Appendix A
Abstract Graphs

The purpose of this Appendix is twofold. First we want to develop a terminology
common to both abstract and profinite graphs that is appropriate for this book. Every
profinite graph has the underlying structure of a graph in the abstract sense, if we
dispense with the topology. The second purpose is to establish some basic results
that are needed in parts of this work, using this common terminology. The choice of
these results is dictated by our needs in the book.

A.1 The Fundamental Group of an Abstract Graph

An abstract (oriented) graph consists of a set Δ together with a nonempty subset
$V = V(\Delta)$ (the vertices of the graph) and two incidence maps

$$d_0, d_1 : \Delta \longrightarrow V$$

whose restriction to V are the identity map on V. The set $E = E(\Delta) = \Delta - V$ is
the set of edges of the graph. If $e \in E$, $d_0(e)$ is the initial vertex (or origin) of e,
and $d_1(e)$ is the terminal vertex (or terminus or end vertex) of e. A graph with
only one edge e and one vertex v with $d_0(e) = d_1(e) = v$ is called a loop based
at v. A nonempty subset Δ' of Δ is called a subgraph if whenever $m \in \Delta'$, then
d_0(m), d_1(m) \in \Delta'$; observe that then Δ' is a graph in a natural way. A morphism
(or a ‘map of abstract graphs’) $\alpha : \Delta \longrightarrow \Lambda$ of abstract graphs is a map such that
d_i(\alpha(e)) = \alpha(d_i(e)) (i = 0, 1) and such that $\alpha(e) \in E(\Lambda)$, for every $e \in E(\Delta)$; in
other words, α sends vertices to vertices and edges to edges and α preserves the
graph structure.

A group G acts on a graph Δ if it acts on the set Δ and $d_i(gm) = gd_i(m)$, for all
g $\in G$, m $\in \Delta$ and i = 0, 1 (note that then G acts on $V(\Delta)$ and on $E(\Delta)$). If a group
G acts on a graph Δ, the quotient $G \backslash \Delta$ is a graph in a natural way: $V(G \backslash \Delta) = G \backslash V$
and $d_i(Gm) = Gd_i(m)$ (m $\in \Delta$, i = 0, 1).
The Star of a Vertex

Let $v \in V = V(\Delta)$. Define

$$\text{Star}_0(v) = \{ e \in E(\Delta) \mid d_0(e) = v \} \quad \text{and} \quad \text{Star}_1(v) = \{ e \in E(\Delta) \mid d_1(e) = v \}. $$

Observe that $\text{Star}_0(v)$ and $\text{Star}_1(v)$ are subsets of Δ, and they are not disjoint if and only if Δ has a loop based at v. Define the ‘star’ of the vertex v to be

$$\text{Star}_\Delta(v) = \text{Star}(v) = \text{Star}_0(v) \cup \text{Star}_1(v)$$

The **valency** of v in Δ is the cardinality of $\text{Star}_\Delta(v)$ (so, the valency of v is the number of edges $e \in E(\Delta)$ incident with v, i.e., having v as a vertex, where a loop is counted twice). Note that if

$$\alpha : \Delta \longrightarrow \Lambda$$

is a morphism of abstract, then $\alpha(\text{Star}_i(v)) \subseteq \text{Star}_i(\alpha(v)) \ (i = 0, 1)$. Therefore α induces a map of sets

$$\alpha_v : \text{Star}_\Delta(v) \longrightarrow \text{Star}_\Lambda(\alpha(v)),$$

for each $v \in V(\Delta)$.

We say that α is an **immersion** if for each $v \in V(\Delta)$, the induced map

$$\alpha_v : \text{Star}_\Delta(v) \longrightarrow \text{Star}_\Lambda(\alpha(v))$$

is injective.

Observe that if α fails to be an immersion, it is because there exists a pair of different edges $\{e_1, e_2\}$ such that either $d_0(e_1) = d_0(e_2)$ or $d_1(e_1) = d_1(e_2)$ and $\alpha(e_1) = \alpha(e_2)$.

We say that α is a **covering** of abstract graphs if α_v is a bijection, for all $v \in V(\Delta)$.

Paths

To make the notion of ‘path’ easier to describe, one introduces new formal symbols $e^{\pm 1}$ for each $e \in E$. For convenience, we make the identification $e^1 = e$, for $e \in E(\Delta)$. One extends the incidence maps d_i as follows: $d_0(e^{-1}) = d_1(e)$ and $d_1(e^{-1}) = d_0(e)$; we also refer to the e^{-1} as the ‘inverse edge’ of e. Put $E^{-1} = \{ e^{-1} \mid e \in E \}$; we assume that $E^{-1} \cap E = \emptyset$. If $\alpha : \Delta \longrightarrow \Lambda$ is a morphism of graphs, we extend α to the formal edges e^{-1} by setting $\alpha(e^{-1}) = \alpha(e)^{-1}$.

Let $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)$, where $\varepsilon_i = \pm 1 \ (i = 1, \ldots, n)$ and $n \geq 1$ is a natural number. Define $\text{Circ}_n(\varepsilon)$ to be a graph with n vertices (that we take to be the elements of
\(\mathbb{Z}/n\mathbb{Z} \) and \(n \) edges \(e_1, \ldots, e_n \)

\[
\text{Circ}_n(\varepsilon) :
\]

\[
\begin{array}{c}
0 \\
1 \\
2 \\
3 \\
n-1 \\
e_n \\
e_1 \\
e_2 \\
e_3 \\
\end{array}
\]

such that \(d_0(e_i) = i - 1 \) and \(d_1(e_i) = i \), if \(\varepsilon_i = 1 \), and \(d_0(e_i) = i \) and \(d_1(e_i) = i - 1 \), if \(\varepsilon_i = -1 \). We refer to a graph of the form \(\text{Circ}_n(\varepsilon) \) as a circuit of length \(n \) (or \(n \)-circuit). Note that a circuit of length 1 is a loop.

A standard arc \(A_n(\varepsilon) \) of length \(n \) is a graph with \(n + 1 \) vertices \(0, 1, \ldots, n \), and \(n \) edges \(e_1, \ldots, e_n \)

\[
\text{A}_n(\varepsilon) :
\]

\[
\begin{array}{c}
0 \\
1 \\
2 \\
\ldots \\
n-1 \\
n \\
e_1 \\
e_2 \\
e_3 \\
e_n \\
\end{array}
\]

such that \(d_0(e_i) = i - 1 \) and \(d_1(e_i) = i \), if \(\varepsilon_i = 1 \), and \(d_0(e_i) = i \) and \(d_1(e_i) = i - 1 \), if \(\varepsilon_i = -1 \). We call 0 and \(n \) the initial and terminal vertices of the standard arc \(A_n(\varepsilon) \). Note that one obtains the circuit \(\text{Circ}_n(\varepsilon) \) by identifying the vertices 0 and \(n \) in \(A_n(\varepsilon) \).

Define a path \(p = p_{v,w} \) from a vertex \(v \) to a vertex \(w \) of \(\Delta \) to be a finite sequence \(e_{\varepsilon_1}^1, \ldots, e_{\varepsilon_r}^r \) of edges such that \(d_0(e_{\varepsilon_1}^1) = v \), \(d_1(e_{\varepsilon_r}^r) = w \) and \(d_1(e_{\varepsilon_i}^i) = d_0(e_{\varepsilon_{i+1}}^{i+1}) \) for all \(i < r \). The length \(|p_{v,w}| \) of such a path is \(r \). We refer to \(v \) and \(w \) as the initial and terminal vertices, respectively, of the path \(p = p_{v,w} \). Observe that an equivalent way of specifying a path in \(\Delta \) from \(v \) to \(w \) of length \(r \) is by giving a morphism of graphs

\[
f : A_r(\varepsilon) \longrightarrow \Delta
\]

such that \(f(0) = v \) and \(f(r) = w \). This way of defining a path will be useful later in Sect. A.4 dealing with certain algorithms in free abstract groups.

The underlying graph of the path \(p_{v,w} \) is the subgraph of \(\Delta \) with edges \(e_1, \ldots, e_r \) (note that these may not be distinct) and their vertices. The path \(p_{v,w} \) is called reduced if it contains no subsequence \(e_{\varepsilon_i}^i, e_{\varepsilon_{i+1}}^{i+1} \) of the form \(e^\varepsilon, e^{-\varepsilon} \) (\(e \in E(\Delta), \varepsilon = \pm 1 \)). Note that if the path is defined as a morphism from a standard arc, as in (A.1), then saying that it is reduced is the same as saying that \(f \) is an immersion.

If \(v = w \), then a path \(p_{v,v} \) is called a cycle based at \(v \) or a closed path based at \(v \) (a cycle of length 0 is just a vertex; this is also called the ‘empty cycle’ based at \(v \)).
The underlying graph of a reduced cycle of length greater than 0 has a subgraph which is a circuit.

If \(p = e_1^{\varepsilon_1}, \ldots, e_r^{\varepsilon_r} \) and \(p' = e_1^{\varepsilon_1}, \ldots, e_r^{\varepsilon_r} \) are paths in \(\Delta \), we say that \(p \) and \(p' \) are elementary homotopic if one can pass from \(p \) to \(p' \) by deleting or inserting adjacent pairs of the form \(e^\varepsilon, e^{-\varepsilon} \) \((e \in E(\Delta))\); observe that if \(p \) and \(p' \) are elementary homotopic, then they have the same initial and the same terminal vertices. This generates an equivalence relation on the set of paths, which is called homotopy; explicitly: two paths \(p \) and \(p' \) in \(\Delta \) are homotopic if there exists a finite sequence of paths \(p = p_1, \ldots, p_t = q \) such that any two adjacent paths \(p_i, p_{i+1} \) are elementary homotopic. Note that every path is homotopic to a reduced path.

Let \(v \) be a fixed vertex of an abstract graph \(\Delta \). Given two cycles \(p_{vv} \) and \(p'_{vv} \) based at a vertex \(v \), define their product \(p_{vv}p'_{vv} \) by concatenation. This product is compatible with the homotopy relation defined above. Let \(\pi_{1}^{\text{abs}}(\Delta, v) \) denote the set of homotopy classes of cycles based at \(v \). Then it easily follows that \(\pi_{1}^{\text{abs}}(\Delta, v) \) is a group whose identity element is the class represented by the empty cycle based at \(v \): this is called the fundamental group of \(\Delta \) based at \(v \).

A more algebraic approach is the following. Put \(Y = \{ ye \mid e \in E(\Delta) \} \), and let \(\Phi = \Phi(Y) \) denote the free abstract group with basis \(Y \). Then \(\pi_{1}^{\text{abs}}(\Delta, v) \) is the subgroup of \(\Phi \) consisting of those elements represented by words of the form \(ye_1^{\varepsilon_1} \cdots ye_r^{\varepsilon_r} \) such that \(e_1^{\varepsilon_1}, \ldots, e_r^{\varepsilon_r} \) is a cycle in \(\Delta \) based at \(v \); this interpretation of \(\pi_{1}^{\text{abs}}(\Delta, v) \) is justified because homotopy in paths corresponds to the usual equivalence of words. In particular, one deduces that \(\pi_{1}^{\text{abs}}(\Delta, v) \) is a free abstract group. One also obtains the following result from this interpretation and from the classical treatment of free groups (see Sect. B.2 in Appendix B).

Lemma A.1.1 An element of \(\pi_{1}^{\text{abs}}(\Delta, v) \) is represented by a unique reduced cycle based at \(v \), or equivalently, if \(p_1 \) and \(p_2 \) are reduced homotopic cycles based at \(v \), then \(p_1 = p_2 \).

An abstract graph \(\Delta \) is connected if for any given pair of vertices \(v, w \), there exists a path in \(\Delta \) from \(v \) to \(w \). For an abstract graph \(\Delta \) define a relation \(R \) on \(\Delta \) as follows: for \(m, m' \in \Delta \), we say that \(mRm' \) if there exists a path from \(d_0(m) \) to \(d_0(m') \); this is an equivalence relation. The equivalence classes of \(R \) are connected subgraphs of \(\Delta \), which we call the ‘connected components’ of \(\Delta \).

One easily checks that the image of a connected abstract graph under a morphism is connected. A connected abstract graph \(\Delta \) is a tree if it contains no circuits, or equivalently, if the only reduced cycles in \(\Delta \) have length 0.

Exercise A.1.2 Let \(\Delta \) be a abstract graph and let \(R \) be a ring (with an identity element 1). For a set \(X \) denote by \([RX] \) the free \(R \)-module with basis \(X \). Consider the sequence of free \(R \)-modules and homomorphisms

\[
0 \longrightarrow [RE(\Delta)] \overset{d}{\longrightarrow} [RV(\Delta)] \overset{e}{\longrightarrow} R \longrightarrow 0.
\]

(A.2)
where \(d(e) = d_1(e) - d_0(e) \) and \(\varepsilon(v) = 1 \ (e \in E(\Delta), v \in V(\Delta)) \).

(a) Show that \(\Delta \) is connected if and only if the sequence (A.2) is exact at \([RV(\Delta)] \).

(See Proposition 2.3.2.)

(b) Show that \(\Delta \) is a tree if and only if the short exact sequence (A.2) is exact.

If \(v \) and \(w \) are vertices in a tree \(T \), it is not hard to see that there is a unique reduced path in the tree from \(v \) to \(w \); we denote by \([v, w]\) the underlying graph of such a reduced path: it is a finite subtree of \(T \), and we refer to \([v, w]\) as the chain determined by \(v \) and \(w \).

If \(\Delta \) is connected, then the fundamental group \(\pi_1^{\text{abs}}(\Delta, v) \) is independent of the chosen vertex \(v \). This is a consequence of the following result, which also provides a basis for the free group \(\pi_1^{\text{abs}}(\Delta, v) \). Using Zorn’s Lemma, one sees that every abstract connected graph \(\Delta \) contains a subtree \(T \) with \(V(\Delta) = V(T) \) (a ‘maximal tree’).

Proposition A.1.3 Let \(\Delta \) be a connected abstract graph and let \(T \) be a maximal tree of \(\Delta \). Choose \(v \in V(\Delta) \); let \(Y \) be as above and put

\[
X = \{ y_e \mid e \in E(\Delta) - E(T) \}.
\]

Then the restriction to \(\pi_1^{\text{abs}}(\Delta, v) \) of the natural homomorphism of free abstract groups

\[
\varphi : \Phi(Y) \longrightarrow \Phi(X)
\]

which sends \(X \) to \(X \) identically and sends each \(y \in Y - X \) to \(1 \), is an isomorphism from \(\pi_1^{\text{abs}}(\Delta, v) \) onto \(\Phi(X) \).

Proof Given \(e \in E(\Delta) \), define

\[
y'_e = \rho_{d_0(e)} y_e \rho_{d_1(e)}^{-1},
\]

where, for a given vertex \(w \in V(T) \), we set \(\rho_w = y_{e_1} \cdots y_{e_r} \), if \(e_1, \ldots, e_r \) is the unique reduced path in \(T \) from \(v \) to \(w \). Note that \(y'_e \) represents an element of \(\pi_1^{\text{abs}}(\Delta, v) \) (by abuse of notation we write \(y'_e \in \pi_1^{\text{abs}}(\Delta, v) \)), and if \(e \in E(T) \), then \(y'_e = 1 \). Define

\[
\psi : \Phi(X) \longrightarrow \pi_1^{\text{abs}}(\Delta, v) \leq \Phi(Y)
\]

to be the homomorphism that sends \(x = y_e \in X \) to \(y'_e (e \in E(\Delta) - E(T)) \). Then clearly \(\varphi|_{\pi_1^{\text{abs}}(\Delta, v)} \psi = \text{id}_\Phi(X) \).

Next we need to show that \(\psi \varphi|_{\pi_1^{\text{abs}}(\Delta, v)} = \text{id}_{\pi_1^{\text{abs}}(\Delta, v)} \). To prove this it is first convenient to extend our notation as follows: if \(e \in E(\Delta) \), we define \(y_{e^{-1}} = y_e^{-1} \). Then we have

\[
(y'_e)^{-1} = (\rho_{d_0(e)} y_e \rho_{d_1(e)}^{-1})^{-1} = \rho_{d_1(e)} y_e^{-1} \rho_{d_0(e)}^{-1} = \rho_{d_0(e^{-1})} y_{e^{-1}} \rho_{d_1(e^{-1})}.
\]
Hence, if we define $y'_e^{-1} = (y'_e)^{-1}$, we have
\[y'_e = \rho d_0(e) y_e \rho d_1^{-1}(e), \quad \varepsilon = \pm 1, \ e \in E(\Delta). \]

Consider an element $\pi = y_{e_1}^{e_1} \cdots y_{e_n}^{e_n} = y_{e_1}^{e_1} \cdots y_{e_n}^{e_n} \in \pi_1^{\text{abs}}(\Delta, v)$ corresponding to a cycle $e_1^{e_1}, \ldots, e_n^{e_n}$ in Δ based at v. Then we have
\[\pi = y_{e_1}^{e_1} \cdots y_{e_n}^{e_n} = \rho d_0^{-1}(e_1) y_{e_1}^{e_1} \cdots y_{e_n}^{e_n} \rho d_1(e_n) = y_{e_1}^{e_1} \cdots y_{e_n}^{e_n}, \]

since $\rho d_0(e_1) = \rho d_1(e_n) = 1$, because $d_0(e_1) = d_1(e_n)$. Thus
\[\psi \varphi|_{\pi_1^{\text{abs}}(\Delta, v)}(\pi) = \pi, \]

(since $y_{e_i}^{e_i} = 1$, when $e_i \in E(T)$), as desired. \qed

The following corollary is now clear.

Corollary A.1.4 Let Δ be a connected abstract graph. The group $\pi_1^{\text{abs}}(\Delta, v)$ is a free group which is independent, up to isomorphism, of the choice of the vertex v; furthermore, its rank is the cardinality of the set $E(\Delta) - E(T)$, where T is a maximal tree of Δ, and this is independent of the chosen maximal tree.

In view of this corollary, one sometimes uses the notation $\pi_1^{\text{abs}}(\Delta)$, rather than $\pi_1^{\text{abs}}(\Delta, v)$, when Δ is a connected graph, and we refer to $\pi_1^{\text{abs}}(\Delta)$ as the fundamental group of the abstract graph Δ.

Corollary A.1.5 Let Λ be a connected subgraph of a connected graph Δ. Choose $v \in V(\Lambda) \subseteq V(\Delta)$. Then $\pi_1^{\text{abs}}(\Lambda, v)$ is naturally embedded into $\pi_1^{\text{abs}}(\Delta, v)$ as a free factor (i.e., a basis of the subgroup $\pi_1^{\text{abs}}(\Lambda, v)$ of $\pi_1^{\text{abs}}(\Delta, v)$ can be extended to a basis of $\pi_1^{\text{abs}}(\Delta, v)$).

Proof Choose a maximal tree T' of Λ. Extend T' to a maximal tree T of Δ. Then $\Lambda - T' \subseteq \Delta - T$. Continuing with the notation in the proof of Proposition A.1.3, we deduce that the basis $\{y'_e \mid e \in E(\Lambda) - E(T')\}$ of $\pi_1^{\text{abs}}(\Lambda, v)$ is a subset of the basis $\{y'_e \mid e \in E(\Delta) - E(T)\}$ of $\pi_1^{\text{abs}}(\Delta, v)$. \qed

The following algorithm is clear from the proof of Proposition A.1.3.

Algorithm A.1.6 Construction of a basis for $\pi_1^{\text{abs}}(\Delta, v)$ when Δ is a connected finite graph.

Explicitly: We assume that Δ is specified by its vertices, edges and explicitly given incident functions d_0, d_1. Since a maximal tree of Δ is a subtree that covers all its vertices, one can construct algorithmically one such maximal tree T. For each
edge $e \in \Delta - T$, construct a cycle \tilde{e} based at v as the path defined as follows: take the unique reduced path in T from v to $d_0(e)$, followed by e, followed by the unique path in T from $d_1(e)$ to v. Then \tilde{e} represents an element of $\pi_1^{\text{abs}}(\Delta, v)$, and the set of all those elements is a basis for $\pi_1^{\text{abs}}(\Delta, v)$.

Example A.1.7 Let G be an abstract group and let X be a subset of G with $1 \notin X$. The Cayley graph $\Gamma = \Gamma(G, X)$ of G with respect to X is defined as follows: $\Gamma = V(\Gamma) \cup E(\Gamma)$, where $V(\Gamma) = G$, $E(\Gamma) = G \times X$, $d_0(g, x) = g$ and $d_1(g, x) = gx$ ($g \in G, x \in X$). Clearly Γ is connected if and only if $G = \langle X \rangle$.

A.2 Coverings of Abstract Graphs

In this section we construct a ‘universal covering’ $\tilde{\Delta}$ of a connected graph Δ and show how any other covering of Δ appears as an image of $\tilde{\Delta}$. We begin with some general properties of immersions and coverings.

Proposition A.2.1 Let $\zeta : \Delta' \longrightarrow \Delta$ be an immersion of abstract connected graphs and let $v \in V(\Delta')$.

(a) Let p and p' be paths in Δ' with the same initial vertex v. If $\zeta(p) = \zeta(p')$, then $p = p'$.

(b) If p is a reduced path in Δ', then $\zeta(p)$ is a reduced path in Δ.

Proof (a) Say $p = \{e_1^{\epsilon_1}, \ldots, e_r^{\epsilon_r}\}$ and $p' = \{(e'_1)^{\epsilon'_1}, \ldots, (e'_s)^{\epsilon'_s}\}$. Since $\zeta(p) = \zeta(p')$, we have $\{\zeta(e_1)^{\epsilon_1}, \ldots, \zeta(e_r)^{\epsilon_r}\} = \{(\zeta(e'_1)^{\epsilon'_1}, \ldots, \zeta(e'_s)^{\epsilon'_s}\}$. Hence $r = s$, $\zeta(e_i) = \zeta(e'_i)$ and $\epsilon_i = \epsilon'_i$, for all $i = 1, \ldots, r$. Assume first that $r = 1$, i.e., $p = \{e_1^{\epsilon_1}\}$ and $p' = \{(e'_1)^{\epsilon'_1}\}$. Since also $v = d_0(e_1^{\epsilon_1}) = d_0((e'_1)^{\epsilon'_1})$, we deduce that either $d_0(e_1) = d_0(e'_1)$ or $d_1(e_1) = d_1(e'_1)$. Hence, since ζ induces an injection on Star(v), we also have that $e_1 = e'_1$; therefore $p = \{e_1^{\epsilon_1}\} = \{(e'_1)^{\epsilon'_1}\} = p'$, proving the result for paths of length 1. The general result now follows by an easy induction.

(b) We think of the path p as a morphism from a standard arc, $p : A(\epsilon) \rightarrow \Delta'$. Since p is reduced, the morphism p is an immersion. So the result reduces to the obvious statement that the composition of immersions is an immersion.

Proposition A.2.2 Let $\zeta : \Delta' \longrightarrow \Delta$ be a covering of connected abstract graphs and let $v' \in V(\Delta')$.

(a) If p is a path in Δ with initial vertex $\zeta(v')$, then there exists a unique path \tilde{p} (the ‘lifting’ of p) in Δ' with initial vertex v' such that $\zeta(\tilde{p}) = p$.

(b) If p_1 and p_2 are homotopic paths in Δ with initial vertex $\zeta(v')$, then \tilde{p}_1 and \tilde{p}_2 are homotopic paths in Δ'.

(c) If ζ has a section (i.e., a graph morphism $\sigma : \Delta \longrightarrow \Delta'$ such that $\zeta \sigma = id_\Delta$), then ζ is an isomorphism.
Proof Parts (a) and (b) are easy to prove. Part (c) follows from (a) and the connectedness of Δ'.

Proposition A.2.3 Let $\xi : \Delta' \longrightarrow \Delta$ be an immersion of connected abstract graphs and let $v' \in V(\Delta')$. Then the natural homomorphism

$$
\xi : \pi_1^{\text{abs}}(\Delta', v') \longrightarrow \pi_1^{\text{abs}}(\Delta, \xi(v'))
$$

is injective.

Proof Let $1 \neq \alpha \in \pi_1^{\text{abs}}(\Delta', v')$; by Lemma A.1.1, α is represented by a unique cycle p based at v' in reduced form. Since $\alpha \neq 1$, $|p| \geq 1$. Hence $|\xi(p)| \geq 1$. By Proposition A.2.1(b), $\xi(p)$ is in reduced form; therefore, $\xi(\alpha) \neq 1$.

Associated with a connected abstract graph Δ one can define an abstract ‘universal covering graph’ $v : \tilde{\Delta} \longrightarrow \Delta$ of Δ as follows. The morphism v is surjective and a covering of the abstract graph Δ, and the following universal property is satisfied: given a surjective covering graph $\zeta : \Gamma' \longrightarrow \Gamma$ of an abstract graph Γ, vertices $v \in V(\tilde{\Delta})$, $w' \in V(\Gamma')$ and a morphism of graphs $\varphi : \Delta \longrightarrow \Gamma$ such that $\varphi v(v) = \zeta(w')$, then there exists a unique morphism of graphs $\tilde{\varphi} : \tilde{\Delta} \longrightarrow \Gamma'$ such that $\tilde{\varphi}(v) = w'$.

From this definition it follows easily that an abstract universal covering graph $v : \tilde{\Delta} \longrightarrow \Delta$ is unique up to isomorphism, if it exists. We proceed to its construction.

To define $\tilde{\Delta}$ first we choose a maximal tree T of Δ, and identify $\pi_1^{\text{abs}}(\Delta)$ with the free group $\Phi(X)$ as in Proposition A.1.3, where

$$
X = \{y_e \mid e \in E(\Delta) - E(T)\}.
$$

Furthermore, we require the existence of a morphism of graphs $v : \tilde{\Delta} \longrightarrow \Delta$ and we want the fundamental group $\pi_1^{\text{abs}}(\Delta)$ to act freely on $\tilde{\Delta}$ in such a way that v induces an isomorphism of the quotient graph $\pi_1^{\text{abs}}(\Delta) \backslash \tilde{\Delta}$ and Δ. This forces

$$
\tilde{\Delta} = \pi_1^{\text{abs}}(\Delta) \times \Delta \quad \text{and} \quad V(\tilde{\Delta}) = \pi_1^{\text{abs}}(\Delta) \times V(\Delta).
$$

To complete the requirements we need to specify the incidence maps $d_i : \tilde{\Delta} \longrightarrow V(\tilde{\Delta})$ $(i = 0, 1)$ on the edges of $\tilde{\Delta}$. Put

$$
d_0(g, e) = (g, d_0(e)),
$$

$$
d_1(g, e) = (g\tilde{y}_e, d_1(e)), \quad (g \in \pi_1^{\text{abs}}(\Delta), e \in E(\Delta)),
$$

where \tilde{y}_e is the image of y_e in $\pi_1^{\text{abs}}(\Delta) = \Phi(X)$, i.e., \tilde{y}_e is 1 if $e \in E(T)$, and it is y_e otherwise. To facilitate the calculations later it is convenient to observe that the
above definitions for d_0 and d_1 extend to the following formulas valid also for the inverse edges:

\[
d_0(g, e)^\varepsilon = (g_{\bar{y}^\varepsilon(-\eta(\varepsilon))}, d_0(e^\varepsilon)),
\]

\[
d_1(g, e)^\varepsilon = (g_{\bar{y}^\varepsilon(1-\eta(\varepsilon))}, d_1(e^\varepsilon)) ,
\]

where $g \in \pi_1^{\text{abs}}(\Delta)$, $e \in E(\Delta)$, $\varepsilon = \pm 1$, $\eta(1) = 0$ and $\eta(-1) = 1$.

Define

\[\nu : \tilde{\Delta} \longrightarrow \Delta\]

to be the natural projection. The group $\pi_1^{\text{abs}}(\Delta) = \Phi(X)$ acts freely on $\tilde{\Delta}$ by multiplication on the first component. Note that $\Lambda = \{(1, m) \mid m \in \Delta\}$ is a connected subgraph of $\tilde{\Delta}$: it contains an isomorphic copy $T' = \{ (1, m) \mid m \in T \}$ of T, and $d_0(1, m) \in T'$ for all $(1, m) \in \Lambda$. We shall show in Proposition A.2.5 that $\nu : \tilde{\Delta} \longrightarrow \Delta$, as constructed above, is indeed a universal covering graph of Δ.

Proposition A.2.4

(a) For every subgroup H of $\pi_1^{\text{abs}}(\Delta)$, the induced morphism

\[\nu_H : H \backslash \tilde{\Delta} \longrightarrow \Delta\]

is a covering of abstract graphs.

(b) $\tilde{\Delta}$ is a tree.

Proof (a) is clear. Let Λ be as defined above. To prove (b) first observe that if $e \in X = E(\Delta) - E(T)$, then $\Lambda \cup y_e \Lambda$ is a connected subgraph of $\tilde{\Delta}$ because $d_0(1, e) \in T'$ and $d_1(1, e) \in y_e T'$; consequently, $\Lambda \cup y_e^{-1} \Lambda$ is also connected. It follows inductively that

\[\Lambda \cup y_{e_1} \Lambda \cup y_{e_1} y_{e_2} \Lambda \cup \cdots \cup y_{e_1} \cdots y_{e_r} \Lambda\]

is connected, for $y_{e_1}, \ldots, y_{e_r} \in X$, $e_i = \pm 1$. Since $\tilde{\Delta} = \pi_1^{\text{abs}}(\Delta) \Lambda$ and since X generates $\pi_1^{\text{abs}}(\Delta)$, one deduces that $\tilde{\Delta}$ is connected (see Lemma 2.2.4(a)).

To show that $\tilde{\Delta}$ does not contain a circuit, we proceed by contradiction. Assume that there exists a nontrivial reduced cycle

\[(g_1, e_1)^{\varepsilon_1}, \ldots, (g_r, e_r)^{\varepsilon_r} \quad \text{(A.3)} \]

in $\tilde{\Delta}$ of length $r > 0$ ($e_i \in E(\Delta)$, $g_i \in \pi_1^{\text{abs}}(\Delta)$, $e_i = \pm 1$). Since $d_1(g_i, e_i)^{\varepsilon_i} = d_0(g_{i+1}, e_{i+1})^{\varepsilon_{i+1}}$ ($i = 1, \ldots, r - 1$) and $d_1(g_r, e_r)^{\varepsilon_r} = d_0(g_1, e_1)^{\varepsilon_1}$, we deduce that

\[(g_i y_{e_i}^{\varepsilon_i(1-\eta(e_i))}, d_1(e_i^{\varepsilon_i})) = (g_{i+1} y_{e_{i+1}}^{\varepsilon_{i+1}(1-\eta(e_{i+1}))}, d_0(e_{i+1}^{\varepsilon_{i+1}})) \quad (i = 1, \ldots, r - 1),\]

\[(g_r y_{e_r}^{\varepsilon_r(1-\eta(e_r))}, d_1(e_r^{\varepsilon_r})) = (g_1 y_{e_1}^{\varepsilon_1(1-\eta(e_1))}, d_0(e_1^{\varepsilon_1})).\]
Therefore, putting \(a_i = g_i y_{e_i}^{\varepsilon_i}(-\eta(\varepsilon_i)) \), we obtain
\[
\begin{align*}
& a_i y_{e_i}^{\varepsilon_i} = a_{i+1} \quad (i = 1, \ldots, r - 1), \\
& a_r y_{e_r}^{\varepsilon_r} = a_1.
\end{align*}
\]

Hence, in \(\pi_1^{\text{abs}}(\Delta) \) we have
\[
\bar{y}_{e_1} \cdots \bar{y}_{e_r} = 1.
\]

Consider now the element \(y_{e_1}^{\varepsilon_1} \cdots y_{e_r}^{\varepsilon_r} \) of \(\Phi(Y) \). Since \(e_1^{\varepsilon_1}, \ldots, e_r^{\varepsilon_r} \) is a closed path in \(\Delta \), we deduce from Proposition A.1.3 that \(y_{e_1}^{\varepsilon_1} \cdots y_{e_r}^{\varepsilon_r} = 1 \) in \(\Phi(Y) \). To obtain the desired contradiction we shall show that \(y_{e_1}^{\varepsilon_1} \cdots y_{e_r}^{\varepsilon_r} \) is in reduced form. Indeed, if we had \(y_{e_i}^{\varepsilon_i} = y_{e_i}^{-\varepsilon_i + 1} \), then \(e_i = e_{i+1} \) and \(\varepsilon_i = -\varepsilon_{i+1} \). Then \(d_1(q_i, e_i)^{\varepsilon_i} = d_0(q_{i+1}, e_{i+1})^{\varepsilon_{i+1}} \) implies that \(q_i y_{e_i}^{(1-\eta(\varepsilon_i))} = q_{i+1} y_{e_i}^{(-\varepsilon_i)(-\eta(\varepsilon_i))} \). Hence \(q_i = q_{i+1} \), and therefore the edges \((q_i, e_i)^\varepsilon\) and \((q_{i+1}, e_{i+1})^{\varepsilon_{i+1}}\) would be inverse to each other, contrary to our assumption that (A.3) is reduced.

\[\Box\]

Proposition A.2.5 Let \(\Delta \) be a connected abstract graph, and let \(\tilde{\Delta} \) be the graph constructed above.

(a) \(\nu : \tilde{\Delta} \rightarrow \Delta \) is an abstract universal covering of \(\Delta \).

(b) Let \(\zeta : \Gamma' \rightarrow \Gamma \) be a covering of abstract graphs, and let \(\varphi : \Delta \rightarrow \Gamma \) be a morphism of graphs. Let \(\nu' \in V(\Gamma') \) and \(v \in V(\Delta) \) be vertices such that \(\varphi(v) = \zeta(\nu') \). Assume that \(\varphi(\pi_1^{\text{abs}}(\Delta, v)) \leq \pi_1^{\text{abs}}(\Gamma', \nu') \); then there exists a unique morphism \(\varphi' : \Delta \rightarrow \Gamma' \) such that \(\zeta \circ \varphi' = \varphi \) and \(\varphi'(v) = \nu' \).

Proof Since \(\tilde{\Delta} \) is a tree, \(\pi_1^{\text{abs}}(\tilde{\Delta}) = 1 \). So (a) is a special instance of (b). Let \(u \in V(\Delta) \) and let \(p_{v,u} \) be a path in \(\Delta \) from \(v \) to \(u \). Since \(\zeta \) is a covering, there exists a unique lifting of the path \(\varphi(p_{v,u}) \) in \(\Gamma \) to a path \(p' \) in \(\Gamma' \) with initial vertex \(\nu' \) (see Proposition A.2.2(a)). Define \(\varphi'(u) \) to be the terminal vertex of \(p' \). Observe that \(\varphi'(u) \) is well-defined because of the condition \(\varphi(\pi_1^{\text{abs}}(\Delta, v)) \leq \pi_1^{\text{abs}}(\Gamma', \nu') \). Finally, if \(e \) is an edge in \(\Delta \) incident with \(u \), define \(\varphi'(e) \) to be the unique edge \(e' \) in \(\Gamma' \) incident with \(\varphi'(u) \) such that \(\zeta(e') = \varphi(e) \).

\[\Box\]

Proposition A.2.6 Let \(\Delta \) be a connected graph and let \(H \) be a subgroup of \(\pi_1^{\text{abs}}(\Delta, v) \), where \(v \) is a fixed, but arbitrary, vertex of \(\Delta \). Then there exists a covering
\[\zeta : \Delta' \rightarrow \Delta\]

such that \(\zeta(\pi_1^{\text{abs}}(\Delta', v')) = H \), where \(\zeta(v') = v \), and the index of \(H \) in \(\pi_1^{\text{abs}}(\Delta, v) \) is \(|\zeta^{-1}(v)| \). In particular, \(\pi_1^{\text{abs}}(\Delta', v') \cong H \) (see Proposition A.2.3). Furthermore, this covering is unique up to an isomorphism commuting with \(\zeta \). Explicitly,
\[\Delta' = H \setminus \tilde{\Delta} = (H \setminus \pi_1^{\text{abs}}(\Delta, v)) \times \Delta.\]
Proof The uniqueness follows from Proposition A.2.5(b). Denote by

\[\nu_H : \tilde{\Delta} \longrightarrow H \backslash \Delta = (H \backslash \pi_1^{\text{abs}}(\Delta, (H_1, v)) \times \Delta \]

the natural epimorphism of graphs; observe that \(\nu_H \) is a covering of abstract graphs, and so it respects path homotopy. For \(h \in H \), define \(\rho_H(h) \in \pi_1^{\text{abs}}(H \backslash \Delta, (H_1, v)) \) to be the homotopy class of cycles based at \((H_1, v) \) represented by the cycle \(\nu_H(p(1, v), (h, v)) \), where \(p(1, v), (h, v) \) is a path from \((1, v) \) to \((h, v) \) in \(\tilde{\Delta} \). Then \(\rho_H \) is well-defined since \(\nu_H \) respects path homotopy. Furthermore, \(\rho_H \) is a homomorphism. Note that, since \(\tilde{\Delta} \) is a tree, we can choose \(p(1, v), (h, v) \) in the above definition to be the unique reduced path from \((1, v) \) to \((h, v) \).

Since \(\nu_H \) is a covering, a reduced cycle in \(H \backslash \Delta \) based at \((H_1, v) \) can be lifted uniquely to a reduced path in \(\tilde{\Delta} \) with initial vertex at \((1, v) \) (which necessarily ends at a vertex of the form \((h, v) \), for some \(h \in H \)). Therefore, \(\rho_H \) is a bijection. It is now clear that the projection \((H \backslash \pi_1^{\text{abs}}(\Delta, v)) \times \Delta \longrightarrow \Delta \) is the desired covering. □

Example A.2.7 Let \(X \) be a set and consider the graph \(\Delta \) consisting of a single vertex \(v \) and a set of edges \(\{e_x \mid x \in X\} \) in a one-to-one correspondence with \(X \), so that \(d_i(e_x) = v \), where \(x \in X \) and \(i = 0, 1 \) (i.e., \(\Delta \) is a bouquet of \(|X| \) loops). Then the fundamental group \(\pi_1^{\text{abs}}(\Delta) \) of \(\Delta \) is the free group \(\Phi = \Phi(X) \) with basis \(X \). Moreover, the abstract universal covering graph \(\tilde{\Delta} \) coincides with the Cayley graph \(\Gamma(\Phi, X) \) of the free group \(\Phi \) with respect to \(X \): its vertices are the elements of \(\Phi \) (which we identify with \(\Phi \times \{v\} \)) and its edges are the pairs \((f, x) \in \Phi \times X \) with \(d_0(f, x) = f \) and \(d_1(f, x) = fx \). As we have shown above, \(\Gamma(\Phi, X) \) is a tree.

Using the notation in this example, Proposition A.2.6 translates into the following corollary.

Corollary A.2.8 Let \(\Phi = \Phi(X) \) be a free abstract group with basis the set \(X \), and let \(\Gamma = \Gamma(\Phi, X) \) be the Cayley graph of \(\Phi \) with respect to \(X \).

(a) Given a subgroup \(H \) of \(\Phi \), consider the map

\[\rho_H : H \longrightarrow \pi_1^{\text{abs}}(H \backslash \Gamma) = \pi_1^{\text{abs}}(H \backslash \Gamma, H1) \]

that sends \(h \in H \) to the element \(\rho_H(h) \in \pi_1^{\text{abs}}(H \backslash \Gamma) \) determined by the image in \(H \backslash \Gamma \) of the unique reduced path \(p_{1,h} \) from 1 to \(h \) in \(\Gamma(\Phi, X) \). Then \(\rho_H \) is an isomorphism.

(b) If \(H \leq K \) are subgroups of \(\Phi \), the following diagram commutes

\[
\begin{array}{ccc}
\pi_1^{\text{abs}}(H \backslash \Gamma) & \longrightarrow & \pi_1^{\text{abs}}(K \backslash \Gamma) \\
\rho_H \uparrow & & \rho_K \uparrow \\
H & \hookrightarrow & K
\end{array}
\]
where the upper horizontal map is the homomorphism induced by the natural projection $H\backslash\Gamma \longrightarrow K\backslash\Gamma$.

It is worth noticing that the Nielsen–Schreier subgroup theorem, which asserts that a subgroup of an abstract free group is also free, is an immediate consequence of part (a) in the above corollary and Corollary A.1.4.

We end this section with a result that shows how a given immersion can be ‘enlarged’ to a covering, in certain cases.

Lemma A.2.9 Let

$$\zeta : \Delta' \longrightarrow \Delta$$

be an immersion of connected graphs. Assume that Δ has a unique vertex w, and that the set of vertices $V(\Delta')$ of Δ' is finite. Then there exists a covering

$$\bar{\zeta} : \bar{\Delta} \longrightarrow \Delta$$

of abstract graphs such that

(a) Δ' is a subgraph of $\bar{\Delta}$ with $V(\Delta') = V(\bar{\Delta})$, and

(b) $\bar{\zeta}$ extends ζ.

Proof Put $V' = V(\Delta')$, $E' = E(\Delta')$. Given an edge $e \in E(\Delta)$, define

$$R_e = \{ (u', v') \in V' \times V' \mid \exists e' \in E' \text{ with } d_0(e') = u', d_1(e') = v', \zeta(e') = e \}.$$

Note that R_e may be the empty set. Since ζ is an immersion, R_e defines an injective map from a subset of V' to a subset of V'. Since V' is finite, we may choose a subset S_e of $V' \times V'$ containing R_e such that S_e defines a bijection $V' \longrightarrow V'$. Define $\bar{\Delta}$ as follows: $\bar{V} = V(\bar{\Delta}) = V(\Delta') = V'$. The set of edges $\bar{E} = E(\bar{\Delta})$ of $\bar{\Delta}$ is

$$\bar{E} = \{ (u', v', e) \mid e \in E(\Delta), (u', v') \in S_e \}.$$

The incidence maps of $\bar{\Delta}$ are

$$d_0(u', v', e) = u', \quad d_1(u', v', e) = v' \quad ((u', v', e) \in \bar{E}).$$

Next define $\bar{\zeta} : \bar{\Delta} \longrightarrow \Delta$ by

$$\bar{\zeta}(w') = w, \quad \bar{\zeta}(u', v', e) = e \quad (w' \in \bar{V} = V', \ (u', v', e) \in \bar{E}),$$

where w is the unique vertex of Δ. Then $\bar{\zeta}$ is a morphism of graphs, and the construction shows that it is a covering.

Finally, define $\iota : \Delta' \longrightarrow \Delta$ by $\iota(v') = v'$, $\iota(e') = (d_0(e'), d_1(e'), \zeta(e'))$ ($v' \in V'$, $e' \in E'$). Clearly ι is an embedding of graphs, and $\zeta = \bar{\zeta} \iota$. \qed
A.3 Foldings

Let \(\alpha : \Delta \rightarrow \Lambda \) be a morphism of graphs. As was pointed out in Sect. A.1, if \(\alpha \) is not an immersion it is because there exists a pair of different edges \(\{ e_1, e_2 \} \) in \(\Delta \) such that either \(d_0(e_1) = d_0(e_2) \) or \(d_1(e_1) = d_1(e_2) \) and \(\alpha(e_1) = \alpha(e_2) \). Motivated by this observation, we make the following construction: given two edges \(e_1, e_2 \in E(\Delta) \) such that either \(d_0(e_1) = d_0(e_2) \) or \(d_1(e_1) = d_1(e_2) \), we define a new graph

\[
\Delta/[e_1 = e_2]
\]

obtained from \(\Delta \) by identifying \(e_1 \) with \(e_2 \), \(d_0(e_1) \) with \(d_0(e_2) \) and \(d_1(e_1) \) with \(d_1(e_2) \). Following a terminology due to Stallings, we call this construction a folding. The natural quotient map

\[
f = f_{e_1,e_2} : \Delta \rightarrow \Delta/[e_1 = e_2]
\]

is an epimorphism of graphs. The following proposition is clear.

Proposition A.3.1 Let \(\alpha : \Delta \rightarrow \Lambda \) be a morphism of graphs.

(a) Let \(e_1, e_2 \in E(\Delta) \) be edges such that either \(d_0(e_1) = d_0(e_2) \) or \(d_1(e_1) = d_1(e_2) \) and \(\alpha(e_1) = \alpha(e_2) \). Then \(\alpha \) factors through the folding \(f_{e_1,e_2} \), i.e.,

\[
\alpha = \alpha' f_{e_1,e_2},
\]

for some unique morphism \(\alpha' : \Delta/[e_1 = e_2] \rightarrow \Lambda \).

(b) Assume that \(\Delta \) is finite. Then \(\alpha \) factors through a finite sequence of foldings and an immersion, i.e., there is a graph \(\Delta' \), a composition of foldings

\[
\Delta = \Delta_1 \xrightarrow{f_1} \Delta_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{r-1}} \Delta_r \xrightarrow{f_r} \Delta'
\]

and an immersion

\[
i : \Delta' \rightarrow \Lambda
\]

such that

\[
\alpha = i f_r \cdots f_1.
\]

The sequence of foldings in part (b) of the proposition above is in general not unique, but one shows easily by induction on the number of edges of \(\Delta \) that \(\Delta' \) and \(i \) are uniquely determined by \(\alpha \). Moreover, \(\Delta' \) and \(i \) are obtained algorithmically: at each stage \(i \) one simply has to check in the finite graph \(\Delta_i \) whether there is a pair \(e_1, e_2 \in E(\Delta) \) with either \(d_0(e_1) = d_0(e_2) \) or \(d_1(e_1) = d_1(e_2) \) and \(\alpha(e_1) = \alpha(e_2) \).

Proposition A.3.2 Let \(\Delta \) be a connected graph and let \(e_1 \) and \(e_2 \) be edges of \(\Delta \) with a common vertex \(v \) such that either \(d_0(e_1) = d_0(e_2) \) or \(d_1(e_1) = d_1(e_2) \). Let

\[
f : \Delta \rightarrow \tilde{\Delta} = \Delta/[e_1 = e_2]
\]
be the corresponding folding map. Then \(f \) induces an epimorphism on the corresponding fundamental groups, i.e., \(f(\pi_1^{\text{abs}}(\Delta, v)) = \pi_1^{\text{abs}}(\tilde{\Delta}, f(v)) \).

Proof Define \(H = f(\pi_1^{\text{abs}}(\Delta, v)) \); then \(H \leq \pi_1^{\text{abs}}(\tilde{\Delta}, f(v)) \). By Proposition A.2.6 there exists a covering \(\zeta : \Delta' \to \tilde{\Delta} \) with \(\zeta(\pi_1^{\text{abs}}(\Delta', v')) = H \), where \(v' \in V(\Delta') \).

By Proposition A.2.5(b) there exists a unique morphism \(f' : \Delta \to \Delta' \) such that \(f'(v) = v' \) and \(\zeta f' = f \). Therefore, since \(\zeta \) is a covering, we have \(f'(e_1) = f'(e_2) \); hence by Proposition A.3.1(a), there exists a morphism \(\zeta' : \tilde{\Delta} \to \Delta' \) such that \(f' = \zeta' f \). Hence \(\zeta' \zeta f = \zeta f' = f \). So \(\zeta' = \text{id}_{\tilde{\Delta}} \). It follows from Proposition A.2.2(c) that \(\zeta \) is an isomorphism of graphs, and thus \(H = \pi_1^{\text{abs}}(\tilde{\Delta}, f(v)) \), as needed. \(\Box \)

A.4 Algorithms

In this section we describe several algorithms related to finitely generated subgroups of a free group \(\Phi \) of finite rank \(n \) with basis \(X \). We think of \(\Phi \) as the fundamental group \(\pi_1^{\text{abs}}(\Delta, u) \), where \(\Delta \) is a finite graph with a single vertex \(u \) and edges labeled by \(X \): a bouquet of \(n \) loops (see Example A.2.7). An element of \(\Phi \) is represented by a cycle in \(\Delta \) based at \(u \), and a subgroup of \(\Delta \) is represented by a finite set of generators of that subgroup.

Algorithm A.4.1 Represents a finitely generated subgroup \(H \) of \(\Phi \) as an immersion \(\iota : \Gamma \to \Delta \) with \(\Gamma \) a finite connected graph.

We assume that \(H \) is generated by a finite subset \(\{h_1, \ldots, h_n\} \) of \(\pi_1^{\text{abs}}(\Delta, u) = \Phi \) and for each \(i \) we are given a cycle \(p_i \) in \(\Delta \) based at \(u \) representing \(h_i \). We think of \(p_i \) as a morphism of graphs

\[
p_i : B_i \to \Delta,
\]

where \(B_i \) is a standard arc (see (A.1)).

Construct a graph \(B \) to be the disjoint union of the graphs \(B_1, \ldots, B_n \), and define a new graph \(\Gamma_1 \) obtained from \(B \) by identifying all the initial and terminal vertices of all the \(B_i \) to a vertex that we will denote by \(v \). Denote the image of \(B_i \) in \(\Gamma_1 \) by \(C_i \); this is a circuit. Hence \(\Gamma_1 \) is a bouquet of the \(n \) circuits \(C_1, \ldots, C_n \) joined at the vertex \(v \). Therefore \(\pi_1^{\text{abs}}(B, v) \) is a free group of rank \(n \) with a basis whose elements are represented by the closed paths defined by the image of each of those circuits.

Since, for each \(i \), \(p_i \) maps the initial and terminal vertices of \(B_i \) to \(u \), the morphisms \(p_1, \ldots, p_n \) induce a morphism of graphs

\[
\alpha : \Gamma_1 \to \Delta
\]

that sends \(v \) to \(u \). It follows that

\[
\alpha(\pi_1^{\text{abs}}(B, v)) = H.
\]
Next apply Proposition A.3.1 to obtain a sequence of foldings f_1, \ldots, f_r and an immersion ι

$$
\Gamma_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{r-1}} \Gamma_r \xrightarrow{f_r} \Gamma \xrightarrow{\iota} \Delta
$$
such that $\alpha = \iota f_r \cdots f_1$. By Proposition A.3.2, a folding induces a surjection of fundamental groups. So, if we put $f_r \cdots f_1(v) = w$, we have $\iota \pi_1^{\text{abs}}(\Gamma, w) = H$. So ι is the desired immersion.

Algorithm A.4.2 Obtains a basis of a subgroup H of Φ when H is given by a finite set of generators.

We continue with the above set-up. Since ι is an immersion, we deduce from Proposition A.2.3 that the induced map $\bar{\iota} : \pi_1^{\text{abs}}(\Gamma, w) \longrightarrow H$ is an isomorphism of groups. As pointed out above, the graph Γ and the immersion ι can be obtained algorithmically. So it suffices to describe how to obtain a basis for $\pi_1^{\text{abs}}(\Gamma, w)$ algorithmically, and this is done in Algorithm A.1.6.

Algorithm A.4.3 Decides whether an element of a free group is in a finitely generated subgroup.

We are given n cycles p_1, \ldots, p_n in Δ based at u. Each p_i represents an element h_i of $\pi_1^{\text{abs}}(\Delta, u) = \Phi$ $(i = 1, \ldots, n)$. Let H be the subgroup of Φ generated by h_1, \ldots, h_{n-1}. We describe next an algorithm to decide whether $h_n \in H$ or not.

We continue with the notation in Algorithm A.4.1. Let $\Gamma_1'' = C_1 \cup \cdots \cup C_{n-1}$. Denote by Γ' and Γ'' the images in Γ of Γ_1' and C_n, respectively. Let ι' be the restriction of ι to Γ'. Since ι is an immersion, so is ι', and hence the immersion $\iota' : \Gamma' \rightarrow \Delta$ represents H. It follows that $h_n \in H$ if and only if $\pi_1^{\text{abs}}(\Gamma', w) = \pi_1^{\text{abs}}(\Gamma, w)$, because ι is injective on $\pi_1^{\text{abs}}(\Gamma, w)$. And this can be decided by checking whether Γ'' determines a cycle in Γ'.

Intersection of Finitely Generated Subgroups

Next we want to prove that the intersection of two finitely generated subgroups of a free group is finitely generated, and that a basis for it can be obtained algorithmically. Obviously one may assume that the free group has finite rank.
Theorem A.4.4 Let \(H_1 \) and \(H_2 \) be finitely generated subgroups of a free abstract group \(\Phi \) of finite rank. Then

(a) the subgroup \(H_1 \cap H_2 \) of \(\Phi \) has finite rank, and
(b) there exists an algorithm to construct a basis for \(H_1 \cap H_2 \), assuming that \(H_1 \) and \(H_2 \) are given by explicit finite sets of generators.

Proof We assume as above that \(\Phi = \pi_1^{\text{abs}}(\Delta, u) \), where \(\Delta \) is a finite graph with a single vertex \(u \) and \(n \) loops. Using Algorithm A.4.1, we assume that \(H_i \) is represented by an immersion \(\iota_i : \Gamma_i \to \Delta \), where \(\Gamma_i \) is a finite connected graph \((i = 1, 2)\).

The first step is to show how to represent \(H_1 \cap H_2 \) by an immersion. To do this we begin by recalling what is the pullback diagram of \(\iota_1 \) and \(\iota_2 \):

\[
\begin{array}{ccc}
\Gamma & \xrightarrow{\varphi_1} & \Gamma_1 \\
\varphi_2 \downarrow & & \downarrow \iota_1 \\
\Gamma_2 & \xrightarrow{\iota_2} & \Delta
\end{array}
\]

Here \(\Gamma \) is a graph defined as follows:

\[
\Gamma = \left\{ (m_1, m_2) \in \Gamma_1 \times \Gamma_2 \mid \iota_1(m_1) = \iota_2(m_2) \right\};
\]

its set of vertices is

\[
V(\Gamma) = \left\{ (v_1, v_2) \in V(\Gamma_1) \times V(\Gamma_2) \mid \iota_1(v_1) = \iota_2(v_2) \right\},
\]

and the incidence maps \(d_i : \Gamma \to V(\Gamma) \) are defined as

\[
d_0(m_1, m_2) = (d_0m_1, d_0m_2), \quad d_1(m_1, m_2) = (d_1m_1, d_1m_2).
\]

Finally, the morphisms \(\varphi_1 \) and \(\varphi_2 \) are just the projection maps. It is clear that this diagram satisfies the universal property of a pullback: if \(\psi_i : \Sigma \to \Gamma_i \) \((i = 1, 2)\) are maps of graphs with \(\iota_1 \psi_1 = \iota_2 \psi_2 \), then there is a unique map of graphs \(\psi : \Sigma \to \Gamma \) with \(\varphi_1 \psi = \psi_1 \) and \(\varphi_2 \psi = \psi_2 \).

This definition provides an algorithm to construct \(\Gamma \) from \(\Gamma_1 \) and \(\Gamma_2 \). In general \(\Gamma \) is not a connected graph.

Put \(\iota = \iota_1 \varphi_1 = \iota_2 \varphi_2 \). We claim that

\[
\iota : \Gamma \to \Delta
\]

is an immersion. Indeed, let \((m_1, m_2)\) and \((m'_1, m'_2)\) be edges in \(\Gamma \) with the same initial vertex (respectively, the same terminal point) \((v_1, v_2)\). If \((m_1, m_2) \neq (m'_1, m'_2)\), then either \(m_1 \neq m'_1\) or \(m_2 \neq m'_2\); since \(\iota_1\) and \(\iota_2\) are immersions, it follows that \(\iota(m_1, m_2) \neq \iota(m'_1, m'_2)\). On the other hand, if \((m_1, m_2)\) is a loop based at \((v_1, v_2)\), then both \(m_1\) and \(m_2\) are loops. It follows that \(\iota\) induces an injection on \(\text{Star}(v_1, v_2)\), proving the claim.
By assumption $\iota_1(\pi_1^{\text{abs}}(\Gamma_1, v_1)) = H_1$, $\iota_2(\pi_1^{\text{abs}}(\Gamma_2, v_2)) = H_2$, where $v_i \in \Gamma_i$ ($i = 1, 2$), $\iota_1(v_1) = \iota_1(v_2) = u$, and u is the unique vertex of Δ. Let $v = (v_1, v_2) \in \Gamma$. Then we clearly have $\iota(\pi_1^{\text{abs}}(\Gamma, v)) \subseteq H_1 \cap H_2$.

In fact, we assert that $\iota(\pi_1^{\text{abs}}(\Gamma, v)) = H_1 \cap H_2$. To see this assume that $h \in H_1 \cap H_2 \leq \Phi = \pi_1^{\text{abs}}(\Delta, u)$. Let $h_1 \in \pi_1^{\text{abs}}(\Gamma_1, v_1)$ be such that $\iota_1(h_1) = h$ ($i = 1, 2$). Represent h_i by a reduced cycle p_i based at v_i; since ι_i is an immersion, $\iota_i p_i$ is a reduced cycle of Δ based at u ($i = 1, 2$) (see Proposition A.2.1(b)) representing h, i.e., the cycles $\iota_1 p_1$ and $\iota_2 p_2$ are homotopic and reduced. We deduce from Lemma A.1.1 that $\iota_1 p_1 = \iota_2 p_2$. Interpreting paths as morphisms from standard arcs (see (A.1)), this is equivalent to saying that there exist a standard arc $A_r(\epsilon)$ and morphisms

$$p_1 : A_r(\epsilon) \rightarrow \Gamma_1 \quad \text{and} \quad p_2 : A_r(\epsilon) \rightarrow \Gamma_2$$

such that the compositions $\iota_1 p_1$ and $\iota_2 p_2$ are equal. Using the pullback property, we deduce that there exists a morphism $\varphi : A_r(\epsilon) \rightarrow \Gamma$ with $\varphi_1 p = p_1$ and $\varphi_2 p = p_2$. Hence p is a cycle in Γ based at $v = (v_1, v_2)$, i.e., it represents an element k of $\pi_1^{\text{abs}}(\Gamma, v)$; moreover, $\iota k = h$. This proves the assertion.

Next consider the connected component Γ_3 of Γ containing $v = (v_1, v_2)$, and denote by $\iota_3 : \Gamma_3 \rightarrow \Delta$ the restriction of ι to Γ_3. Then ι_3 is an immersion of finite connected graphs and so ι_3 represents $H_1 \cap H_2$, i.e., ι_3 induces an explicit isomorphism $\pi_1^{\text{abs}}(\Gamma_3, v) \rightarrow H_1 \cap H_2$. Therefore, using Algorithm A.1.6, one obtains a basis for $H_1 \cap H_2$. This proves both parts (a) and (b). \hfill \Box

A.5 Notes, Comments and Further Reading

There is a very extensive mathematical literature on abstract graphs, often related to combinatorics. The point of view that we adopt here regarding abstract graphs is very much determined by the topics in this book. For more detailed treatments of abstract graphs and actions of groups on them one can consult Serre (1980), Dicks and Dunwoody (1989) or Stallings (1983). The ideas for the algorithms in Sect. A.4 are due to Stallings. Part (a) of Theorem A.4.4 is due to Howson (1954).

The concept of abstract graph that we use in this Appendix is substantially the same as that used in the Bass–Serre theory of groups acting on trees developed in Serre (1980). In the latter book a graph Δ includes by definition both the set of edges $E(\Delta)$ and the set of inverse edges $E(\Delta)^{-1}$; then what we denote by $E(\Delta)$ in our setting corresponds to a specific ‘orientation’ in the set-up of Serre. Our notion of action of a group on a graph corresponds to what Serre calls ‘action without inversion’, and our notion of morphism or map of graphs would correspond, in Serre’s set-up, to morphisms that preserve given orientations. The standard constructions of abstract graphs arising from ‘free constructions’ of abstract groups, such as the Cayley graph of a group, the tree canonically associated to a free product of abstract groups or an amalgamated product of abstract groups, or, more generally, the universal covering graph of a graph of abstract groups, all come equipped with a natural orientation (i.e., a graph in the sense used in this book).
Appendix B
Rational Sets in Free Groups and Automata

In this Appendix it is shown that a rational subset of an abstract free group can be described as the recognizable language of an automaton over an appropriately chosen alphabet.

Notation If Y is a set, Y^* denotes the free monoid on Y. The elements $w = y_1 \cdots y_m$ of Y^* are called words on the alphabet Y ($y_1, \ldots, y_m \in Y$). The length of $w = y_1 \cdots y_m$ is m. A language on the alphabet A is simply a subset of A^*.

B.1 Finite State Automata: Review and Notation

A finite state automaton is a 4-tuple,
\[\mathcal{A} = (A, Q, i, T) \]
where Q and A are finite sets, $i \in Q$, $T \subseteq Q$, together with a function (the next state function)
\[Q \times A \rightarrow \mathcal{P}(Q) \tag{B.1} \]
that we denote by $(q, a) \mapsto qa$ ($q \in Q, a \in A$) [$\mathcal{P}(Q)$ denotes the set of subsets of Q].

The set A is called the alphabet of the automaton \mathcal{A}; Q is the set of states of \mathcal{A}; i is the initial state of \mathcal{A}; and T is the subset of terminal states of \mathcal{A}.

If $Q' \subseteq Q$ and $a \in A$, then $Q'a$ is defined to be the union
\[Q'a = \bigcup_{q' \in Q'} q'a. \]
Then one extends the function (B.1) to a function
\[Q \times A^* \rightarrow \mathcal{P}(Q) \]
by the formulas

\[q_1 = q \quad \text{and} \quad q(wa) = (qw)a \quad (w \in A^*, a \in A). \]

The language recognized by the automaton \(A \) is the subset of \(A^* \)

\[L(\mathcal{A}) = \{ w \in A^* \mid iw \cap T \neq \emptyset \}. \]

A subset \(L \) of \(A^* \) is termed recognizable if there exists some finite state automaton \(A \) with alphabet \(A \) such that \(L = L(\mathcal{A}) \). A fundamental result, due to Kleene, says that the recognizable subsets of \(A^* \) are precisely the rational subsets \(\text{Rat}(A^*) \) of \(A^* \) (see Theorem 12.3.2).

Remark The definition that we have given for a finite state automaton corresponds to what is usually called a ‘nondeterministic’ and ‘complete’ finite state automaton: nondeterministic because the values \(qa \) of the next state function (B.1) are subsets of \(Q \), rather than elements of \(Q \), i.e., singleton subsets of \(Q \); and complete because that function is defined on the whole set \(Q \times A \), rather than on just a subset.

Actually, this is not an essential distinction in the sense that a subset \(L \) of \(A^* \) is recognized by a nondeterministic and complete finite state automaton if and only it is recognized by some deterministic and not necessarily complete finite state automaton (see, for example, Eilenberg 1974).

B.2 The Classical Function \(\rho \)

Let \(X = \{x_1, \ldots, x_n\} \) be a finite set of size \(n \). Define \(Z \) to be the finite set with \(2n \) letters

\[Z = \{x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n\} \quad (B.2) \]

where \(x \mapsto \bar{x} \) is an involution on \(Z \), i.e., \(\bar{x} = x \), for \(x \in Z \).

Two words in \(Z^* \) are equivalent if one can pass from one to the other by a finite sequence of insertions or deletions of subwords of the form \(x\bar{x} \) (\(x \in Z \)). A word \(w \in Z^* \) is reduced if it does not contain subwords of the form \(x\bar{x} \) (\(x \in Z \)). Define

\[\rho : Z^* \longrightarrow Z^* \]

as follows: if \(w \in Z^* \), \(\rho(w) \) is the reduced word obtained by deleting, from left to right, all pairs \(x\bar{x} \) (\(x \in Z \)).

Properties of \(\rho \)

\((\rho 1) \quad \rho(w_1w_2) = \rho(\rho(w_1)w_2) \) (\(w_1, w_2 \in Z^* \)).
\((\rho 2) \quad \rho(\rho(w)) = \rho(w) \) (\(w \in Z^* \)).
\((\rho 3) \quad \rho(w) = w, \) if \(w \in Z^* \) is reduced.
\((\rho 4) \quad \rho(w_1x\bar{x}w_2) = \rho(w_1w_2) \) (\(w_1, w_2 \in Z^*, x \in Z \)).
\((\rho 5) \quad \rho(w_1w_2) = \rho(\rho(w_1)\rho(w_2)) \) (\(w_1, w_2 \in Z^* \)).
Properties \((\rho_1), (\rho_2)\) and \((\rho_3)\) follow from the definition. Property \((\rho_4)\) follows from \((\rho_1)\). Property \((\rho_5)\) is proved by induction on the length of \(w_2\). If two words \(w_1\) and \(w_2\) are reduced and equivalent, one proves, using \((\rho_4)\), that \(\rho(w_1) = \rho(w_2)\); and by \((\rho_3)\), \(w_1 = w_2\). Therefore an equivalence class of words contains exactly one word which is reduced.

Proposition B.2.1 The subset \(\rho(Z^*)\) of \(Z^*\) is recognizable.

Proof Note that \(\rho(Z^*) = Z^* - Z^*\{x\bar{x}, \bar{x}x \mid x \in X\}Z^*\). Since both \(Z^*\) and \(\{x\bar{x}, \bar{x}x \mid x \in X\}\) are recognizable, so is \(\rho(Z^*)\) (see Theorem 12.3.2(c)). \(\square\)

B.3 Rational Subsets in Free Groups

Let \(B\) be a finite set and let \(Y\) be a subset of \(B^*\). Define a function

\[
\lambda_Y : B^* \rightarrow \mathcal{P}(B^*)
\]

from \(B^*\) into the set of subsets of \(B^*\) as follows: if \(w, w' \in B^*\), then \(w' = b_1 \cdots b_r \in \lambda_Y(w) (b_i \in B)\) if \(w\) has the form

\[
w = y_0b_1y_1 \cdots y_{r-1}b_my_r,
\]

where \(y_0, \ldots, y_r \in Y\) and \(r \geq 0\).

For example, if \(Y = \{1\}\), then \(\lambda_Y(w) = \{w\}\), for all \(w \in B^*\); while if \(B = Z = \{x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n\}\) (as in Sect. B.2) and \(Y = \rho^{-1}(1)\), then the words in \(\lambda_Y(w)\) are those obtained from \(w\) by deleting subwords of the form \(x\bar{x}\) or \(\bar{x}x\) (\(x \in \{x_1, \ldots, x_n\}\)).

Lemma B.3.1 Let \(B\) be a finite set and let \(Y \subseteq B^*\). Then the function \(\lambda_Y\) sends recognizable subsets of \(B^*\) to recognizable subsets of \(B^*\).

Proof Let \(K\) be a recognizable subset of \(B^*\). Say \(K = L(B)\), where \(B\) is a deterministic finite state automaton:

\[
B = (B, Q, i, T).
\]

For \(p, q \in Q\), define a subset of \(B^*\)

\[
K_{p,q} = \{w \in B^* \mid pw = q\}.
\]

To prove the result we shall construct a finite state automaton

\[
B' = (B, Q', i', T')
\]
on the same alphabet B that recognizes $\lambda_Y(K)$. Let $Q' = Q \cup \{i'\}$, where i' is a new element not in Q; we take i' as the initial state of B'. The subset T' of terminal states of B' is

$$T' = \begin{cases} T, & \text{if } Y \cap K = \emptyset; \\ T \cup \{i'\}, & \text{if } Y \cap K \neq \emptyset. \end{cases}$$

To complete the description of the automaton B' we need a next state function

$$Q' \times B \rightarrow \mathcal{P}(Q'),$$

which is defined by

$$q \in pb \quad \text{if and only if} \quad bY \cap K_{p,q} \neq \emptyset \quad (b \in B, p, q \in Q);$$

$$q \in i' b \quad \text{if and only if} \quad Y b Y \cap K_{p,q} \neq \emptyset \quad (b \in B, q \in Q).$$

Now one easily checks that $\lambda_Y(K) = L(B'). \square$

We continue with the notation in Sect. B.2:

$$X = \{x_1, \ldots, x_n\} \subseteq Z = \{x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n\}.$$

Proposition B.3.2 The function $\rho : Z^* \rightarrow Z^*$ sends recognizable subsets to recognizable subsets: if K is a recognizable subset of Z^*, then so is $\rho(K)$.

Proof Define $Y = \rho^{-1}(1)$. Let $w \in Z^*$; then, as pointed out above,

$$\lambda_Y(w)$$

is the subset of Z^* consisting of those words obtained from w by deleting subwords of the form $x \bar{x}$ or $\bar{x} x$ ($x \in \{x_1, \ldots, x_n\}$). Hence, $\rho(w)$ is the unique element in $\lambda_Y(w) \cap \rho(Z^*)$. Therefore, if K is a recognizable subset of Z^*, then

$$\rho(K) = \lambda_Y(K) \cap \rho(Z^*)$$

is recognizable, because it is the intersection of recognizable subsets of Z^* (see Theorem 12.3.2(c), Lemma B.3.1 and Proposition B.2.1). \qed

Let $\Phi = \Phi(X)$ be the free abstract group on X. We think of an element of Φ as an equivalence class \tilde{w} of a word $w \in Z^*$ under the equivalence relation defined in Sect. B.2. With abuse of notation, one often denotes an element \tilde{w} of Φ by w.

Define a map

$$\iota : \Phi \rightarrow Z^*$$

by $\iota(\tilde{w}) = \rho(w)$; this is well-defined because the equivalence class \tilde{w} contains a unique reduced word. Then ι is an injection.
Consider the commutative diagram

\[
\begin{array}{ccc}
\Phi & \xrightarrow{\iota} & \mathbb{Z}^* \\
\downarrow{\psi} & & \downarrow{\rho} \\
\mathbb{Z}^* & &
\end{array}
\]

where \(\psi\) is the unique morphism of monoids such that \(\psi(x) = x\) and \(\psi(\bar{x}) = x^{-1}\), for \(x \in X\).

Theorem B.3.3 Let \(R\) be a rational subset of the free group \(\Phi = \Phi(X)\). Then \(\iota(R)\) is a recognizable subset of the free monoid \(\mathbb{Z}^*\).

Proof By Lemma 12.3.1, there exists some \(R' \in \text{Rat}(\mathbb{Z}^*)\) with \(\psi(R') = R\). By Kleene’s theorem (Theorem 12.3.2), \(R'\) is a recognizable subset of \(\mathbb{Z}^*\). Thus \(\iota(R) = \psi(R') = \rho(R')\) is recognizable, according to Proposition B.3.2. \(\square\)

B.4 Notes, Comments and Further Reading

There are many good general treatments of automata theory, such as Eilenberg (1974). Theorem B.3.3 is due to Benois (1969); the proof that we present here follows the treatment of Berstel (1979), Part III, Sect. 2, who in turn uses ideas from Fliess (1971). I am grateful to Benjamin Steinberg for bringing to my attention Benois’ paper and to Jean-Eric Pin for very precise information about several proofs of Benois’ theorem. A different approach to Benois’ theorem can be found in Gilman (1987) and Steinberg (2001a), Theorem 26.

Theorem B.3.3 provides an alternative to Algorithm A.4.3 to decide whether or not an element \(g\) of a free abstract group \(\Phi = \Phi(X)\), with finite basis \(X\), is in a given finitely generated subgroup of \(\Phi\). More generally, and this is what is in fact used in the proof of Theorem 12.3.10, if \(H_1, \ldots, H_n\) are finitely generated subgroups of \(\Phi\) (each of them given by a set of generators, i.e., words in \(X \cup X^{-1}\)), there is an explicitly constructed finite state automaton \(\mathcal{A}\) on the alphabet \(\mathbb{Z}\) (see (B.2)) such that \(\iota(H_1 \cdots H_n) = L(\mathcal{A})\). Hence, one can decide whether or not a given element \(g \in \Phi\) is in the subset \(H_1 \cdots H_n\) by checking whether or not \(\iota(g)\) is recognized by \(\mathcal{A}\).

The construction of \(\mathcal{A}\) follows from the proof of Theorem B.3.3 and standard facts in automata theory: (1) given a finite subset \(Y\) of \(\mathbb{Z}^*\) one can explicitly describe a finite state automaton over the alphabet \(\mathbb{Z}\) that recognizes \(Y^*\), and (2) given finitely many finite state automata \(\mathcal{A}_1, \ldots, \mathcal{A}_n\) over the alphabet \(\mathbb{Z}^*\), one can construct explicitly a finite state automaton \(\mathcal{A}\) over the alphabet \(\mathbb{Z}\) such that \(L(\mathcal{A}) = L(\mathcal{A}_1) \cdots L(\mathcal{A}_n)\).
References

Formanek, E.: Conjugacy separability in polycyclic groups. J. Algebra 42, 1–10 (1976)

Rips, E.: An example of a non-LERF group which is a free product of LERF groups with an amalgamated cyclic subgroup. Isr. J. Math. 70(1), 104–110 (1990)
References

Wise, D.T.: Subgroup separability of the Fig. 8 knot group. Topology 45(3), 421–463 (2006)

Index of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_G, 24</td>
<td>bouquet of loops associated with $(X, *)$, 63</td>
</tr>
<tr>
<td>$B(X, *)$</td>
<td>pseudovariety of finite groups, 5</td>
</tr>
<tr>
<td>$C^n(G, A)$</td>
<td>homogeneous n-cochains, 21</td>
</tr>
<tr>
<td>$C(G, R)$</td>
<td>chain complex of a graph G, 46</td>
</tr>
<tr>
<td>$C(G, H)$</td>
<td>centralizer, 1</td>
</tr>
<tr>
<td>$CG(T)$</td>
<td>kernel of action of G on T, 119</td>
</tr>
<tr>
<td>$Cn(G,A)$</td>
<td>homogeneous n-cochains, 21</td>
</tr>
<tr>
<td>$C(n)$</td>
<td>pseudovariety of finite groups, 5</td>
</tr>
<tr>
<td>$C(Γ, R)$</td>
<td>chain complex of a graph $Γ$, 46</td>
</tr>
<tr>
<td>$Cn(ε)$</td>
<td>circuit, 431</td>
</tr>
<tr>
<td>$ClC(H)$</td>
<td>pro-C closure, 358</td>
</tr>
<tr>
<td>$ClNil(H)$</td>
<td>pronilpotent closure, 357</td>
</tr>
<tr>
<td>$Cl(X)$</td>
<td>closure in the pro-C topology, 329</td>
</tr>
<tr>
<td>$Clm(S)$</td>
<td>closure in the topology of a free monoid, 363</td>
</tr>
<tr>
<td>Cp</td>
<td>multiplicative group of order p, 296</td>
</tr>
<tr>
<td>$DMod(A)$</td>
<td>category of discrete $Λ$-modules, 12</td>
</tr>
<tr>
<td>$Der(G, A)$</td>
<td>group of derivations, 22</td>
</tr>
<tr>
<td>$E(G)$</td>
<td>edge set of a graph G, 29</td>
</tr>
<tr>
<td>$E^*(G)$</td>
<td>edge set of a graph G, 46</td>
</tr>
<tr>
<td>$Fix(ψ)$</td>
<td>fixed subgroup of $ψ$, 317</td>
</tr>
<tr>
<td>F_p</td>
<td>prime field with p elements or its additive group, 2</td>
</tr>
<tr>
<td>$G_1 * G_2$</td>
<td>free product, 141</td>
</tr>
<tr>
<td>$G_1 \uparrow G_2 = G_1 \uparrow C G_2$</td>
<td>free pro-C product, 141</td>
</tr>
<tr>
<td>G^2</td>
<td>137</td>
</tr>
<tr>
<td>G/F</td>
<td>147</td>
</tr>
<tr>
<td>$G(Γ) \Delta$</td>
<td>the group associated with a Galois covering, 63</td>
</tr>
<tr>
<td>$G\backslash Γ$</td>
<td>quotient graph, 42</td>
</tr>
<tr>
<td>$G = (G, π, T)$</td>
<td>sheaf of pro-C groups, 137</td>
</tr>
<tr>
<td>$G(S)$</td>
<td>subgroup generated by the fibers G_s, $s \in S$, in a free product, 151</td>
</tr>
<tr>
<td>$Γ_Y$</td>
<td>vertex subsheaf of $Γ$, 177</td>
</tr>
<tr>
<td>$Γ'(G, X)$</td>
<td>the Cayley graph, 39</td>
</tr>
<tr>
<td>$Γ^*(m)$</td>
<td>connected profinite component, 38</td>
</tr>
<tr>
<td>$Γ^*$</td>
<td>the universal Galois C-covering graph of a profinite graph $Γ$, 74</td>
</tr>
<tr>
<td>$G(ε)$</td>
<td>178</td>
</tr>
<tr>
<td>$#G$</td>
<td>order of G, 8</td>
</tr>
<tr>
<td>G_m</td>
<td>the stabilizer of an element m, 42</td>
</tr>
<tr>
<td>$G_m = \langle g^m \mid g \in G \rangle$, $ε$</td>
<td>344</td>
</tr>
<tr>
<td>$G(Γ, π, Γ)$</td>
<td>graph of pro-C groups, 177</td>
</tr>
<tr>
<td>H_G</td>
<td>core of the subgroup H in G, 281</td>
</tr>
<tr>
<td>$H^n(G, A)$</td>
<td>cohomology group, 20</td>
</tr>
<tr>
<td>$H^n(G, B)$</td>
<td>homology group, 24</td>
</tr>
<tr>
<td>$H \leq G$, 1</td>
<td>$H \leq G$, 1</td>
</tr>
<tr>
<td>$H \leq_G G$, 1</td>
<td>$H \leq_G G$, 1</td>
</tr>
<tr>
<td>$H \triangleleft G$, 1</td>
<td>$H \triangleleft_G G$, 1</td>
</tr>
<tr>
<td>$((I G))$</td>
<td>augmentation ideal, 22</td>
</tr>
<tr>
<td>$Ider(G, A)$</td>
<td>group of inner derivations, 22</td>
</tr>
<tr>
<td>$IndG_H^G(B)$</td>
<td>induced module, 25</td>
</tr>
<tr>
<td>$Inf = Inf_G^H$</td>
<td>inflation map, 23</td>
</tr>
<tr>
<td>$K_X(A)$</td>
<td>constant sheaf over a space, 168</td>
</tr>
<tr>
<td>$K_X(A)$</td>
<td>free product of a constant sheaf over a space, 168</td>
</tr>
<tr>
<td>$K_*(X, s)$</td>
<td>free product of a pseudoconstant sheaf, 168</td>
</tr>
<tr>
<td>$K(M)$</td>
<td>kernel of the monoid M, 365</td>
</tr>
<tr>
<td>$K_p(M)$</td>
<td>p-kernel of the monoid M, 365</td>
</tr>
<tr>
<td>$[[A(X, *)]]$</td>
<td>free profinite $Λ$-module, 12</td>
</tr>
<tr>
<td>L_b</td>
<td>Tits line corresponding to b, 239</td>
</tr>
</tbody>
</table>
\(\mathcal{M} = (\mathcal{M}, \pi, T) \) — sheaf of profinite \(A \)-modules, 257

\(\mathbb{N} \) — set of natural numbers, 1

\(N_K(H) \) — normalizer, 1

\(\text{PMod}(A) \) — category of profinite \(A \)-modules, 12

\(\Pi^C_1(\mathcal{G}, \Gamma) \) — fundamental pro-\(C \) group, 180

\(\Pi^G_1(\mathcal{G}, \Gamma) \) — fundamental group of a graph of groups, 192

\(R^A \) — tensor \(A \)-completion of a group, 419

\(\hat{\mathbb{R}} \) — profinite completion, 8

\(\hat{\mathbb{R}}_p \) — pro-\(p \) completion, 8

\(S(\mathcal{G}, \Gamma) \) — standard graph of a graph of groups, 195

\(S^C(\mathcal{G}, \Gamma) \) — standard graph of a graph of groups, 195

\(S^C(\mathcal{G}, \Gamma, H) \) — standard graph of a graph of groups with respect to \(H \), 195

\(\text{Subgp}(G) \) — space of closed subgroups of \(G \), 145

\(\mathcal{T}, \Gamma \) — fixed points of \(T \) under the action of \(G \), 113

\(\text{TC}(\mathcal{G}, \Gamma) \) — (pro-\(C \)) universal Galois \(C \)-covering of \(\Gamma \), 82

\(\mathcal{Y}^{\text{abs}}(\Gamma, T) \) — (abstract) universal covering of \(\Gamma \), 88

\(V(\Gamma) \) — vertex set of a graph \(\Gamma \), 29

\(\nu^{-1}\mathcal{W} \) — Mal'cev product, 366

\([W] \) — smallest \(\pi \)-subtree containing \(W \), 56

\(\mathcal{X} \) — and abelian groups, 400

\(\mathcal{X} \) — and free groups, 400

\(\mathcal{X} \) — and free-by-finite groups, 400

\(\mathcal{X} \) — and polycyclic-by-finite groups, 400

\(\mathcal{X}^* \) — submonoid generated by \(X \), 359

\(\mathcal{X} \) — closure in \(\hat{\mathcal{R}} \), 329

\(\langle \mathcal{X} \rangle \) — closed subgroup generated by \(\mathcal{X} \), 6

\(\mathbb{Z} \) — group or ring of integers, 1
Index of Authors

A
Allenby, 424, 426
Almeida, 217, 425
Anissimow, 361
Aschenbrenner, 425
Ash, 425
Auinger, 423
Auslander, 346

B
Baumslag, 393, 406, 426
Benois, 451
Berstel, 361, 451
Bianchi, 426
Binz, 322
Bogopolski, 426, 427
Bourbaki, 72, 193, 264
Brunner, 424
Burillo, 426
Burns, 323, 423
Burnside, 105
Bux, 426, 427

C
Chagas, 424, 426
Cohen, 426
Coulbois, 423

D
De Oliveira, 424
Delgado, 425
Dicks, 207, 216, 445
Doniz, 424
Dunwoody, 207, 216, 445
Dyer, 323, 426

E
Engler, 324
Evans, 426

F
Ferov, 427
Fine, 422
Fliess, 451
Formanek, 344
Fricke, 422
Fried, 1
Friedl, 425

G
Gersten, 324
Gildenhuys, 216–218, 322, 323
Gilman, 451
Gitik, 423, 424
Goryaga, 427
Gregorac, 424
Gruenberg, 251, 383
Grunewald, 344
Guralnick, 217, 227

H
Hall, M., 105, 121, 323, 359, 423
Haran, 217, 218, 227, 323, 324
Héam, 425
Henckell, 363, 425
Herfort, 217, 218, 227, 322–324
Herwig, 423
Hopfian, 6
Howson, 445
Huppert, 116, 264

J
Jarden, 1, 218
<table>
<thead>
<tr>
<th>K</th>
<th>Kaloujnine, 58</th>
<th>Kargapolov, 58</th>
<th>Karrass, 371, 383, 395, 422</th>
<th>Kharlampovich, 426</th>
<th>Kim, 425</th>
<th>Kochloukova, 324, 426</th>
<th>Krassner, 58</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Lascar, 423</td>
<td>Lennox, 425</td>
<td>Lim, 218</td>
<td>Lioutikova, 426</td>
<td>Lubotzky, 218, 323</td>
<td>Lyndon, 248, 419, 426</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Metaftsis, 425</td>
<td>Minasyan, 427</td>
<td>Mostowski, 423</td>
</tr>
<tr>
<td>N</td>
<td>Neukirch, 218, 322</td>
<td>Niblo, 423</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Oltikar, 322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Pin, 363, 423, 425, 451</td>
<td>Pop, 218, 322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Varsos, 425, 426</td>
<td>Ventura, 324</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>You, 424</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Zalesskii, 1, 217, 218, 322, 324, 381, 423–427</td>
<td>Zhou, 425</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Index of Terms

A

- **Action**
 - free action on a space, 7
 - of a group on a space, 6
- **Action of a profinite group**, 41
 - faithful, 119
 - free, 313
 - free action, 42
 - G-map, 42
 - homology sequence, 265
 - irreducible, 119
 - kernel, 41, 119
 - minimal G-invariant subtrees, 57
 - quotient graph, 42
 - stabilizer, 42
- **Additive functor**, 17
- **Admissible pair**, 350
- **Algorithms for monoids**, 359
- **Algorithms in free groups**
 - closure of subgroup, 357
 - subgroups of finite index, 349
- **Alphabet**, 359
- **Amalgamated product**
 - cyclic amalgamation, 392
 - Mayer–Vietoris sequence, 269
 - proper, 11, 206, 392
- **Augmentation**
 - ideal, 22
 - map, 22
- **Augmentation ideal**
 - and free groups, 59
- **Automaton**, 447
- **Automorphism**, 31
- **Automorphism of a free pro-p group**
 - fixed subgroup: of finite rank, 318, 324
 - fixed subgroup: of infinite rank, 318
- **Axis of a hyperbolic element**, 240

B

- **Bianchi group**
 - conjugacy separability, 426
- **Bockstein homomorphism**, 291
- **Boolean graph**, 216
- **Bouquet of loops**, 63
- **C**
 - C-covering, 74
 - universal, 74
 - C-standard graph
 - uniqueness, 196
 - C-tree, 49
 - C-universal covering of a graph of pro-C groups, 195
 - **Cayley graph**
 - of a free group, 61
 - of a profinite group, 39
 - of an abstract group, 435
 - **Centralizer**, 1
 - **Chain**, 56, 433
 - that equals the full π-tree, 57
 - **Chain complex of a graph**, 45
 - **Circuit**, 41, 431
 - **Class \mathcal{X}**, 400
 - amalgamated products, 418
 - **Clopen**, 4
 - **Closed path**, 431
 - **Closed subgroups**
 - infinitely generated, 336
 - **Coboundary**, 22
 - **Cocycle**, 22
 - **Cofinal**, 3
 - subsystem, 3
 - **Cohomological p-dimension**, 26
 - **Cohomology group**
 - of a group, 20
Coinduced module, 25
Coinflation, 24
Collapsing of a subgraph, 31
Compatible pair of maps, 64
Completion
 pro-\(C\), 8
 pro-\(p\), 8
 profinite, 8
Complex of modules, 279
 splitting, 279
Computation of pro-\(C\) closure, 355
Computation of pro-\(p\) closure, 357
Cone of \(X\), 79
Conjugacy \(C\)-separability, 332
Conjugacy distinguished, 333
 and amalgamated products, 415
 and direct products, 424
 in free-by-\(C\) groups, 389
 in polycyclic-by-finite groups, 345
 subgroup, 389, 390
Conjugacy separable, 332
 amalgamated products of groups in \(\mathcal{A}\), 418
 and amalgamated products, 402, 405
 and direct products, 424
 and polycyclic-by-finite groups, 344
 Bianchi groups, 426
 equivalent conditions, 332
 Fuchsian group, 422
 hereditarily, 427
 iterated amalgamated products, 418
 Lyndon group, 420
 surface group, 418, 419
 vs subgroup separable, 424
Connected profinite component
 of a profinite graph, 38
Connected profinite graph
 not abstractly connected, 37
Connecting homomorphism, 18, 19
Constant sheaf over a space, 168
Continuously indexed subgroups, 145
Converge to 1, 144
Core, 235
Core of a subgroup, 281
Corestriction induced by a family of subgroups, 262
Covering, 430
Cycle, 431
Cyclic subgroup separable, 405

D
Dihedral pro-\(\sigma\) group, 121
Direct sum indexed by a topological space
 of proabelian groups, 167
 of profinite modules, 257
Distance, 239

E
Edge
 origin of an, 29
 terminus of an, 29
Edge group, 178
Epimorphism
 of Galois coverings, 64
 of profinite graphs, 31
Equivalence relation
 \(G\)-invariant, 43
 open, 33
Equivariant mapping, 64
Étale topology
 on \(\text{Subgp}(G)\), 145

F
Faithful action, 119
Fiber of a sheaf, 137
Filtered from below (collection of subsets), 42
Finite state automaton, 447
Fixed subgroup of an automorphism, 318
Fixed submodule, 20
Folding, 441
Frattini subgroup, 25
Frattini subgroup of a free product, 231
Free
 pro-\(C\) group, 9
 pro-\(C\) product, 10
 product with amalgamation, 11
 profinite module, 12
Free action on graph, 99
Free pro-\(C\) group
 as a free pro-\(C\) product, 168
Free pro-\(C\) product
 counterexample to Kurosh theorem, 313
 Kurosh subgroup theorem, 232, 275
 of a finite number of groups, 141
 of a set of subgroups converging to 1, 144
 of a sheaf, 139
 open subgroup, 233, 235
 prosolvable subgroup, 322
 restricted, 144
Free pro-\(p\) product
 counterexample to Kurosh theorem, 316
Free product
 change of pseudo-variety, 164
 free proabelian product, 167
 minimal trees, 250
 nonabelian, 164
 of a constant sheaf, 167
Free-by-C group, 242, 333
 product of subgroups, 339
 tree associated, 242
Free-by-finite group, 333
 product of subgroups, 342
 subgroup separability, 333
Frobenius profinite group, 121
Fuchsian group, 422
 conjugacy separability, 422
Functor, 13
 additive, 17
 exact, 13
 right exact, 13
Fundamental group
 of a graph of groups, 180
 over a simply connected graph, 182
 of a graph of groups, abstract case, 207
 of a graph of groups (construction and existence), 180
 of a profinite graph, 75
 of an abstract graph, 432
 uniqueness, 185, 189
Fundamental pro-C group, 75
 is projective, 96
G
 G-graph, 41
 connectedness in terms of generators of G, 44
 decomposition as inverse limit, 43
 G-map, 42
 G-module, 15
 G-section, 79
 G-space, 6
 G-transversal, 79
 0-transversal, 79
Galois C-covering, 74
 universal, 74
Galois covering, 63
 associated group, 63
 compatible pair of maps, 64
 connected, 63
 finite, 63
 morphism, 64, 69
Generators
 converging to 1, 6
Graph
 abstract, 429
 abstract connected, 432
 abstract tree, 432
 abstract universal covering, 436
 action of a group, 429
 boolean, 216
 Cayley graph, 39
 connected profinite graph, 36
 C-tree, 49
 group acting on a profinite graph, 41
 incidence maps, 29, 429
 map of graphs, 429
 maximal tree, 433
 morphism, 429
 path, 431
 profinite graph, 29
 star of a vertex, 430
 the Cayley graph as a G-graph, 44
 valency of a vertex, 430
Graph of groups
 abstract case, 207
 C-standard graph of a graph of groups, 195
 injective, 206
 Mayer–Vietoris sequence, 268
 reduced, 227
Graph of pro-C groups
 reduced, 227
 special type, 230
Graph of pro-C groups, 177
Graph of profinite groups, 177
Group
 conjugacy C-separable, 332
 conjugacy separable, 332
 free-by-C, 333
 free-by-finite, 333
 Frobenius profinite, 121
 infinite dihedral pro-σ, 121
 nilpotent-by-finite, 343
 polycyclic, 343
 polycyclic-by-finite, 343
 profinite, 4
 residually C, 8
 subgroup conjugacy C-separable, 333
 subgroup conjugacy separable, 333
 subgroup separable, 331
 virtually free, 333
Group algebra, 15
 complete, 15
Group ring, 15
H
 Hall subgroup, 121
 Hirsch number, 343
HNN extension
 generalized, 184
 proper, 207
Homology group
 of a group, 24
Homology groups
 of a profinite graph, 46
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homology sequence of action on tree</td>
<td>265</td>
</tr>
<tr>
<td>Homotopy</td>
<td>432</td>
</tr>
<tr>
<td>Hyperbolic element</td>
<td>239</td>
</tr>
<tr>
<td>Idempotent element</td>
<td>364</td>
</tr>
<tr>
<td>Immersion</td>
<td>430</td>
</tr>
<tr>
<td>Incidence maps</td>
<td>29</td>
</tr>
<tr>
<td>Induced module</td>
<td>25</td>
</tr>
<tr>
<td>Induced profinite topology on a subgroup</td>
<td>331</td>
</tr>
<tr>
<td>Inflation</td>
<td>23</td>
</tr>
<tr>
<td>Injective graph of groups</td>
<td>206</td>
</tr>
<tr>
<td>Invariant under an action</td>
<td>57</td>
</tr>
<tr>
<td>Inverse limit</td>
<td>2</td>
</tr>
<tr>
<td>Inverse limit of graphs</td>
<td>33</td>
</tr>
<tr>
<td>Inverse system of graphs</td>
<td>33</td>
</tr>
<tr>
<td>Irreducible action on a π-tree</td>
<td>119</td>
</tr>
<tr>
<td>Isomorphism</td>
<td>31</td>
</tr>
<tr>
<td>Kernel</td>
<td>365</td>
</tr>
<tr>
<td>Kleene’s Theorem</td>
<td>360</td>
</tr>
<tr>
<td>Künneth formula</td>
<td>311</td>
</tr>
<tr>
<td>Kurosh subgroup theorem</td>
<td>232, 273, 275</td>
</tr>
<tr>
<td>counterexample</td>
<td>313, 316</td>
</tr>
<tr>
<td>Language on an alphabet</td>
<td>359</td>
</tr>
<tr>
<td>LERF</td>
<td>331</td>
</tr>
<tr>
<td>Lifting of a path</td>
<td>435</td>
</tr>
<tr>
<td>Lifting of C-simply connected profinite subgraphs</td>
<td>92</td>
</tr>
<tr>
<td>quotient graphs with no lifting of trees or simply connected subgraphs</td>
<td>78</td>
</tr>
<tr>
<td>Lifting graph</td>
<td>78</td>
</tr>
<tr>
<td>Lifting morphism</td>
<td>74</td>
</tr>
<tr>
<td>Loop, 29</td>
<td>429</td>
</tr>
<tr>
<td>Lyndon group</td>
<td>419</td>
</tr>
<tr>
<td>conjugacy separability of</td>
<td>420</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M. Hall group</td>
<td>323</td>
</tr>
<tr>
<td>free products</td>
<td>323</td>
</tr>
<tr>
<td>Mal’cev product</td>
<td>366</td>
</tr>
<tr>
<td>Map</td>
<td></td>
</tr>
<tr>
<td>middle linear</td>
<td>16</td>
</tr>
<tr>
<td>Map of profinite graphs</td>
<td>31</td>
</tr>
<tr>
<td>Maschke’s Lemma for free pro-p groups</td>
<td>319</td>
</tr>
<tr>
<td>Mayer–Vietoris sequence</td>
<td>267</td>
</tr>
<tr>
<td>Minimal G-invariant subtrees</td>
<td>57</td>
</tr>
<tr>
<td>Minimal invariant subtrees</td>
<td>57</td>
</tr>
<tr>
<td>Minimal subtrees</td>
<td>57, 237</td>
</tr>
<tr>
<td>Module</td>
<td></td>
</tr>
<tr>
<td>coinduced</td>
<td>25</td>
</tr>
<tr>
<td>free profinite A-module</td>
<td>12</td>
</tr>
<tr>
<td>G-module</td>
<td>15</td>
</tr>
<tr>
<td>induced, 25</td>
<td>14</td>
</tr>
<tr>
<td>injective, 14</td>
<td>14</td>
</tr>
<tr>
<td>Modules</td>
<td></td>
</tr>
<tr>
<td>direct sum</td>
<td>257</td>
</tr>
<tr>
<td>Monoid</td>
<td>359</td>
</tr>
<tr>
<td>algorithms</td>
<td>359</td>
</tr>
<tr>
<td>free</td>
<td>359</td>
</tr>
<tr>
<td>morphism</td>
<td>359</td>
</tr>
<tr>
<td>Monomorphism</td>
<td></td>
</tr>
<tr>
<td>of profinite graphs</td>
<td>31</td>
</tr>
<tr>
<td>Morphism, 429</td>
<td></td>
</tr>
<tr>
<td>of Galois coverings</td>
<td>64</td>
</tr>
<tr>
<td>surjective</td>
<td>64</td>
</tr>
<tr>
<td>Morphism of graphs</td>
<td>31</td>
</tr>
<tr>
<td>qmorphism, monomorphism, epimorphism, isomorphism, automorphism</td>
<td>31</td>
</tr>
<tr>
<td>Morphism of monoids</td>
<td>359</td>
</tr>
<tr>
<td>n-product subgroup separable</td>
<td>338</td>
</tr>
<tr>
<td>Nilpotent-by-finite</td>
<td>343</td>
</tr>
<tr>
<td>Normalizer, 1</td>
<td></td>
</tr>
<tr>
<td>in amalgamated products</td>
<td>396</td>
</tr>
<tr>
<td>in fundamental groups</td>
<td>397</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Open question</td>
<td>219, 322, 324, 325, 358, 359, 424–426</td>
</tr>
<tr>
<td>Orbit</td>
<td>42</td>
</tr>
<tr>
<td>Order</td>
<td></td>
</tr>
<tr>
<td>of a profinite group</td>
<td>8</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>p-kernel</td>
<td></td>
</tr>
<tr>
<td>of finite monoid</td>
<td>365</td>
</tr>
<tr>
<td>p-primary abelian group</td>
<td>25</td>
</tr>
</tbody>
</table>
Index of Terms

\(p \)-tree, 51
\(\pi \)-group, 111
\(\pi \)-tree, 51
and inverse limits of finite trees, 52
which equals its infinite chains, 57
Path, 29
cycle, 431
length of a, 29
on an abstract graph, 431
reduced, 431
underlying graph, 29
Polycyclic, 343
Polycyclic-by-finite, 343
conjugacy separability, 344
exactness of completion, 344
product of subgroups, 346
subgroup conjugacy distinguished, 345
subgroup conjugacy separability, 344
subgroup separability, 343
Pontryagin dual, 24
Poset, 2
cofinal subset, 3
Potential, 394, 426
\(H \)-potent, 394
quasi-potent, 394
weakly-potent, 426
Pro-\(C \) closure, 358
Pro-\(C \) topology
on a free monoid, 363
Pro-\(C \) topology of a group
full, 8
Pro-\(C \) tree, 217
Product of subgroups in an abstract group, 338
Product subgroup separable, 338
Profinite \(G \)-space, 45, 102
Profinite graph, 29
collapsing of a subgraph, 31
connected, 36
infinite with only finite proper subgraphs, 40
connected profinite component, 38
\(C \)-simply connected, 75
\(C \)-tree, 49
edge of a, 29
fundamental pro-\(C \) group, 75
group acting on a profinite graph, 41
incidence maps, 29
map, 31
morphism, 31
\(\pi \)-tree, 51
\(p \)-tree, 51
\(q \)-morphism, 31
quasi-morphism, 31
subgraph, 31
vertex of a, 29
vertex set of a, 29
Profinite group, 4
acting on a profinite graph, 41
freely, 42
associated with Galois covering, 63
Profinite ring, 9, 45
\(p \)-adic integers, 9
Profinite space, 3
\(G \)-space, 6
Profinite tree, 51
Projection
of an inverse limit, 2
Projective, 99
group, 10
module, 14
Projective limit of graphs, 33
Projective profinite group, 87
\(C \)-projective, 87
fundamental pro-\(C \) group, 96
Pronilpotent closure, 357
Pro-\(p \) closure, 357
Pro-\(p \) tree, 217
Pro
amalgamated profinite product, 11
Pro-\(\pi \) group, 111
Pro-\(\pi \) tree, 217
Pseudoconstant sheaf over a pointed space, 167
Pseudovariety
closed under extensions with abelian kernel, 57
of finite monoids, 366
decidable, 366
Pseudovariety of finite groups, 5
\(C \), 5
closed under extensions, 5
closed under extensions with abelian kernel, 5
not extension-closed, 58
Pseudovariety of finite monoids
Mal’cev product, 366

Q
Qmorphism
of profinite graphs, 31
Quasi-morphism
of profinite graphs, 31
Quasi-potent, 394
Quotient graph, 32
under the action of a group, 42

R
Rank of a free pro-\(C \) group, 9
Rational expression, 360, 361
Rational subset
 characterization, 360
Rational subsets of free groups, 449
Reduced graph of groups, 227
Residually C group, 8
Residually p group, 8
Residually solvable group, 8
Resolution
 injective, 18
 projective, 17
Restricted free pro-C product, 144
Restriction
 in cohomology, 23
Ring
 pro-C, 45
 profinite, 11
RZ, 1
S
Second axiom of countability, 4
Section, 79
 0-section, 79
 existence for C-coverings, 79
 fundamental, 79
Sequence
 exact, 13
 short exact sequence, 13
Shapiro’s Lemma, 25
Sheaf
 constant, 138, 167
 constant sheaf, 167
 epimorphism of sheaves, 138
 fiber, 137
 monomorphism of sheaves, 138
 morphism of sheaves, 138
 morphism to a group, 139
 of groups converging to 1, 138
 of pro-C groups, 137
 of profinite modules, 257
 pseudoconstant sheaf, 167
 quotient sheaf, 138
 subsheaf, 138
 vertex subsheaf, 177
Simply connected profinite graph, 75
 and profinite trees, 100
 finite tree, 76, 87
 vs profinite tree, 76
Space
 profinite, 3
 second countable, 4
 totally disconnected, 3
 weight of a, 4
Spanning C-simply connected subgraph, 77
Spanning C-subtree, 77
Spanning subgraph, 77
 graph with no C-simply connected
 spanning subgraph, 78
Specialization, 178
 universal, 180
Split complex, 279
Stabilizer of an element, 42
Standard graph, 193
 of a graph of pro-C groups, 195
 uniqueness, 196
Star of a vertex, 430
Subgraph, 429
 collapsing, 31
 of a profinite graph, 31
 spanning, 77
Subgroup
 conjugacy C-distinguished, 333
 subnormal, 120
Subgroup conjugacy C-separable, 333
Subgroup conjugacy distinguished
 in a free-by-C group, 389
 in a free-by-finite group, 390
 in a polycyclic-by-finite groups, 345
Subgroup conjugacy separable, 333
 and polycyclic-by-finite groups, 344
Subgroup separable, 331
 and direct products, 424
 and free products, 423
 and nilpotent-by-finite groups, 344
 and polycyclic-by-finite groups, 343
 cyclic, 405
 cyclic subgroup separable, 405
 free product, 423
 not conjugacy separable, 424
Subgroups
 continuously indexed, 145
Submodule
 of fixed points, 20
Submonoid, 359
Supernatural number, 8
Surface group, 418
 conjugacy separability of, 418, 419
T
Tensor A-completion of a group, 419
Tensor induced G-action, 284
Tensor product
 complete, 16
Tensor product induction, 281
Tensor product of complexes, 279, 280
Tits line, 239
 and free products, 240, 250
 graphs of residually finite groups, 245
Trace map, 301
Index of Terms

Transversal, 79
 0-transversal, 79
Tree, 432
 \(C\)-tree, 48, 49
 minimal \(G\)-invariant \(\pi\) -subtree, 57
 \(\pi\) -tree, 48
 \(\pi\) -tree depends on \(\pi\), 105
 \(\pi\) -tree vs simple connectivity, 104
 pro-\(C\) tree, 217
 profinite, 51

U
Underlying graph of a path, 431
Universal covering
 commutes with \(\lim\), 75
 construction of a, 82
 of a graph of groups, 195
Universal covering graph of an abstract graph, 436
Universal covering of the graph of pro-\(C\)
groups, 195
Universal coverings existence of, 87

V
Valency of a vertex, 430
Variety, 5
Verbal subgroup, 336
Vertex
 initial, 29
 terminal, 29
Vertex group, 178
Virtual \(p\)-cohomological dimension, 290
Virtually free group, 242, 333
 tree associated, 242
Virtually nilpotent group, 343
Virtually \(P\), 242
Virtually polycyclic group, 343

W
Weakly-potent, 426
Weight, 153
Weight of a topological space, 4, 154
Word on an alphabet, 359

Z
Zassenhaus group, 121