Appendix A
Periodical Ateb Functions

In his classical paper Rosenberg 1963, introduced the so-called periodic Ateb functions concerning the problem of inversion of the half of the incomplete Beta function

\[z \mapsto \frac{1}{2} B_z(a, b) = \frac{1}{2} \int_0^{0 \leq z \leq 1} t^{a-1}(1 - t)^{b-1} dt . \]

(A.1)

Obviously, we are interested in the case where \(a = \frac{1}{\alpha+1} \) and \(b = \frac{1}{2} \), i.e.,

\[z \mapsto \frac{1}{2} B_z \left(\frac{1}{\alpha+1}, \frac{1}{2} \right) = \frac{1}{2} \int_0^{0 \leq z \leq 1} \frac{dt}{(1 - t)^{1/2} t^{1/2} (\alpha+1)} . \]

(A.2)

Senik in his article in 1969 shows that the Ateb functions are the solutions of the ordinary differential equations

\[\dot{v} - u^\alpha = 0, \]
\[\dot{u} + \frac{2}{\alpha + 1} v = 0 , \]

(A.3)

Namely,

\[v(z) = sa(1, \alpha, z), \quad u(z) = ca(\alpha, 1, z) . \]

(A.4)

It can be easily verified that the inverse of \(\frac{1}{2} B_z \left(\frac{1}{\alpha+1}, \frac{1}{2} \right) \) and \(v(z) \) coincide on \([-\frac{1}{2} \Pi_\alpha, \frac{1}{2} \Pi_\alpha]\), where

\[\Pi_\alpha := B \left(\frac{1}{\alpha+1}, \frac{1}{2} \right) . \]

(A.5)

Having in mind the following set of properties:
\[sa(1, \alpha, z) = \begin{cases} -sa(1, \alpha, -z) \\ \pm ca(\alpha, 1, \frac{1}{2} \Pi_\alpha \pm x) \\ \pm sa(1, \alpha, \Pi_\alpha \pm z) \\ \mp sa(1, \alpha, 2 \Pi_\alpha \mp z) \end{cases} \]

(A.6)

we see that \(sa(\alpha, 1, z) \) is an odd function of \(z \in \mathbb{R} \); it is the so-called \(2 \Pi_\alpha \)-periodic sine Ateb, i.e., \(sa \) function. Also there holds

\[sa^2(1, \alpha, z) + ca^{\alpha+1}(\alpha, 1, z) = 1, \]

(A.7)

and cosine Ateb, that is \(ca(1, \alpha, z) \) function, is even and \(2 \Pi_\alpha \) periodic having properties:

\[ca(\alpha, 1, z) = \begin{cases} ca(\alpha, 1, -z) \\ sa(1, \alpha, \frac{1}{2} \Pi_\alpha \pm z) \\ -ca(\alpha, 1, \Pi_\alpha \pm z) \\ ca(\alpha, 1, 2 \Pi_\alpha \pm z) \end{cases}. \]

(A.8)

By these two sets of relations we see that functions \(sa, ca \) are defined on the whole range of \(\mathbb{R} \).

The first derivatives of the \(ca \) and \(sa \) Ateb functions are

\[
\frac{d}{dz} ca(\alpha, 1, z) = -\frac{2}{\alpha + 1} sa(1, \alpha, z) \\
\frac{d}{dz} sa(1, \alpha, z) = ca^\alpha(\alpha, 1, z).
\]

(A.9)

Being cosine Ateb \(ca(n, m, z) \) even \(2 \Pi_\alpha \) periodic function, it is a perfect candidate for a cosine Fourier series expansion. Let us mention that finite Fourier series approximation has been discussed in Droniuk and Nazarkevich (2010)1, while in Droniuk and Nazarkevich (2010)2 the sine Ateb \(sa(n, m, z) \) has been approximated by its sine Fourier series. Applying the there exposed method to \(ca(1, \alpha, z) \), we conclude that

\[ca(\alpha, 1, z) = \sum_{n=1}^{\infty} a_n \cos \frac{\pi n z}{\Pi_\alpha}, \]

(A.10)

since obviously \(a_0 = 0 \) and

\[
a_n = \frac{2}{\Pi_\alpha} \int_{0}^{\Pi_\alpha} ca(\alpha, 1, z) \cdot \cos \frac{\pi n z}{\Pi_\alpha} \, dz = \frac{2}{\Pi_\alpha} \int_{0}^{\Pi_\alpha} \cos \frac{\pi n z}{\Pi_\alpha} \left\{ \int_{z}^{1} \frac{d\bar{u}}{(1 - \bar{u}^2)^{\alpha+1}} \right\} \, dz.
\]

(A.11)

The \(a_n \) values we compute numerically according to the prescribed accuracy. Of course, it is enough to compute \(ca(\alpha, 1, z) \) for \(z \in [0, \Pi_\alpha/2] \), another values we calculate by means of formula (A.8) (see also Gricik et al. 2009). Another model in approximating Ateb functions is the Taylor series expansion, such that corresponds to the investigations by Gricik and Nazarkevich in 2007.
Now, inverting the half of the incomplete Beta function in (3.26):

\[
\frac{1}{2} B\left(\frac{\alpha + 1}{2}, \frac{\alpha}{2} + \frac{\sqrt{\alpha + 1} \, |c_\alpha|}{\sqrt{2}} A^{(\alpha-1)/2} t, \right),
\]

we clearly deduce

\[
x(t) = A \cdot sa \left(1, \alpha, \frac{\Pi_\alpha}{2} + \frac{\sqrt{\alpha + 1} \, |c_\alpha|}{\sqrt{2}} A^{(\alpha-1)/2} t\right).
\]

(A.12)

Having in mind the quarter period expansion formula, we arrive at

\[
x(t) = A \cdot ca \left(\alpha, 1, \frac{\sqrt{\alpha + 1} \, |c_\alpha|}{\sqrt{2}} A^{(\alpha-1)/2} t\right), \quad t \in \mathbb{R}.
\]

(A.13)

By \(ca(\alpha, 1, 0) = 1\), we see that the initial condition \(x(0) = A\) is satisfied as well.

Moreover, we have to point out a restricting characteristics of Rosenberg’s and Senik’s inversion (1969). Rosenberg (1963) pointed our the rule:

“Exponents \(n = \alpha + \frac{1}{2}\) and \(1/n\) behave like odd integers”, while Senik’s restriction to some rational values of \(\alpha\) constitutes the set of permitted \(\alpha\)-values:

Approximate methods by numerically obtained evaluations of Ateb functions have been performed by Droniuk and Nazarkevich (2010)\(_1\) and (2010)\(_2\), and the references therein. Further study on Ateb function integral was realized by Senik in 1969 (see Table A.1) and Drogomirecka in 1997.

Table A.1 The values of \(\alpha = \frac{2\mu + 1}{2\nu + 1}\), \(\mu, \nu \in \mathbb{N}_0\), by Senik’s traces

<table>
<thead>
<tr>
<th>(\mu) (\backslash) (\nu)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1/3</td>
<td>1</td>
<td>5/3</td>
<td>7/3</td>
<td>3</td>
<td>11/3</td>
<td>13/3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1/5</td>
<td>3/5</td>
<td>1</td>
<td>7/5</td>
<td>9/5</td>
<td>11/5</td>
<td>13/5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1/7</td>
<td>3/7</td>
<td>5/7</td>
<td>1</td>
<td>9/7</td>
<td>11/7</td>
<td>13/7</td>
<td>15/7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1/9</td>
<td>1/3</td>
<td>5/9</td>
<td>7/9</td>
<td>1</td>
<td>11/9</td>
<td>13/9</td>
<td>5/3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1/11</td>
<td>3/11</td>
<td>5/11</td>
<td>7/11</td>
<td>9/11</td>
<td>1</td>
<td>13/11</td>
<td>15/11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1/13</td>
<td>3/13</td>
<td>5/13</td>
<td>7/13</td>
<td>9/13</td>
<td>11/13</td>
<td>1</td>
<td>15/13</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1/15</td>
<td>1/5</td>
<td>1/3</td>
<td>7/15</td>
<td>3/5</td>
<td>11/15</td>
<td>13/15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>\ldots</td>
</tr>
</tbody>
</table>
References

Appendix B
Fourier Series of the ca Ateb Function

Since the ca function is odd, its Fourier series comprises odd harmonics only, and it can be expressed as

$$\text{ca} (\alpha, 1, t) = \sum_{N=1}^{\infty} C_{2N-1} (\alpha) \cos \left[(2N - 1) \frac{2\pi}{T} t \right],$$ \hspace{1cm} (B.1)

where the Fourier coefficients C_{2N-1} depend on the parameter α, and are defined by

$$C_{2N-1} (\alpha) = \frac{4}{T} \int_{0}^{T/2} \text{ca} (\alpha, 1, t) \cos \left[(2N - 1) \frac{2\pi}{T} t \right] dt,$$ \hspace{1cm} (B.2)

where T is the period.

To write this expression in a suitable form for further calculation, the procedure recently proposed in Belendez et al. (2015) is utilised. As a first step, the displacement is rescaled by the initial amplitude, $X = x/A$, yielding

$$C_{2N-1} (\alpha) = \frac{8}{T} \int_{0}^{T/4} X (\alpha, t) \cos \left[(2N - 1) \frac{2\pi}{T} t \right] dt.$$ \hspace{1cm} (B.3)

Now, to find the expression for dt, the first integral is composed, and the following is derived

$$dt = \sqrt{\frac{\alpha + 1}{2c_{\alpha}^{2}}} |A|^{(1-\alpha)/2} \frac{dX}{\sqrt{1 - |X|^\alpha}}.$$ \hspace{1cm} (B.4)

This expression gives the possibility to determine how t depends on X (noting that this holds for $X \geq 0$):

$$t (X) = \sqrt{\frac{\alpha + 1}{2c_{\alpha}^{2}}} |A|^{(1-\alpha)/2} \int_{X}^{1} \frac{dy}{\sqrt{1 - y^{\alpha+1}}}.$$ \hspace{1cm} (B.5)
Performing some transformations, one can derive (see Belendez et al. 2015)

\[
t(X) = \sqrt{\frac{\pi}{2c_\alpha^2 (\alpha + 1)}} \frac{\Gamma\left(\frac{1}{\alpha+1}\right)}{\Gamma\left(\frac{\alpha+3}{2(\alpha+1)}\right)} |A|^{(1-\alpha)/2} I\left(1 - X^{\alpha+1}, \frac{1}{2}, \frac{1}{\alpha+1}\right), \tag{B.6}
\]

where \(I\) stands for the regularized incomplete beta function.

Finally, substituting (B.4) into (B.3) as well as (B.6) into the argument of the cosine function in (B.3), one derives

\[
C_{2N-1}(\alpha) = \frac{2(\alpha + 1) \Gamma\left(\frac{\alpha+3}{2(\alpha+1)}\right)}{\sqrt{\pi} \Gamma\left(\frac{1}{\alpha+1}\right)} \int_0^1 \frac{X}{\sqrt{1 - X^{\alpha+1}}} \cos\left(\frac{(2n - 1) \pi}{2} I\left(1 - X^{\alpha+1}, \frac{1}{2}, \frac{1}{\alpha+1}\right)\right) dX. \tag{B.7}
\]

By using the substitution \(z = 1 - X^{\alpha+1}\), the following expression for the Fourier coefficients is obtained:

\[
C_{2N-1}(\alpha) = \frac{2\Gamma\left(\frac{\alpha+3}{2(\alpha+1)}\right)}{\sqrt{\pi} \Gamma\left(\frac{1}{\alpha+1}\right)} \int_0^1 (1 - z)^{(1-\alpha)/(1+\alpha)} \sqrt{z} \cos\left(\frac{(2N - 1) \pi}{2} I\left(z, \frac{1}{2}, \frac{1}{\alpha+1}\right)\right) dz. \tag{B.8}
\]

These values can be calculated by carrying out numerical integration. First four Fourier coefficients are calculated in this way by using (B.8) and plotted in Fig. B.1 as a function of the power \(\alpha\). It is seen that: \(C_1\) decreases from unity as \(\alpha\) increases; \(C_3\) and \(C_7\) are positive; \(C_5\) is negative for \(1 < \alpha < 2.34\), and positive otherwise.

Fig. B.1 Fourier coefficients for \(ca(\alpha, 1, t)\) versus order of nonlinearity \(\alpha\): (a) first \(C_1\), (b) second \(C_2\), (c) third \(C_3\), (d) fourth \(C_4\)
Reference

Appendix C
Averaging of Ateb Functions

1. For $c^2_\alpha = 1$ and $A = 1$, the first integral (3.12) transforms into

$$\frac{\dot{x}^2}{2} = \frac{1}{\alpha + 1} (1 - x^{\alpha+1}). \quad (C.1)$$

Assuming

$$x = ca(\alpha, 1, \psi) \equiv ca, \quad (C.2)$$

and substituting it into the first integral (C.1), we have

$$\frac{\dot{x}^2}{2} = \frac{1}{\alpha + 1} (1 - ca^{\alpha+1}). \quad (C.3)$$

Using the relation for the sine and cosine Ateb functions

$$sa^2 + ca^{\alpha+1} = 1, \quad (C.4)$$

where $sa \equiv sa(1, \alpha, \psi)$, the expression (C.3) transforms into

$$sa^2 = \frac{\alpha + 1}{2} \dot{x}^2. \quad (C.5)$$

Averaging of the function sa^2 is done in the time interval $[0, \bar{T}/4]$, i.e., for the positive displacement x in the interval $[0, 1]$

$$\langle sa^2 \rangle = \frac{1}{(\bar{T}/4)} \int_0^{\bar{T}/4} \frac{\alpha + 1}{2} \dot{x}^2 dt = \frac{1}{(\bar{T}/4)} \int_0^{\bar{T}/4} \frac{\alpha + 1}{2} \dot{x} dx. \quad (C.6)$$

where integrating the relation (C.3)
we obtain the quarter period of vibration (see Cveticanin and Pogany 2012)

\[
\frac{\bar{T}}{4} = \sqrt{\frac{1}{2(1+\alpha)}} B \left(\frac{1}{\alpha+1}, \frac{1}{2} \right).
\]
(C.8)

Substituting (C.8) and (C.2) into (C.7) and after some transformation we obtain, finally,

\[
a_1 = \langle sa^2 \rangle = \frac{1 + \alpha}{3 + \alpha}.
\]
(C.9)

For \(\alpha \in (0, \infty) \), the parameter \(a_1 \) increases in the interval \(a_1 \in (1/3, 1) \).

2. According to (C.3) and (C.5) we have

\[
sa^2 ca^2 = \frac{\alpha + 1}{2} \dot{x}^2 x^2 = (1 - x^\alpha) x^2.
\]
(C.10)

The averaged product \(sa^2 ca^2 \) over the time period of 0 to \(\bar{T}/4 \), i.e., in the displacement interval \([0, 1]\) is

\[
\langle sa^2 ca^2 \rangle = \frac{1}{\bar{T}/4} \int_0^{\bar{T}/4} \frac{\alpha + 1}{2} \ddot{x}^2 x^2 dt = \frac{1}{\bar{T}/4} \int_0^{\bar{T}/4} \frac{\alpha + 1}{2} \ddot{x} dx.
\]
(C.11)

Using (C.8), integrating the relation (C.11) and after some calculation we obtain

\[
a_2 = \langle sa^2 ca^2 \rangle = \frac{B \left(\frac{3}{2}, \frac{3}{1+\alpha} \right)}{B \left(\frac{1}{2}, \frac{1}{1+\alpha} \right)}.
\]
(C.12)

Fig. C.1 \(a_1 - \alpha \) and \(a_2 - \alpha \) curves
In Fig. C.1, the $a_1 - \alpha$ and $a_2 - \alpha$ curves are plotted. It is shown that for $\alpha \in (0, \infty)$, the both parameters, a_1 and a_2 increase, but a_2 slower than a_1.

In Fig. C.2, the $\sqrt{a_1/a_2} - \alpha$ relation is plotted.

The curve decreases with increase of the nonlinearity order α from zero to infinity in a bounded region.

Reference

Appendix D
Jacobi Elliptic Functions

Jacobian elliptic functions are doubtless periodic functions defined over the complex plane. They represent the special case of periodical Ateb function, as is shown in Sect. 3.2. The fundamental three elliptic functions are the Jacobi elliptic sine \((sn(\psi, k^2) \equiv sn)\), cosine \((cn(\psi, k^2) \equiv cn)\) and delta \((dn(\psi, k^2) \equiv dn)\) functions with argument \(\psi\) and modulus \(k^2\). The elliptic functions \(sn\) and \(cn\) may be thought of as generalizations of sine and cosine trigonometric functions where their period depends on the modulus \(k^2\). For \(k^2 = 0\), the Jacobi elliptic functions transform into trigonometric ones

\[
sn(\psi, 0) = \sin \psi \quad cn(\psi, 0) = \cos \psi \quad dn(\psi, 0) = 1. \tag{D.1}
\]

The period of the \(sn\) and \(cn\) Jacobi elliptic functions is \(4K(k)\), while of the function \(dn\) it is \(2K(k)\), where \(K(k)\) is the complete elliptic integral of the first kind. The \(cn\) and \(dn\) Jacobi elliptic functions are even functions, while \(sn\) is an odd function.

In Fig. D.1 the \(sn(t, 1/2)\), \(cn(t, 1/2)\) and \(dn(t, 1/2)\) Jacobi elliptic functions are plotted.

The elliptic functions satisfy the following identities

\[
ca^2 + sa^2 = 1, \quad dn^2 + k^2 sn^2 = 1, \quad 1 - k^2 + k^2 cn^2 = dn^2. \tag{D.2}
\]

Only two of these three relations are independent.

The first time derivatives of the functions for the argument \(\psi\) are

\[
\frac{\partial}{\partial \psi}(cn) \equiv cn_\psi = -sn dn, \quad \frac{\partial}{\partial \psi}(sn) \equiv sn_\psi = cn dn, \\
\frac{\partial}{\partial \psi}(dn) \equiv dn_\psi = -k^2 sn cn. \tag{D.3}
\]

More about the Jacobi elliptic functions, the reader can find in the literature of the special functions (see Byrd and Friedman 1954, or Abramowitz and Stegun 1971).
Fig. D.1 Jacobi elliptic functions: $sn(t, 1/2)$ (dotted line), $cn(t, 1/2)$ (full line) and $dn(t, 1/2)$ (dashed line)

References

Appendix E
Euler’s Integrals of the First and Second Kind

Euler’s integral of the first kind also named Beta function, $B(p, q)$, is defined as (see Gradstein and Rjizhik 1971)

$$B(p, q) = \int_0^1 u^{p-1}(1-u)^{q-1} du, \quad (E.1)$$

which exists for

$$\text{Re}(p) > 0, \quad \text{Re}(q) > 0. \quad (E.2)$$

Introducing the new variable $x = 1 - u$ into (E.1), the Beta function is expressed as

$$B(p, q) = -\int_0^1 x^{q-1}(1-x)^{p-1} dx = \int_0^1 x^{q-1}(1-x)^{p-1} dx = B(q, p). \quad (E.3)$$

The Beta function is symmetric in (p, q).

Euler’s integral of the second kind also called Gamma function is (see Mickens, 2004)

$$\Gamma(p) = \int_0^\infty u^{p-1}e^{-u} du, \quad (E.4)$$

where p satisfies the relation (E.2). The connection between the Euler’s integrals of the first and second kind is

$$B(p, q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p + q)}. \quad (E.5)$$

For $(p - 1) = n$, where n is a whole positive number, the relation (E.4) modifies into
Appendix E: Euler’s Integrals of the First and Second Kind

\[\Gamma(n + 1) = \int_0^{\infty} u^n e^{-u} du = n! \] \hspace{1cm} (E.6)

Thus,

\[\Gamma(n) = (n - 1)! \] \hspace{1cm} (E.7)

and the relation between (E.6) and (E.7) is

\[\Gamma(n + 1) = n(n - 1)! = n\Gamma(n). \] \hspace{1cm} (E.8)

Generalizing (E.6) for any value of \(p \) we have

\[\Gamma(p + 1) = p! \] \hspace{1cm} (E.9)

and the corresponding relations

\[\Gamma(p) = (p - 1)! \] \hspace{1cm} (E.10)

and

\[\Gamma(p + 1) = p\Gamma(p). \] \hspace{1cm} (E.11)

Substituting (E.10) into (E.3) the transformed version of the Beta function is

\[B(p, q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p + q)} = \frac{(p - 1)!(q - 1)!}{(p + q - 1)!}, \] \hspace{1cm} (E.12)

which is suitable for calculation.

References

Appendix F
Inverse Incomplete Beta Function

In this Appendix the Table of the inverse incomplete Beta function $f(\alpha, x)$ for various values of parameter α is given.

<table>
<thead>
<tr>
<th>x \ α</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.05</td>
<td>0.0785</td>
<td>0.0646</td>
<td>0.0599</td>
<td>0.0560</td>
<td>0.0530</td>
</tr>
<tr>
<td>0.10</td>
<td>0.1564</td>
<td>0.1291</td>
<td>0.1197</td>
<td>0.1119</td>
<td>0.1060</td>
</tr>
<tr>
<td>0.15</td>
<td>0.2334</td>
<td>0.1932</td>
<td>0.1792</td>
<td>0.1678</td>
<td>0.1590</td>
</tr>
<tr>
<td>0.20</td>
<td>0.3090</td>
<td>0.2568</td>
<td>0.2385</td>
<td>0.2234</td>
<td>0.2118</td>
</tr>
<tr>
<td>0.25</td>
<td>0.3827</td>
<td>0.3196</td>
<td>0.2973</td>
<td>0.2788</td>
<td>0.2646</td>
</tr>
<tr>
<td>0.30</td>
<td>0.4540</td>
<td>0.3815</td>
<td>0.3555</td>
<td>0.3339</td>
<td>0.3172</td>
</tr>
<tr>
<td>0.35</td>
<td>0.5225</td>
<td>0.4423</td>
<td>0.4131</td>
<td>0.3886</td>
<td>0.3696</td>
</tr>
<tr>
<td>0.40</td>
<td>0.5878</td>
<td>0.5017</td>
<td>0.4698</td>
<td>0.4429</td>
<td>0.4219</td>
</tr>
<tr>
<td>0.45</td>
<td>0.6494</td>
<td>0.5596</td>
<td>0.5256</td>
<td>0.4966</td>
<td>0.4738</td>
</tr>
<tr>
<td>0.50</td>
<td>0.7071</td>
<td>0.6158</td>
<td>0.5803</td>
<td>0.5497</td>
<td>0.5255</td>
</tr>
<tr>
<td>0.55</td>
<td>0.7604</td>
<td>0.6699</td>
<td>0.6337</td>
<td>0.6021</td>
<td>0.5768</td>
</tr>
<tr>
<td>0.60</td>
<td>0.8090</td>
<td>0.7218</td>
<td>0.6856</td>
<td>0.6536</td>
<td>0.6277</td>
</tr>
<tr>
<td>0.65</td>
<td>0.8526</td>
<td>0.7710</td>
<td>0.7358</td>
<td>0.7041</td>
<td>0.6781</td>
</tr>
<tr>
<td>0.70</td>
<td>0.8910</td>
<td>0.8174</td>
<td>0.7841</td>
<td>0.7535</td>
<td>0.7280</td>
</tr>
<tr>
<td>0.75</td>
<td>0.9239</td>
<td>0.8604</td>
<td>0.8301</td>
<td>0.8015</td>
<td>0.7771</td>
</tr>
<tr>
<td>0.80</td>
<td>0.9511</td>
<td>0.8997</td>
<td>0.8734</td>
<td>0.8478</td>
<td>0.8254</td>
</tr>
<tr>
<td>0.85</td>
<td>0.9724</td>
<td>0.9346</td>
<td>0.9135</td>
<td>0.8920</td>
<td>0.8726</td>
</tr>
<tr>
<td>0.90</td>
<td>0.9877</td>
<td>0.9643</td>
<td>0.9495</td>
<td>0.9335</td>
<td>0.9184</td>
</tr>
<tr>
<td>0.95</td>
<td>0.9969</td>
<td>0.9874</td>
<td>0.9799</td>
<td>0.9710</td>
<td>0.9619</td>
</tr>
<tr>
<td>1.00</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
Index

A
Adiabatic invariant, 233
Amplitude
averaged, 68
steady state, 139, 221
time variable, 59, 129, 222

B
Bifurcation, 177
condition, 180
diagram, 257
period doubling, 273
point, 178

C
Cauchy problem, 63
Center, 249
Chaos
control, 259, 273
criteria, 254
critical parameter, 255
strange attractor, 254, 258, 270
Coordinate
cyclic, 232
polar, 231, 237

D
Damping
Van der Pol, 93, 219
viscous, 93
Differential equation
averaged, 59, 61, 62, 64, 68, 71, 74, 92,
93, 122, 126, 129, 134, 135, 167, 220,
265
Bernoulli, 93, 221, 236, 241
cubic and quadratic nonlinear, 56
cubic and quintic nonlinear, 248
cubic nonlinear, 38, 248
generating, 231
Hill’s, 54, 56
Mathieu, 143, 151
Mathieu-Duffing, 144
Mathieu-Hill’s, 56
odd-order nonlinear, 174

E
Energy source
ideal, 247
limited, 247
non-ideal, 247
Equilibrium point, 18
Excitation force, 160
amplitude, 173
frequency, 173
Excited
amplitude, 189
frequency, 189

F
First integral, 18, 252
cyclic, 231
energy type, 21
Fixed point, 249
Fluttering, 176, 186, 239
Force
nonlinear elastic, 68
reactive, 129, 137
Frequency, 9, 10
Index

approximate, 30
exact, 22, 40
time variable, 59
Function, 29
Ateb, 297
averaged, 92, 93, 220, 305, 306
cosine, 24, 298
period, 298
sine, 24, 298
time derivative, 43
Beta, 21, 161, 311
incomplete, 23, 297, 299
inverse incomplete, 24
complex, 228, 231
complex conjugate, 228
dissipation, 43
energy, 43, 249
Gamma, 21, 161, 311
gyroscopic, 239
hyperbolic, 250
hypergeometric, 221
Jacobi elliptic, 26, 35, 67, 133, 145, 238, 239, 309
pure nonlinear, 5
series expansion, 163, 233

H
Hyperbolic saddle, 249
Hysteresis, 269

I
Imaginary unit, 228, 252
Integral
Euler’s first kind, 311
Euler’s second kind, 311
first kind elliptic
complete, 146, 309
incomplete, 26
second kind elliptic
complete, 68, 135
incomplete, 239

J
Jump effect, 179, 188, 267, 268

L
Level set, 249
Lyapunov
exponent, 248, 257, 272
spectrum, 257

M
Melnikov’s
function, 251
procedure, 248
theorem, 248, 254
MEMS, 7
Method
averaging, 59, 66, 78
harmonic balance, 44, 56, 159
homotopy perturbation, 53, 58
Krylov–Bogolubov, 59, 229
Lindstedt Poincaré
adopted, 28
modified, 31
two-dimensional, 144
series expansion, 145
variation of constants, 55

Motion
bounded, 154
chaotic, 247, 254
limit cycle, 94
quasiperiodical, 46
unbounded, 154

N
Nonlinearity
geometric, 6
non-integer, 38
order, 5, 223
physical, 6
pure, 5
quadratic, 8
small, 62
Numerical simulation, 185

O
Optomechanical system, 110
Orbit
homoclinic, 249, 250
transversal, 254
nonperiodical, 254
periodical
closed, 249
unstable, 254
Order of nonlinearity
integer, 9
non-integer, 9

Oscillator
constant force excitation, 159, 160
damped Duffing–Van der Pol, 96
dominant linear term, 63
Duffing, 8
harmonically excited, 179
non-ideal excitated, 263
ideal, 248
Levi-Civita, 128
linear, 25
mass variable, 129, 132
mixed parity, 9
non-ideal, 247, 263
nonlinear with linear deflection, 71
odd-integer order, 163
parameter variable, 119, 120
parametrically excited, 119, 143
periodical force excitation, 159
pure nonlinear, 5, 17
harmonically excited, 173
linear damped, 46, 91
viscous damped, 42
quadratic nonlinear, 8
Van der Pol, 93, 135, 137

P
Parameter
embedding, 53
plane, 154
time variable, 60
Period
extact, 21
Phase
plane, 18, 227, 255
time variable, 59, 129
trajectory, 18
Poincaré map, 254, 255
Pyragas method, 248, 259, 274

R
Resonance, 247
frequency, 175
Rotor, 228
linear damped, 240

S
Sectorial velocity, 232
Secular term, 152

Separatrix curve, 251
Shooting method, 275
Slow time, 119
Solution
analytical, 46
approximate, 30, 40, 45, 66, 218, 222
Ateb function, 24, 43
averaged, 60, 61, 68, 69
generating, 59, 60, 73
Jacobi elliptic, 35, 71
corrected, 71
series, 56
numerical, 39, 46, 65, 71, 224
polar form, 236
series expansion, 233
steady state, 189
trial, 59, 60, 67, 73
trigonometric function, 28, 39
Sommerfeld effect, 269
Stability chart, 155
Steady state
amplitude, 94–96, 137, 138, 223
equation, 266
limits, 224
System
non-ideal, 247
one-mass, 228
two-mass, 217, 219

T
Transient
amplitude, 221
curve, 152
surface, 151, 154

V
Vibration
amplitude, 45
frequency, 45, 161
maximal velocity, 34, 36, 70
period, 45, 64, 161
phase angle, 221
Vibration isolator
passive, 6
quasi-zero stiffness, 6