19

H
Health, safety and environment (HSE), 4
Heat exchanger surfaces, 17
Heat recovery water heater (HRWH), 32, 33, 102, 109
Heat streams, 31
Helmholtz free energy, 22
High dosage hydrate inhibitors, 4
Hydrate inhibition, 2, 3
Hydrocarbon gas hydrate formation, 2

I
Internal energy fundamental relationships, 79

K
Kinetic hydrate inhibitors (KHIs), 3
Kollsnes processing plant, 26

L
Lean MEG, 25

M
McCabe–Thiele binary distillation, 67
McCabe–Thiele method, 43, 45, 52
MEG loops
calcium carbonate deposits, 16
flow rate, 15
gas production system, 16
multiphase pipeline, 16
offshore MRUs, 16–18
recovery, reconcentration, and salt removal, 16
Index

rich and lean, 15
submarine pipeline, 17
THIs, 15
MEG recovery units (MRUs), 4, 16, 25, 107
ADC bottoms, 39
boiling systems, 32
ChW consumption, 38
FS implementation, 36, 37
heat and power consumptions, 32, 38
NaCl, 32
PHW consumption, 39
power, heating and cooling resources, 33, 34
SS implementation, 37
stream, 32
temperature approaches (TAPP), 32
thermal utilities and CO₂ emissions, 38, 39
thermodynamic calculations, 32
TP implementation, 35
Minimum reflux (RR_{MIN}), 46, 59
Monoethylene glycol (MEG)
anti-hydrate commercial solution, 13
hydrate equilibrium curve, 12
liquid water phase, 12
loops (see MEG loops)
molecular structure, 11
MRUs (see MEG recovery units (MRUs))
physical properties, 12
reclamation, 29
VLE, 12
Multicomponent distillation
actual equivalent power consumption, 64–68
CW and PHW, 55
heat loss, 55
minimum power requirement, 61–63
propylene/propane, 54
size, reflux ratio, feed location and heat
duties, 57–61
stream temperatures, 55
thermodynamic efficiency, 68, 69

N
Natural gas hydrates
CH₄ hydrate equilibrium, 10
characterization, 7
cubic structure sI, 7
cubic structure sII, 8
deepwater environments, 8
depressurization, 8, 9
downstream production, 8
hexagonal structure sH, 8
hydroxyl groups/diol, 11
methane hydrates, 9
methane/nitrogen, 8
oil production systems, 8
procedure, 10
remediation techniques, 9
THIs, 9, 11
upstream production, 8
water and light hydrocarbon molecules, 7
water vapor, 9
Natural gas production, 1

O
Offshore environment, 4
Offshore exploration and production, 1
OPEX, 28

P
pH stabilizers, 28
Pressurized hot water (PHW), 28, 32, 33, 35, 55, 102
Process flow diagrams (PFD), 31
Propylene–Propane. See Multicomponent distillation

R
Reference environment reservoir (RER), 76, 83, 108
Reflux ratio (RR), 97
Rich MEG stream, 4, 25

S
Simulation environment, 31
Slip-stream process (SS), 28–30, 37, 92, 93, 104, 108
Spiral heat exchanger (SHE), 27, 38
Sub-atmospheric distillation column (SDC), 27, 30, 34, 37

T
Thermal and mechanical energy streams, 31
Thermodynamic efficiency
actual equivalent power consumption, 50, 51
assumptions, 43, 45
Carnot equivalent cycles, 50–51
energy-consuming components, 41
<table>
<thead>
<tr>
<th>Thermodynamic efficiency (cont.)</th>
<th>Thermodynamic hydrate inhibitions (THIs), 2, 4, 11, 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>equivalent power, 42</td>
<td>Thermodynamic processing system, 5</td>
</tr>
<tr>
<td>exergy efficiency, 41, 42</td>
<td>TP MEG regeneration system, 26</td>
</tr>
<tr>
<td>heat pump cycles, 41</td>
<td>Traditional process (TP), 26, 36, 91, 92, 103, 108</td>
</tr>
<tr>
<td>justifications, 42</td>
<td>Twu–Sim–Tassone (TST), 19</td>
</tr>
<tr>
<td>minimum power requirement, 47–49</td>
<td></td>
</tr>
<tr>
<td>power-consuming operations, 42, 70–74</td>
<td>V</td>
</tr>
<tr>
<td>RER, 42</td>
<td>Vapor–liquid equilibrium (VLE), 45</td>
</tr>
<tr>
<td>steady-state binary distillation column, 51–53</td>
<td></td>
</tr>
</tbody>
</table>