Index

A
- Additive wavelet transform (AWT), 133
- Aliasing rejection
 - coefficients, 62
 - comb filters, 63–66
 - pole-zero plots, 63
 - symmetric polynomial, 62
- Artificial bee colony (ABC), 98, 99

B
- Biorthogonal filter banks, 125
- Black frame insertion, 147
- Brovey Transform algorithms, 132

C
- Canonical signed digit (CSD), 12
- Cascaded integrator-comb (CIC), 11
- Center Frequency Detection Using Center of Mass, 194–195
- Centroid method, 193, 194
- Cognitive radio (CR), 83, 172
 - capability and reconfigurability, 171
 - cognitive cycle, 171
 - development, spectrum utilization, 170
 - entities, 171
 - FCC, 170
 - monitoring, 170
 - secondary users, 169
 - signal processing applications, 169, 170
 - spectral holes, 171
 - spectrum analysis, 171, 172 (see also spectrum sensing)
 - wideband spectrum sensing, 169, 170
- Comb filter
 - decimation stage, 60
 - multiplierless filter, 61
 - passband droop, 60
 - signal spectrum, 59
 - stages, 59
 - system function, 59
- Corrector filters method, 74–77
- Cosine-modulated filter banks (CMFBs), 83, 182, 183
- CS algorithm
 - amendments, 97
 - assumptions, 97
 - MCS technique, 97
 - parameters, 106
 - proposed method, 105
- Cuckoo search algorithm, 96, 97
- Cyclostationary feature detection (CFD) technique, 176

D
- Decimation, 59
 - comb decimation stage, 60
 - down-sampling filter, 3
- Digital filter bank
 - amalgamation, 38
 - filtering operation, 38
 - M-channel filter bank, 41–43
 - two-channel FB, 38–40
- Digital front-end
 - phase-shaping filter, 11–14
 - rectangular-to-polar convertor, 14–19
- Discrete Fourier transform (DFT), 178

© Springer International Publishing AG 2018
G.J. Dolecek (ed.), *Advances in Multirate Systems*, DOI 10.1007/978-3-319-59274-9
Down-sampling system
 multi-rate system-level design, 22–23
 multi-standard digital radio, 21
 sigma–delta ADC, 21

E
Energy detection method
 CFD, 176
 cyclostationary features, 176
 MF, 175
 subbands, 174, 175
 traditional, 173, 174

F
Filter architecture
 HF FIR filters, 25
 LF FIR filters, 26–28
 trade-off of power consumption, 1
Filter banks
 architecture based, 179–180
 biorthogonal, 125
 CMFB, 183
 CMT, 183
 concept of, 178
 designing prototype filters, 178, 180
 DFT, 181
 frequency response, prototype filter, 182
 frequency shifted version, 182
 low-pass prototype filter, 178
 near-perfect reconstruction (NPR), 180
 OFDM, 178
 optimization techniques, 181
 orthogonal, 124
 perfect reconstruction (PR), 180
 polyphase, 180, 183, 185
 prototype filter, 181
 QMF, 123
 spectrum sensing, 185–186
 types, 178
 Filter-bank-based pansharpening (FB), 133
 Finite impulse response (FIR) filter, 22, 62
 Fractional derivative (FD), 85
 convergence time, 48
 multirate filter bank, 49
 optimization techniques, 48
 Fractional derivative constraints (FDC), 88–96
 Frame duplicate and skipping technique, 146
 Frame insertion, 147
 Frame rate conversion (FRC), 144
 duplicate and skipping, 146
 insertion, 147
 three-two pull down technique, 146
 low bit rate video coding, 145
Frame rate up-conversion (FRUC), 150–154
 hardware architecture specifications, 165
 high refresh rate display devices, 146
 higher video resolution, 164
 ME (see Motion estimation (ME))
 motion compensation (MC), 149, 157–159
 motion estimation (ME), 149
 motion vector mapping, 156–158
 motion vectors (MVs), 149
 MV processing (see Motion vector processing)
 post-processing, 159–161

G
Generalized comb filter (GCF), 61
Generalized Laplacian Pyramid (GLP), 133
Genetic algorithm (GA), 47
Gram–Schmidt (GS) pansharpening technique, 132

H
High efficient video coding (HEVC), 145
High refresh rate display device, 145
High-frequency (HF) FIR filters, 25
High-pass filtering (HPF), 133

I
Image decomposition, 126
Image reconstruction, 126, 127
Infinite impulse response (IIR), 84
Interchannel/intercarrier interference (ICI), 200, 202, 210–214
Intersymbol interference (ISI), 200, 203, 210–213

L
Lagrange polynomial approximation, 47
Levenberg–Marquardt (LM) algorithm, 45
Linear time-invariant (LTI) system, 36
Liquid crystal display (LCD), 143
Low bit rate video coding, 145
Low-frequency (LF) FIR filters, 26–27

M
M-channel filter bank, 41, 43, 86–88
Minor component analysis (MCA), 49, 85
CMFBs, 84
design parameters, 102, 103, 105, 106, 109, 111, 113
differentiability and continuity, 84 and FDC, 88–96
iteration, 102
learning algorithm, 93–96
M-channel CMFB, 100
and optimized FDCs, 100
proposed method, 115–116
Modified cuckoo search algorithm, 97–98
Modified discrete Fourier transform (MDFT) technique, 45
Motion compensation (MC)
appropriate ratio of MVs, 158
bilinear and adaptive weighting MC, 158
block-based operations, 158
estimation, 159
forward and backward MVFs, 159
intermediate frame, 157
MC technique, 157
OBMC, 158
Motion estimation (ME)
block matching, 151, 152
block-based ME, 151
compression, 150
3D motion, 150
3D true motion, 150
decoder-side MV extraction, 153
LCD systems, 151
MVF, 151
optical flow, 152, 154
video decoder, 149
Motion vector mapping
bilateral, 157
forward, 157
interpolated frames, 156
methods, 156
MRF modeling method, 155
MVF, 154
traditional, 156
vector median filter, 155
Motion visualization and evaluation, 162
Multirate filter banks (FBs)
bank-based spectrum analysis, 169
CMOS technology, 1
constraints and stopband attenuation, 46
down-sampling, 2
FIR filter implementations, 2
frequency domain, 44
global optimization techniques, 46
high-bandwidth polar transmitter, 20
LTI systems, 37
metaheuristic algorithms, 47
NPR filter bank design, 45
optimal designs, 47
optimization techniques, 45
QMF banks, 37
quadrature relationship, 44
quantization noise, 35
research Gap, 48–50
signal processing applications, 35
subband coding systems, 37
system design, 8–10
two-channel FB, 44
WLS techniques, 45
Multi-rate radio receiver, 20–31
Multirate video signal processing, 144–146, 149, 162–164
applications
editing, 145
high-refresh-rate-display-device, 145
low-bit-rate-video-coding, 145
video-format-conversion, 144
conventional methods, 165
evaluation
double-interpolating-frames, 164
FRUC technique, 163
motion visualization, 162
original and interpolated frames, 162
PSNR values, 164
skipping frames, 163
frame-rate-up-conversion (FRUC), 143, 144
FRC techniques (see Frame rate conversion (FRC))
FRUC techniques (see Frame rate up-conversion (FRUC))
hardware implementation issues, 164, 165
LCD, 143
mobile phone, 143
motivation, higher frame rate, 147–149
personal computer (PC), 143
pixels, 143
sequence of images, 144
television (TV), 143
test video sequences, 161
three-dimensional (3D) signal, 143

N
Nearly perfect reconstructed (NPR), 37, 180
Nonuniform transmultiplexer (TMUX) system algorithm, 214
applications, 199
code domain multiple access (CDMA), 199
Dolph–Chebyshev window, 205
Nonuniform transmultiplexer (TMUX) system (cont.)
 FFBR networks, 200
 four-channel, 211–213
 interchannel interference ratio, 203
 Kaiser window, 204
 linear-phase finite impulse response, 200
 NPR, 201
 parallel structure, 201
 perfect reconstruction (PR), 200
 prototype method, 214
 Saramaki window, 204
 theory of multirate filter banks, 201
 transitional window, 206–209
 transmission of a video signal, 199
 Nyquist wideband spectrum sensing, 177

O
Orthogonal filter banks, 124

P
PA nonlinearity, 19
Pansharpening, 120–125, 131, 134–138
 algorithms, 132
 AWT, 133
 Bayesian approach, 120
 Brovey transform, 132
 component substitution (CS), 129
 compressing sensing, 120
 CS-based method, 127, 138
 datasets, 129
 filter-bank-based, 133
 full-resolution quality indexes, 138
 geometrical information, MS images, 129
 GIHS, 132
 GLP approach, 133
 Gram–Schmidt (GS) pansharpening technique, 132
 Gram–Schmidt adaptive (GSA), 133
 GS-mode 1, 132
 high-frequency components, 138
 high-pass filtering (HPF) technique, 133
 high-resolution, PAN image, 129
 literature, 119
 MRA methods, 128
 MTF value, 134
 multiresolution analysis (MRA), 129
 outcomes
 full-scale, 137, 138
 2-m fused MS, 135
 reduced scale, 131, 135–137
 PAN and MS modalities, 127, 128, 132, 138
 quality, 139. See Quality assessment, pansharpening
 SFIM, 133
 solutions, filter banks (see Filter bank solutions)
 sparse representation, 120
 spatial frequency decomposition, 120
 spectral transformation, 119
 tree-structured filter (see Tree-structured filter banks)
 two-channel filter (see Two-channel filter banks)
 Particle swarm optimization (PSO), 99, 101
 Polar transmitters, 3–20
 Polyphase
 components, 48
 decomposition, 49
 digital filter, 48
 Polyphase filter banks, 183, 184, 189, 195
 Pre-distortion circuit, 7, 8, 19
 Progressive decimation filter bank techniques (PDFB), 170
 Pulse-shaping filter, 6

Q
Quadrature mirror filter (QMF), 37, 119, 123
Quality assessment, pansharpening
 full-reference, 134
 no-reference, 135
 objective, 134
 RGB color image, 134
 subjective evaluation, 134

R
Rectangular-to-polar conversion, 6, 7

S
Signal processing
 analog domain, 1
 CMOS scaling, 31
 digital, 5
 DSP, 5
Index

implementation aspects, 1
polar conversion, 4
Signal to interchannel interference ratio (SICI), 203, 210–212, 214
Sine-squared method, 71, 72
Sinewave functions
fourth-order, 73, 74
sine-squared method, 71, 72
Smoothing filter-based intensity modulation (SFIM), 133
Spectrum sensing, 173, 178–180, 185–195
channel conditions, 172
CR, 172
energy detection (see Energy detection method)
filter bank techniques
binary detection, wideband spectrum
sensing, 187
calculation of threshold, 186
center frequency detection, center of mass, 193–195
multistage CMFB, 188–189
multistage polyphase filter banks, 190
multistage spectrum sensing, 189
polyphase filter banks, 189–190
single user detection, wideband spectrum, 190–193
subband frequencies, 185, 186
noncooperative and cooperative methods, 172
wideband, 176–178
Swarm optimization techniques
cuckoo search algorithm, 96, 97
modified Cuckoo search algorithm, 97–98
Symmetric polynomial, 66–69
System-level selection, 27–31

T
Test video sequences, 161
Transmultiplexer (TMUX), 36
Tree-structured filter banks
decomposition, image, 126
down-sampling and filtering operations, 125
image reconstruction, 126, 127
Two-channel filter banks, 38–40
analysis, 120
discrete domain, 120–122
subsampling and up-sampling operations, 120
Z-transform domain, 122, 123

U
Up-sampling system
AM signal, 6
analog-centric designs, 4
digital front-end system, 5
digital-intensive polar transmitters, 4
license-free bandwidth, 3
mm-wave transmitter, 4

V
Video editing, 145
Video format conversion, 144

W
Weighted constrained least square (WCLS) technique, 83
Wideband spectrum
consecutive subbands, 191
polyphase filter, 190
procedure, 192
sensing, 176, 177
signal spectrum, WM, 191
TV, 190
two-stage filter bank, 192
wireless microphone (WM), 190
WM, 191
Windowing, 206–209
Dolph–Chebyshev, 205
transitional, 206–209
Kaiser, 204
Saramaki, 204
Wireless local area networks (WLAN), 170
Wireless microphone (WM), 190
Wireless personal area network (WPAN), 170
Wireless regional area network (WRAN), 170

Z
Zero rotation, 66, 76
Zero rotation, 60